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The objective here is to relate various aspects of Riemann’s notion of curvature for manifolds to more
elementary concepts of curvature for curves and surfaces. This development follows (or attempts to follow)
at least in spirit the introductions to intrinsic derivatives discussed earlier.

We also discuss/review the curvature of a regularly parameterized surface in R
3 in detail. As far

as I know there are two main sources of intuition for Riemann’s basic ideas about manifolds. Those
are experience with submanifolds of Euclidean space and consideration of changes of coordinates for flat
Euclidean space R

n. The example of a surface S ⊂ R
3 falls into the first category.

More generally, it is from these sources that one can come to the conclusion that the intrinsic derivative
of a vector field w ∈ X(M) defined on a manifold M should exist (and is a natural object with certain
properties). From this perspective it is not unreasonable to at least believe a Riemannian manifold M
is somehow intrinsically “curved.” In particular, it is hoped that the consideration of specific familiar
examples, like a two-dimensional spherical cap intrinsically associated with a metric assignment on a
domain in R

2, is a reasonable source for such a belief.

1 Review of intrinsic derivatives

Recall that the concept of an intrinsic derivative of a real valued function f : M → R defined on a manifold
M rested on the rate of change of a real valued function with respect to the distance of displacement in
the manifold determined by the Riemannian metric tensor. This rate of change at a point P ∈ M was
denoted by

Duf(P )

where u ∈ TPM was a unit filament vector. This rate of change was expressed as a difference quotient
using the convenient fact that values of f at different points on M may be freely subtracted from one
another.

The algebraic extension of the values of directional derivatives to other vectors z ∈ TPM were denoted
by

dfP (z)

where dfP : TPM → R is a point differential map. Finally, the algebraic extension to the point differential
was considered at each point on the manifold to obtain a spatially extended, global, or general, differential

df : X(M) → cC∞(M)

which was cC∞(M) (module) linear. This object was an example of a (0, 1) tensor, and was metrically
equvalent to a certain vector field Df in the sense that

µ(Df, z) = df(z)
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where µ : X(M)× X(M) → cC∞(M) was the (0, 2) Riemannian metric tensor.
The situation was more problematic when we wanted to consider the derivative of a vector field w ∈

X(M) owing to the fact that there is no natural way to determine in general the difference of the values
wP and wQ where P and Q are distinct points in M . Equipped with the belief that a directional derivative

∇uw(P )

should exist for u ∈ S
1
P ⊂ TPM , and be a naturally defined geometric object, we listed various properties

such a derivative might have—and perhaps should have. Among those were the belief that ∇uw(P ) should
be a vector in TPM and have an algebraic extension dwP : TPM → TPM . This extension is, of course, a
point differential for the vector field w at P , and it is natural to also imagine there should be an extension
dw : X(M) → X(M) to a global differential on the manifold M . With the addition/discovery of two key
properties, metric compatibility according to which the differential of the real valued function µ(w1, w2)
is related to the vector field differentials dw1 and dw2 by

dµ(w1, w2) = µ(dw1, w2) + µ(w1, dw2) for w1, w2 ∈ X(M)

and symmetry according to which
dvj(vi) = dvi(vj)

for {v1, v2, . . . , vn} local vector fields determined by a chart (U,p) so that vj = dp(ej) for j = 1, 2, . . . , n, we
were able to identify ∇uw with a formula in terms of known quantities associated with a chart. Specifically,
the local vector fields

dvi(vj) =

n
∑

k=1

Γk
ij vk

and the associated coefficients Γk
ij called Christoffel symbols played a central role in the formula.

There still remains some work to do in verifying this local formula can be used

(a) to define a unique vector ∇uw(P ) for each u ∈ S
1
P ,

(b) to define by algebraic extension a point differential map dwP : TPM → TPM , and

(c) to define a global differential map dw : X(M) → X(M)

all having all the properties desired/needed desired to be associated to the intrinsic derivative of a vector
field. As we proceed, we will assume this development has been accomplished and is at our disposal both
as a technical/quantitative device for differentiating vector fields and as a model for the development of
the next basic concept of Riemannian geometry, namely curvature.

Our discussion of intrinsic derivatives illustrates a general pattern of starting with a heuristic under-
standing (or belief in) some geometric quantity or object, followed by some specific determination of a
quantitative value for that quantity, perhaps through intermediary assumptions about certain algebraic
and spatial extensions and various properties. The approach to curvature below attempts to follow a
similar pattern.

2 Two dimensional surfaces in R
3

The key observation about two dimensional surface in R
3 is associated with the French mathematician

Jean Baptiste Marie Charles Meusnier de la Place better known today simply as Meusnier (pronounced
Moon-yea). Meusnier’s theorem says roughly that the curvature of a surface S ⊂ R

3 is “about” the
curvature of curves (passing through a point) in S. Specifically, consider a path γ : I → S parameterized
by arclength so that γ̇(s) ∈ S

1
γ(s) for s ∈ I and with γ(s0) = P ∈ S. Here we are taking

S
1
P = {u ∈ TPS : |u| = 1}
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the collection of traditional vectors in R
3 comprising the unit circle in TPS, also taken to consist of

traditional vectors in R
3, though M = S can also be considered as a Riemannian manifold with the usual

filament vectors determiined by paths and

µP ([α1], [α2]) = 〈α′(t1), α
′(t2)〉R3 . (1)

Exercise 1 Assume X = p : U → S is a parameterization of the set p(U) ⊂ S defined on the open set
U ⊂ R

2 and is also a chart function for the Riemannian manifold M = S. Find the metric coefficients
gij : U → R for i, j = 1, 2 so that

µX([α1], [α2]) = 〈g dξX(α
′
1(t1)), dξX(α

′
2(t2))〉R2

agrees with the assignment (1) associated with the inner product induced from R
3 where g = (gij(x))

denotes the matrix of metric coefficients at x = ξ(P ).

There are many such paths γ as illustrated in Figure 1.

Figure 1: Many paths on a spherical surface sharing the same tangent vector γ̇ ∈ S
1
P at the north pole P .

The curvature vector γ̈ of the smallest circle through P is indicated.

The curvature vector of such a path γ : I → S at P is given by

γ̈(s0) =
d2γ

ds2
(s0)

the second derivative of γ with respect to arclength. Meusnier asserts that the quantity

kγ = 〈γ̈, N〉R3 ,

where N = NP is a specified unit normal to the surface S at P , is independent of the particular path γ
and depends only on the direction determined by the unit vector γ̇(s0). Accordingly, the value kγ is called
the normal curvature of S at P in the direction γ̇ ∈ S

1
P and gives rise to a function

II : S1
P → R by II(γ̇) = 〈γ̈, N〉R3 .

The proof of Meusnier’s theorem is obtained by considering the quantity 〈γ̇, N〉R3 as a function of s along
the entire path which happens to take the constant value zero. Differentiating according to the usual
metric compatibility of the Euclidean inner product one finds

〈γ̈, N〉R3 = −〈γ̇, Ṅ〉R3, (2)

where of course, N : I → R
3 is a unit normal field to S extending N = NP along the path determined by

γ. Since

Ṅ =
dN

ds
(s0)
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is independent of the particular path γ but depends only on γ̇(s0). To see this more clearly and also discern
something else interesting from the Meusnier relation (2) consider an extension N̄ : W → R

3 to an open
set W ⊂ R

3 with P ∈ W giving also a unit normal field on S. Then

Ṅ = DN̄(γ) γ̇.

Not only does this expression make it clear that Ṅ = Ṅ(s0) depends only on the direction γ̇(s0) since
DN̄(P ) is entirely independent of γ, but the function

S : S1
P → TPS by S(γ̇) = −Ṅ

extends (algebraically) to a linear function

S ∈ L(TPS → TPS) with S(z) = −DN̄(P ) z.

Exercise 2 Show there exists a vector field N̄ : V → R
3 giving an extension of a specified normal field N

to S defined in an open set p(U) ⊂ S containing P .

Exercise 3 Show that for z ∈ TPS the vector

S(z) = −DN̄(P ) z

satisfies S(z) ∈ TPS.

Exercise 4 Show the curvature vector γ̈ = γ̈(s0) at P ∈ S determined by a path γ : I → S parameterized
by arclength on the surface S satisfies

〈γ̈, γ̇〉R3 = 0

so that the curvature vector γ̈, when nonvanishing, determines a unique direction

γ̈

|γ̈|
∈ S

2
P ⊂ R

3

normal to the path determined by γ called the principal normal to the path/curve. The principal normal
vector satisfying

γ̈ = |~k|
γ̈

|γ̈|
,

when considered in the theory of curves, is also often denoted by N so that the curvature vector ~k satisfies
~k = γ̈ = |~k| N , but in the present context one should be careful to realize this is not always a normal to S.

We have now seen that the fundamental geometric quantity II(γ̇) called the normal curvature of S in
the direction γ̇ satisfies

II(γ̇) = 〈γ̇, S(γ̇)〉R3 = 〈γ̇,−dN̄ γ̇〉TPS .

Consequently, there is an (algebraic) extension Q : TPS → R of II : S1
P → R which is a quadratic form

satisfying
Q(cz) = c2Q(z) for z ∈ TPS, c ∈ R.

The function II : S1
P → R, or sometimes more generally the algebraically extended Q : TPS → R, is called

the second fundamental form of the surface S. As with all quadratic forms there is a bilinear form

B : TPS × TPS → R by B(z1, z2) = 〈z1, S(z2)〉R3 = 〈z1, S(z2)〉TPS

satisfying
Q(z) = B(z, z).

4



The function S ∈ L(TPS → TPS) with S(γ̇) = −Ṅ is called the shape operator of the surface.
It is quite reasonable to say at this point that the “curvature” of S is (completely) captured by the

values of the normal curvatures or by the values of the second fundamental form, or any of the associated
extensions and/or constructions like the shape operator from which one can recover the values of the
normal curvatures of Meusnier. Before I proceed further to analyze and consolidate what can be said
about the normal curvatures, I wish to augment the general discussion of the curvature of S given above in
two additional and roughly equivalent ways. First I wish to consider carefully the curvature vectors ~k = γ̈
above and determine special representative curves for the direction γ̇ at each point P . Second I wish to
consider the values of the shape operator on these special representative curves. The special representative
curves turn out to be geodesics, so roughly speaking, I want to incorporate the role played by geodesics
in relation to normal curvatures or more properly introduce geodesics into the discussion.

I return to consideration of the family of space curves parameterized by arclength, lying in a surface
S ⊂ R

3, and passing through a particular point P ∈ S with a common tangent γ̇(s0). While the condition
|γ̇| = 1 is a condition having to do with specific parameterization of say γ ∈ I∞(S), the curvature

vector ~k = γ̈ ∈ R
3 and specifically γ̈(s0) is a fundamentally geometric quantity determined by the curve

independent of parameterization. This vector, furthermore, admits a decomposition

γ̈ = kγ N + kg γ̇⊥

where as discussed above the normal curvature kγ = 〈γ̈, N〉R3 is independent of the particular path in the
class under consideration. The other component kg γ̇⊥ = γ̈ − kγ N depends on the path, is orthogonal
to the path, and is tangent to S. This tangent component kg γ̇⊥ of the curvature vector γ̈ is called the
geodesic curvature vector. Among the paths under consideration at P , there is a locally unique one
for which the condition

kg = 0

holds identically, and this is called the geodesic passing through P in the direction γ̇ = γ̇(s0). Taking
this particular path in the forward direction for some positive length ǫ (small enough) we can express some
open set p(G) ⊂ S as

p(G) = {P} ∪ {γ(s) : s0 < s < s0 + ǫ, γ̇(s0) ∈ S
1
P} (3)

where G is an open set in U ⊂ R
2 with x = p−1(P ) ∈ G. The expression on the right in (3) gives the

geodesic decomposition of S near P or the geodesic star at P as illustrated for a spherical surface in
Figure 2.

Figure 2: Geodesic star at the north pole on the sphere.
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3 Summary lessons

Hopefully one comes away from the discussion above believing curvature is about submanifolds.
Specifically, the curvature of a higher dimensional object (in this case a two dimensional surface S) is
described in terms of one dimensional submanifolds (paths) passing through P . In addition, one can think
of the restriction |γ̇| = 1 as analogous to the restriction u ∈ S

1
P associated with the directional derivative(s)

Duf or ∇uw. Notice the parallels:

II(γ̇) = 〈γ̈, N〉R3 extends to Q : TPS → R;

Duf(P ) extends to dfP : TPM → R.

S : TPS → TPS extends spatially to S : X(S) → X(S);

dwP : TPM → TPM extends spatially to dw : X(M) → X(M).

An important feature in the discussion above is that if γ is a geodesic with |γ̇| = 1, i.e., a unit speed
geodesic, then

γ̈ = kγ N.

Here an extrinsic curvature is naturally attached to an extrinsic normal direction. On the other hand,
starting with a geometrically meaningful quantity II(γ̇) = kγ (Meusnier’s normal curvature), we obtain a
linear operator S : TPS → TPS (the shape operator) which also extends spatially to a function S : X(S) →
X(S) which is C∞(S) (module) linear. Observe that here for a unit speed geodesic one has

S(γ̇) = −Ṅ = kγ γ̇

because
kγ = 〈γ̈, N〉R3 = 〈γ̇,−Ṅ〉TPS .

Thus, S is giving a tangential expression for the normal curvature.
Finally, as something of an aside we mention/recall that there is an alternative form of the shape

operator obtained by taking the inner product with an additional argument vector:

S∗ : X(S)× X(S) → C∞(S) by S∗(z1, z2) = 〈S(z1), z2〉.

The function S∗ is (module) linear over C∞(S), and is (therefore) a tensor, in this case a (0, 2) tensor.

4 Intrinsic curvature versus extrinsic curvature

Gauss pointed out that the second fundamental form II : S1
P → R and/or the shape operator S : TPS →

TPS contains both

(i) information about the way S is curved in R
3, and

(ii) other information about the way S is curved which can be determined strictly using the metric tensor,
that is for example the local metric coefficients g11 = E, g12 = F , and g22 = G intrinsic to S.

This is essentially the subject of Gauss’ Theorema Egregium. The intrinsic information on the curvature
of a surface S at a point P ∈ S reduces to one number

K = det(S).
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This number, as might be expected, is independent of the choice of normal N used to define the shape
operator S. This might be expected because the choice of N is fundamentally an extrinsic geometric
construction. Going back to the normal curvatures, we can say a little more. If one looks at the values kγ
as γ̇ varies in S

1
P , one always sees a maximum value kmax and a minimum value kmin. These are always

taken at tangent directions which are orthogonal. This interesting fact is the result of the fact that the
shape operator is self-adjoint with respect to the inner product:

〈S(z2), z1〉 = 〈S(z1), z2〉.

or equivalently that the bilinear form B : TPS → TPS → R associated with the algebraic extension Q of
II is symmetric. As a result of these algebraic properties one finds

K = kmin kmax = II(γ̇min) II(γ̇max)

with 〈γ̇min, γ̇max〉 = 0. The quantity K is called the Gauss curvature of S at P . The proof of Gauss’
theorem is essentially the following: The second partial derivatives of the parameterization vector X : U →
S ⊂ R

3 satisfy

Xx1x1
= Γ1

11 Xx1
+ Γ2

11 Xx2
+ e N

Xx1x2
= Γ1

12 Xx1
+ Γ2

12 Xx2
+ f N

Xx2x2
= Γ1

22 Xx1
+ Γ2

22 Xx2
+ g N

where the classical/traditional Christoffel symbols

Γk
ij : U → R

are considered (naturally) as functions with domain in a chart U ⊂ R
2 and can be expressed only in terms

of the metric coefficients (of the first fundamental form). Thus, the Christoffel symbols are intrinsic, while
the coefficients ℓ11 = e, ℓ12 = f , and ℓ22 = g of the second fundamental form are extrinsic. Gauss showed,
however, that

K = det(S) = kmin kmax =
1

g11

(

∂Γ2
11

∂x2
−

∂Γ2
12

∂x1
− Γ1

12Γ
2
11 − (Γ2

12)
2 + Γ2

11 Γ2
22 + Γ1

11 Γ2
12

)

. (4)

It’s perhaps a bit of an ugly calculation, but of course a very pretty theorem. This, it turns out, is the
main quantity of interest for curvature in Riemannian geometry. Before discussing how and why that is
the case, I will present something of an aside.

Any of the value of the normal curvature kγ is an extrinsic curvature. There are essentially a (half)
circle’s worth of these values and they contain kmin and kmax. These values depend on the choice of
the (local) normal N in particular. If the other normal −N to S is taken at P ∈ S, then the normal
curvatures in the directions γ̇min and γ̇max change signs. As a result, the minimum becomes a maximum
and the maximum becomes a minimum. The product K however does not change, and in fact according to
(4) the value of K may be computed without reference to anything except distances and angles measured
using paths α ∈ P∞(S).

One particular single number associated with the extrinsic curvature of a surface or the way the surface
is curving in the ambient three-dimensional space R

3 is given by the average value

H =
1

2
Trace(S) =

kmin + kmax

2
.

This value does depend on the choice of N and changes sign when N changes. This is called the mean
curvature of the surface S at the point P ∈ S. One quite interesting thing about mean curvature is that
one need not use the particular orthogonal directions γ̇min and γ̇max to compute it: Given any orthonormal
directions u1 = γ̇ and u2 = γ̇⊥ in S

1
P ⊂ TPS, one has

H =
II(γ̇) + II(γ̇⊥)

2
=

II(u1) + II(u2)

2
. (5)
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Exercise 5 Write down a one parameter family of explicit isometric flexings of the flat plane {(x, y, 0) :
(x, y) ∈ R

2} ⊂ R
3 into cylindrical surfaces. Find the Gauss curvature and mean curvature of each of these

surfaces.

Exercise 6 Show in general that

K =
eg − f 2

EG− F 2

and

2H =
Eg − 2fF + eG

EG− F 2
.

5 Flat surfaces in R
3

There are other flexings of the plane in R
3, and all such surfaces have been classified. . .

6 Curvature of manifolds

6.1 One dimensional manifolds

There is no intrinsic notion of curvature for one dimensional manifolds. This is in contrast to the curvature
of curves in the plane which is nicely given in terms of the curvature vector or curves in R

3 whose curvature
is partially described by the curvature vector discussed above in the context of surfaces in R

3. These are
extrinsic notions of the curvature of a one dimensional manifold as a submanifold of a higher dimensional
manifold or ambient space. Note also that what we are saying here is not that one dimensional manifolds
have zero curvature, but rather that there are not enough dimensions for any notion of curvature whatso-
ever. Specifically, if you have a vector field w in a one dimensional manifold and a unit field u, which you
can always have in a one-dimensional manifold, then the vector field ∇uw can only tell you about how the
length of w is changing. Curvature is fundamentally about how the direction of vector fields change, and
intrinsic curvature is about how the directions of vector fields, in a certain sense, have to or or forced to
change. There is no notion of the change of direction1 of a vector field in a one dimensional manifold.

6.2 Two dimensional manifolds

At each point P in a two dimensional manifold M there is a unique geodesic star or local geodesic decom-
position similar to the one described above for surfaces. We have not developed adequately the properties
of such a decomposition, but we are pretty close. The main tool is the existence and uniqueness theorem
for ordinary differential equations.

Given the geodesic star at P ∈ M in a two dimensional manifold, the Gauss formula (4) may be adapted
in the form

K(P ) =
1

g11 ◦ ξ(P )

[

d(Γ2
11)P (v2)− d(Γ2

12)P (v1)

− Γ1
12(P ) Γ2

11(P )− (Γ2
12(P ))2 + Γ2

11(P ) Γ2
22(P ) + Γ1

11(P ) Γ2
12(P )

]

(6)

where the Christoffel symbols are locally defined real valued functions on M with respect to a chart (U,p)
with P ∈ p(U) satisfying

dvi(vj) =
2

∑

k=1

Γk
ijvk for i, j = 1, 2, . . . , n

1Of course, one can say a vector field can change in direction from “forward” to “backward” in a one dimensional manifold,
but this is fundamentally just a matter of the change of length. In particular, the length must vanish for such a change of
direction. That kind of change in direction is not what curvature is about.
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and {v1, v2} the coordinate basis induced by the chart (U,p) as usual.
One needs to show (6) is independent of the particular chart chosen. Then this gives a notion of intrinsic

curvature for M2. In particular, a two dimensional manifold M is said to be negatively curved at P if
K(P ) < 0, positively curved at P if K(P ) > 0, and flat at P if K(P ) = 0. In general, the value of K
can change from point to point and can be positive and negative on a single two dimensional manifold.

Exercise 7 Show that a standard (two dimensional) torus in R
3 has Gauss curvature taking all values

on some interval [Kmin, Kmax] where Kmin < 0 < Kmax as a surface in R
3. For exmaple, you can take the

stereographic projection of the Clifford torus

C = {(x1, x2, x3, x4) ∈ R
4 : x2

1 + x2
2 = 1 = x2

3 + x2
4} ⊂ R

4.

Show the same surface takes the same values for the curvature as a Riemannian manifold. Define a manifold
M homeomorphic to C and give it a (flat) Riemannian structure so that K ≡ 0 on M .

The two dimensional manifolds of constant Gauss curvature have been classified. In particular, these
are determined locally in the sense that there is a neighborhood p(U) ⊂ M in every such manifold upon
which the Riemannian metric tensor µ is determined uniquely by the constant K ∈ R. Every such manifold
admits a real analytic atlas, and each such neighborhood is embeddable in R

3.

6.3 Three dimensional manifolds

For higher dimensional manifolds the intrinsic curvature is understood/determined/defined according to
the principle announced above that the curvture is, first of all, about submanifolds. Second, in order to
discuss the basic object of geometric meaning, it is convenient to consider certain orthonormal bases at a
point P ∈ M . Some of our initial considerations will be general. There is always a decomposition for some
neighborhood p(U) ⊂ M as a geodesic star. In particular, for the appropriate U , there is some ǫ > 0 for
which

p(U) = {P} ∪ {γ(s) : s0 < s < s0 + ǫ, [γ̇(s0)] ∈ S
n−1(P )}

with all the (geodesic) filaments disjoint.2 See Figure 2 above. Given a pair of orthonormal vectors u1

and u2 in S
n−1
P ⊂ TPM , the set

S(u1, u2) = {P} ∪ {γ(s) : s0 < s < s0 + ǫ, [γ̇(s0)] ∈ span{u1, u2}}

is an open two dimensional submanifold of M . Note: These submanifolds cannot be expected to always
be disjoint. No pair

(S(u1, u2)\{P},S(ũ1, ũ2)\{P})

will be disjoint when n = 3. However, the curvature of M3 is captured by the collection of numbers

K(u1, u2)

of Gauss curvatures of two dimensional (totally geodesic) submanifolds S ⊂ M tangent to span{u1, u2} at
P where {u1, u2} ranges over all pairs of orthonormal bases in TPM .

The structure upon which this notion of the curvature of M is based should be, at least in some sense,
naturally comparable to the notion of curvature for surfaces S in R

3 discussed above. Here are the parallels:

M decomposes locally at P ∈ M into totally geodesic two dimensional submanifolds S(u1, u2);

S ⊂ R
3 decomposes locally at P ∈ S into geodesics γ.

2Again, this is an assertion we have not fully justified, but we have gone a good deal in this direction by writing down the
ordinary differential equation for geodesics.

9



The (intrinsic) curvature of M at P is given by {K(u1, u2) : µP (ui, uj) = δij};

The (extrinsic) curvature of S at P is given by {γ̈(s0) = kγ : γ̇(s0) ∈ S
1
P}.

There are also distinctions to be noted. The local decomposition of S ⊂ R
3 is a partition, meaning

the geodesic filaments are disjoint except at P and thus the decomposition of the curvature of the surface
into normal curvatures can be viewed as a disjoint curvature decomposition. The geodesic filaments are
similarly individually disjoint in higher dimensions as well, but the collections S(u1, u2) comprising two
dimensional submanifolds are not disjoint in general, so the intrinsic curvature decomposition is not a
partition with respect to the sets of which the (Gauss) curvature is measured. For this reason it may
be expected that the totally geodesic two dimensional submanifolds S(u1, u2) may have curvatures that
display a more complicated structure among themselves. Riemann’s idea of curvature is a fundamentally
new and different kind of idea in this sense.

The basic geometric object through which the intrinsic curvature of a Riemannian manifold3 is un-
derstood is the Gauss curvature K(u1, u2) of totally geodesic two dimensional submanifolds determined
by orthonormal bases {u1, u2} ⊂ S

n−1
P . Each such curvature K(u1, u2) is called the sectional curvature

determined by {u1, u2}. This was the idea of Riemann and presumably his adaption of Gauss’ work on
the curvature of surfaces.

The Gauss curvature and the mean curvature of a surfaces S ⊂ R
3 may be viewed as algebraic ex-

pressions involving the (basic geometric) normal curvatures. Furthermore, as we have seen above, the
basic geometric normal curvature II(γ̇) considered as a function on S

1
P ⊂ TPS leads to other algebraic

extensions with various properties which one can say loosely4 are “linearity properties.”
It is to be expected that there is an extension of the sectional curvature

K : {(u1, u2) ∈ S
n−1
P × S

n−1
P → R : µP (ui, uj) = δij , j = 1, 2} → R

with some kind of linearity properties. Also, like the normal curvature II(γ̇) = kγ has associated vector
expressions

γ̈ = kγ N and S(γ̇) = −Ṅ = kγ γ̇, (7)

and it is natural to imagine there is a vector expression

R0(u1, u2) = K(u1, u2) u (8)

for some u ∈ TPM , though Riemann did now write about any of these “algebraic” developments. As a
first observation in making such a vector identification, specifically in thinking about how to identify an
appropriate vector u for which to define some Riemannian curvature vector R0 as indicated in (8) we can
perhaps note that, while the basic idea may be inspired by the expressions in (7) this is one instance where
fundamental differences should be taken into account.

In looking at the formula γ̈ = kγ N one might be initially inclined to take the vector u in (8) to be
a vector orthogonal to u1 and u2, espectially if M is three dimensional. The point to percieve however is
that γ̈ and the associated normal curvature kγ is fundamentally an extrinsic curvature, while the sectional
curvature K(u1, u2) is fundamentally intrinsic. This might suggest that u in (8) should be some tangent
vector. Furthermore, for a manifold M with dimension greater than three, there is no obvious single vector
u (or one dimensional subspace in TPM) orthogonal to u1 an u2, so this initial idea runs into both heuristic
and technical difficulties.

3Intrinsic curvature is the only kind of curvature which a Riemannian manifold can be expected to have in general, so the
adjective “intrinsic” can be left off in this context.

4The second fundamental form itself and the extension Q to TPS are more properly quadratic forms, but being a quadratic
form, as mentioned above, is closely related to a bilinear form B and a linear operator S.
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It is difficult (for me at least) to see precisely how the sectional curvatures are (or should be) intertwined
or related to one another algebraically. It seems that this difficulty has been resolved by the introduction
of a third argument vector, which we can take to be an element u3 ∈ S

n−1
P ⊂ TPM . This vector can be

thought of as being used to determine the vector u in (8) in such a way that the following (nonobvious)
properties hold:

1. R0(u1, u2) = Kw for some w ∈ span{u1, u2} if u3 ∈ span{u1, u2}, so that there is a function

R : X(M) × X(M)× X(M) → X(M)

which is called the Riemannian curvature operator.

(a) If u3 = u1, then
R(u1, u2, u1) = K(u1, u2) u2, (9)

but if u3 = u2, then
R(u1, u2, u2) = −K(u1, u2) u1. (10)

Notice that in each case a vector R(u1, u2, u3) is chosen having the form of R0(u1, u2) suggested
above, but the vector u involved in that choice depends on the choice of u3.

(b) More generally, if u3 /∈ span{u1, u2}, then R(u1, u2, u3) /∈ span{u1, u2}. Thus, the choice of the
third vector determines the disposition of the vector direction of R(u1, u2, u3) in a somewhat
predictable way.

2. The Riemannian curvature operator (which Riemann didn’t actually know about) is cC∞(M) linear
in each of the three arguments, so that R∗ : X(M) × X(M) × X(M)× X(M) → cC∞(M) by

R∗(z1, z2, z3, z4) = µ(R(z1, z2, z3), z4) (11)

is a (0, 4) tensor.

These are not quite all the properties required to determine the Riemannian curvature operator R. I will
give those properties in the next section. Siffice it to say for now that a relatively short list of properties all
but one of which are similar to (9) and (10) do determine a unique operator R and a unique (0, 4) tensor
given by (11) called the Riemannian curvature tensor. This operator/tensor which captures all the
sectional curvatures and is determined by the sectional curvatures is, in some sense, the entire algebraic
story of the basic geometric meaning of (intrinsic) curvature for a manifold M .

When M is three dimensional, any two dimensional subspace span{u1, u2} of the vector space TPM is
determined by a single unit vector u ∈ TPM with u orthogonal to u1 and u2. In this case, we define a
quadratic form Q : TPM → R by

Q(u) =
R∗(u, u1, u, u1) +R∗(u, u2, u, u2)

2
=

µP (R(u, u1, u), u1) + µP (R(u, u2, u), u2)

2
. (12)

Much in the same way the mean curvature of a surface S ⊂ R
3 as expressed in (5) is independent of the two

orthogonal directions u1 = γ̇ and u2 = γ̇⊥ in TPS, in this case it turns out the value of Q is independent
of the particular orthonormal basis {u1, u2} for (span{u})⊥.

Exercise 8 Show the value of the quadratic form Q : TPM → R given in (12) is the trace of a certain
linear operator L : TPM → TPM . Hint: Use properties (9) and (10) to show R(u, u, u) = 0.

Exercise 8 justifies the assertion above that Q(u) is independent of the orthonormal basis {u1, u2} because
the trace of a linear operator (expressed in terms of a particular basis) is independent of the basis.
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Continuing with the algebraic and spatial extension of the quadratic form Q above, one obtains a
bilinear function B : TPM ×TPM → R satisfying B(z, z) = ‖z‖2Q(z/‖z‖) where ‖z‖2 = µP (z, z) as usual.
The spatial extension

Ric : X(M)× X(M) → cC∞(M) by Ric(z1, z2) = B(z1, z2)

to the manifold is cC∞(M) (module) linear in each of the two arguments and is thus a (0, 2) tensor.5

Evaluation at a point P ∈ M can be indicated notationally by

Ric(z1, z2)(P ) = BP ((z1)P , (z2)P ).

Richard Hamilton observed that Ric : X(M) × X(M) → cC∞(M) is the same kind of tensor as the
Riemannian metric tensor g : X(M) × X(M) → cC∞(M). This opens the door to the consideration of a
one parameter family of metric tensors g = g(t) on a fixed topological manifold X depending differentiably
on a real parameter t and satisfying a differential equation

d

dt
g = Ric .

Remember the Riemannian curvature tensor and consequently the Ricci tensor is determined by g = g(t)
the Riemannian metric tensor. Such a family corresponds to a one parameter family of Riemannian
manifolds M = M(t) = (X, g(t)), and ultimately it was the consideration of such deformation families
that led to the solution/confirmation of the Poincaré conjecture.

6.4 Higher dimensional Riemannian manifolds

I have promised to give a kind of axiomatic treatment of the algebraic and spatial extension of the (basic
geometric) collection of Riemannian sectional curvatures to the Riemannian curvature tensor (which should
probably be named after someone else (Hermann Weyl? Christoffel? Levi-Civita? Ricci? Elie Cartan?).
Some people definitely feel Riemann understood all about the curvature tensor as understood by these
later authors, but it seems clear he never really wrote down the details. Apparently he did make some
kind of attempt to do something like writing down the details; see [Dar15].

In any case, I will try to list all the properties that may be associated with the algebraic and spatial
extension to obtain a the tensor commonly known as the Riemannian curvuture tensor. Again, it is
my perception that the basic geometric object (definitely introduced by Riemann) is the collection of
sectional curvatures and the curvature tensor may be viewed as mostly a kind of algebraic organizational
device somewhat separate from the geometry. On the other hand, there is an expression for the values
of the curvature tensor involving derivatives of (coordinate induced) vector fields, and such derivatives
are definitely intrinsically geometric. The formula, however, also has another ingredient whose relation to
geometry is much less obvious (at least to me). That additional ingredient is called the “bracket” of vector
fields. The bracket certainly has some algebraic properties, but I’m not sure if it should be thought of as
entirely algebraic either. One might say the most prominent properties of the bracket are analytic. In any
case, the bracket itself deserves a great deal of discussion and contemplation. I do not pursue that here
but rather leave it to you.

Finally I will extend the discussion of the Ricci curvuture and the Ricci tensor to higher dimensional
manifolds and mention other “named” curvatures, i.e., algebraic summaries of sectional curvature infor-
mation, including the scalar curvature which I have not discussed above.

5Different authors use different normalizing constants in the definition of the Ricci tensor. For example, in terms of the
notation I have used above, Ben Andrews uses

Ric(z1, z2) = 2B(z1, z2)

for his definition of the Ricci tensor on a three manifold. In this regard, I have followed [dC92].
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6.4.1 Curvature tensor

Notice there is an inherent evaluation at a point, say P ∈ M , to calculate the intrinsic curvature K(u1, u2)
of the submanifold S(u1, u2) in (9) and (10) so that these properties/identities may be taken as statements
about (smooth) functions on M . If we wish to emphasize this evalation, we can write RP and/or KP to
go along with the vectors (u1)P , (u2)P and (u3)P , but generally in the discussion below I will suppress the
evaluation at P giving an implicit spatial extension from the outset.

Remember we have Riemann’s definition of the sectional curvature

K(u1, u2) =
1

g11 ◦ ξ

[

d(Γ2
11)(u2)− d(Γ2

12)(u1)

− Γ1
12 Γ2

11 − (Γ2
12)

2 + Γ2
11 Γ2

22 + Γ1
11 Γ2

12

]

(13)

given in (6) dependent on two (local) unit fields u1 and u2 for which {u1, u2} is a local orthonormal (moving)
frame. The Christoffel symbols here are obtained by

1. taking a totally geodesic submanifold

S(u1, u2) = {P} ∪ {γ(s) : s0 < s < s0 + ǫ, [γ̇(s0)] ∈ span{u1, u2} ∩ S
n−1
P }

where γ parameterizes a unit speed geodesic with γ(s0) = P and ǫ is some positive number, and

2. restricting the Riemannian metric tensor µP to the two dimensional submanifold S(u1, u2).

The full list of properties of the Riemannian curvature tensor, which may be taken as axioms for the
sake of algebraic extension/organization of the sectional curvatures, are the following:

RCT1 R(u1, u2, u1) = K(u1, u2) u2 for every orthonormal frame {u1, u2}. Remember, the “u1” in the
third argument of R here tells you to organize the sectional curvature as the scalar in front of the
“other” basis vector u2. If a different vector appears in the third argument, the tensor will tell you
some different thing to do with K(u1, u2).

RCT2 (tensorial property) R : X(M)×X(M)×X(M) → cC∞(M) is cC∞(M) (mudule) linear in each of
the three arguments.

RCT3 R(u2, u1, u3) = −R(u1, u2, u3) for all orthonormal frames {u1, u2, u3}.

RCT4 µ(R(u1, u2, u4), u3) = −µ(R(u1, u2, u3), u4) for all orthonormal frames {u1, u2, u3, u4}.

RCT5 µ(R(u3, u4, u1), u2) = µ(R(u1, u2, u3), u4) for all orthonormal frames {u1, u2, u3, u4}.

RCT6 (Bianchi identity) R(u1, u2, u3) + R(u2, u3, u1) + R(u3, u1, u2) = 0 for all orthonormal frames
{u1, u2, u3}.

Properties RCT3-RCT5 are “symmetry” properties, though RCT6 is often included as a symmetry
property as well. Each of the properties merits careful consideration, though they are presented here as
axioms. If they are considered in the context of the derivative/bracket formula given below the possibility
of geometric justification makes more sense. Notice that properties RCT4 and RCT5 as stated here only
make sense for manifolds of dimension n = 4 and higher.6

6In view of the tensorial property, the symmetry properties can also be stated in terms of arbitrary collections {z1, z2, z3}
and/or {z1, z2, z3, z4} in X(M). In this way, one can obtain some notion of a degenerate Riemannian curvature tensor in the
lower dimensions n = 3 and n = 2 or even n = 1. Thus, some authors, Ben Andrews for example, go so far as to contradict
what I have written above asserting that a one dimensional Riemannian manifold has “zero curvature.” I will leave it to you
to determine which perception you wish to embrace. Certainly Ben Andrews should be taken seriously.
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The basic extension/existence theorem from this point is that properties RCT1-RCT6 determine a
unique operator R : X(M) × X(M)× X(M) → X(M) and a unique (0, 4) tensor

R∗ : X(M) × X(M)× X(M)× X → cC∞(M)

given by
R∗(z1, z2, z3, z4) = µ(R(z1, z2, z3), z4).

In a certain sense that is the end of the story. At least that is a definition.

6.4.2 Formulas, commutators, and the bracket

I will mention two more things. The first is that the Riemannian curvature operator can be expressed
in terms of intrinsic derivatives of vector fields, that is, there is a formula which can be derived from the
axiomatic properties RCT1-RCT6 given above.

Perhaps the simplest (or at least quickest) way to describe the relation is locally in terms of chart
induced fields. As usual, let vj = dp(ej) for j = 1, 2, . . . , n be the fields induced by a chart/chart function
pair (U,p) at P . Then dvk : X(p(U)) → X(p(U)) and

R(vi, vj, vk) = d[dvk(vj)](vi)− d[dvk(vi)](vj). (14)

The vector field on the right of (14) should not be confused with

dvk[dvj(vi)− dvi(vj)] (15)

which is the zero vector field due to the symmetry of the Riemannian connection.
Something more can be said. If we take the expression on the right of (14) and adapt it to vectors ui,

uj and uk from an orthonormal frame {u1, u2, . . . , un}, then we get a notationally prettier form

∇ui
∇uj

uk −∇uj
∇ui

uk = (∇ui
∇uj

−∇uj
∇ui

)uk (16)

though this expression does not constitute a formula for the curvature operator. If we adapt similarly the
expression (15) we see

duk(∇ui
uj −∇uj

ui) (17)

and get some (other) nonzero vector field. It turns out that Riemannian curvature, or at least the algebraic
organization of Riemannian curvature, has fundamentally to do with the difference between these two vector
fields.

Focusing on the inner expression
∇ui

uj −∇uj
ui

in (17) we see the kind of vector field expression required (by the symmetry of the Riemannian connection)
to vanish on chart induced vector fields. This secondary commutator field turns out to be an interesting
field in general. It is usually denoted by

[z1, z2] = dz2(z1)− dz1(z2) (18)

for any z1, z2 ∈ X(M) and is called the bracket of the vector fields z1 and z2.
With the bracket in hand, we can give a formula for the curvature operator (more or less) in terms of

directional derivatives: For orthonormal vector fields u1, u2, u3 the formula (14) takes the form

R(u1, u2, u3) = ∇u1
∇u2

u3 −∇u2
∇u1

u3 − du3( [u1, u2] ). (19)
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Thus (16) gives one vector field and (17) gives another vector field, and R is seen to measure the difference
of these two vector fields. In words the Riemannian curvature operator on a vector field w gives the
difference between the commutator field

∇u1
∇u2

w −∇u2
∇u1

w

and the differential of w on the commutator/bracket

dw( [u1, u2] ).

Several features of this formula may be noted at this point.
Given any w ∈ X(M) the commutator expression

∇u1
∇u2

w −∇u2
∇u1

w = (∇u1
∇u2

−∇u2
∇u1

)w

gives a vector field. The commutator expression ∇u1
∇u2

−∇u2
∇u1

is a well-defined element of the module
L(X(M) → X(M)) with X(M) considered as a linear space over R. With all these derivatives involved
we should not expect ∇u1

∇u2
− ∇u2

∇u1
to be module linear, and it is not. One should not expect the

commutator ∇u1
∇u2

−∇u2
∇u1

to be Leibnizian either. Specifically, if one focuses on the (module) subspace
LL(X(M) → X(M)) of Leibnizian operators in L(X(M) → X(M)), then the operators ∇u1

∇u2
, and

∇u2
∇u1

are not typically in there, and there is no real reason to expect the commutator ∇u1
∇u2

−∇u2
∇u1

is in there either. In particular, there is no real expectation that there exists a (local) unit vector field u
for which

(∇u1
∇u2

−∇u2
∇u1

)w = ∇uw for w ∈ X(M)

or even any vector field z ∈ X(M) for which

(∇u1
∇u2

−∇u2
∇u1

)w = dw(z) for w ∈ X(M)

On the other hand,

dw( [u1, u2] ) = ‖[u1, u2]‖dw

(

[u1, u2]

‖[u1, u2]‖

)

= ∇[u1,u2]/‖[u1,u2]‖w

is Leibnizian in the argument w, and R(u1, u2, w) is (module) linear in the third argument. This means

(∇u1
∇u2

−∇u2
∇u1

)w = R(u1, u2, w)− dw( [u1, u2] )

is the difference of a (module) linear operator and a Leibnizian operator. This suggests perhaps that
there is some interesting structure (at least some algebraic structure) involving these operators inside
L(X(M) → X(M)).

Note the expression ∇ui
∇uj

w for w ∈ X(M) corresponds to the second derivative expression

∂2w

∂xi∂xj

for a traditional vector field w on flat space R
n, and there would be absolutely no reason to believe this

vector field is expressible as dw(z) for any vector field z on R
n. On the other hand,

∂2w

∂xi∂xj

−
∂2w

∂xj∂xi

≡ 0,

so while the corresponding traditional commutator is easily expressible as the differential of w on a vector
field z = 0, this is definitely not a quantity which draws any particular interest or provides any obvious
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motivation for generalization. This means it is going to be difficult to get any idea of what interesting
thing is going on with these fields by looking at flat space.7

On a general manifold however both vector fields

d[dz3(z2)](z1)− d[dz3(z1)](z2) (20)

and
[z1, z2] = dz2(z1)− dz1(z2) (21)

are typically nonzero and of interest. Obviously the bracket has some intrinsic geometric meaning as

[z1, z2] = ‖z1‖ ∇z1/‖z1‖z2 − ‖z2‖ ∇z2/‖z2‖z1,

but with this level of “algebraic entwinement” of the directional derivatives it becomes somewhat difficult
to see the bracket as fundamentally geometric. This is probably the reason the “bracket” has a name that
is so lacking in informative content. Perhaps the “commutator” would be a better name for the quantity
in (21). In any case,

[ · , · ] : X(M) × X(M) → X(M)

is a well-defined function. This function has certain algebraic and analytic properties which deserve close
attention, but I will reserve that discussion for another place and time (and document)—or even better, I
will leave careful consideration of the bracket operation to you.

The formula giving the Riemannian curvature operator on general vector fields z1, z2, z3 ∈ X(M) is

R(z1, z2, z3) = d[dz3(z2)](z1)− d[dz3(z1)](z2)− dz3( [z1, z2] ). (22)

Notice this is the difference of the “commutator” vector field given in (20) and a differential in the direction
of the bracket/commutator vector field [z1, z2] given in (21) resulting in an expression

d[dv3(v2)](v1)− d[dv3(v1)](v2)− d[v1,v2]v3 = d[dv3(v2)](v1)− d[dv3(v1)](v2)

for chart indced vector fields v1, v2, v3 and satisfying

d[dv3(v2)](v1)− d[dv3(v1)](v2)− d[v1,v2]v3 = 0 (23)

when M = R
n is flat Euclidean space.

Exercise 9 Show the formula (22) vanishes for

z1 = vi = dp(ei)

z2 = vj = dp(ej)

z3 = vk = dp(ek)

i, j, k = 1, 2 . . . , n whenever p : U → R
n is a chart function for flat Euclidean space M = R

n. Thus, the
Riemannian curvature operator is measuring the deviation of a manifold from flat space M = R

n. (At
least if R is non-vanishing at a point P ∈ M , then you know M is not isometric to R

n.)

7This is not surprising since flat space is flat, and one shouldn’t expect to see anything interesting having to do with
curvature in that context.
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6.4.3 Ricci tensor and scalar curvature

Though I have compared the Ricci curvature, given at a point P ∈ M in a three manifold M = M3 by
the sum of the sectional curvatures of two (totally geodesic) submanifolds, to the mean curvature of a
surface S ⊂ R

3 given by the average of orthogonal normal curvatures, the Ricci curvature is an inherently
much more complicated quantity. First of all, the orthogonal geodesic filaments [γ1] and [γ2] used to
determine the mean curvature lie in the same two dimensional submanifold S. The two geodesic surfaces
S(u, u1) and S(u, u2), on the other hand, used to determine the Ricci curvature are distinct two dimensional
submanifolds of M = M3. Most importantly, S ⊂ R

3 stands alone as a monolith while there is an entire
sphere’s worth of two manifolds corresponding to u ∈ S

2
P ⊂ TPM leading to distinct averages, and distinct

values for Ric(u, u) at P ∈ M = M3. For a schematic representation of this comparison/distinction see
Figure 3.

Figure 3: Orthogonal directions for normal curvatures of a surface S ⊂ R
3 (left); the average of these values

is the mean curvature H = (kγ1+kγ2)/2 and is independent of the orthogonal filaments. Schematic diagram
for orthogonal directions determining sectional curvatures and the Ricci curvature of a three dimensional
manifold M = M3 (right); in this illustration the manifold M is represented schematically by the ambient
R

3 and the two dimensional submanifolds S(u, u1) and S(u, u2) determined by the directions u1 and u2

are represented schematically by planes; the average (K(u, u1)+K(u, u2))/2 of the sectional curvatures in
independent of the orthonormal filaments u1 = [γ1] and u2 = [γ2].

Note carefully that in the correspondence I’ve suggested, the (intrinsic) vector u corresponds to the
extrinsic normal N while the submanifolds S(u, u1) S(u, u2) correspond to the geodesics paraemterized by
γ1 and γ2. Finally, the (intrinsic) sectional curvatures K(u, u1) and K(u, u2) correspond to the extrinsic
normal curvatures kγ1 and kγ2 . While there is essentially only a circle of extrinsic unit vectors {bu1,u2} ⊂
S
1
P , and corresponding normal curvatures kγ1 and kγ2 , to consider for a surface S ⊂ R

3, there is an n − 1
(at least n − 1 = 2) sphere of starting vectors u for Ric(u, u), and for each such u, there is at least an
n− 2 sphere of unit vectors {u1, u2}, and corresponding to sectional curvatures K(u, u1) and K(u, u2) to
consider at each point on an n dimensional Riemannian manifold M .

For an n dimensional manifold M = Mn (12) becomes

Q(u) =
1

n− 1

n−1
∑

j=1

R∗(u, uj, u, uj) =
1

n− 1

n−1
∑

j=1

µP (R(u, uj, u), uj) =
1

n− 1

n−1
∑

j=1

K(u, uj) (24)

where {u1, u2, . . . , un−1, u} is an orthonormal basis for TPM . The function Q is well-defined and extends
to a quadratic form on TPM . The quadratic form leads to a bilinear form B : TPM × TPM → R and
eventually to a two form field

Ric : X(M)× X(M) → cC∞(R) by Ric(z1, z2) = B(z1, z2).
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The number Ric(u, u) = Q(u) at a point P is often referred to as the Ricci curvature of M at P “in the
direction” u.

Another algebraic combination of sectional curvatures at a point is given by what is called the scalar
curvature

Kavg =
1

n

∑

i=1

Ric(ui, ui) =
1

n(n− 1)

n
∑

i,j=1

µ(R(ui, uj, ui), uj)

which gives, in a certain sense, the average of all sectional curvatures at a point P ∈ M .
I guess I will leave it there.
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