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Exercise 16.7. Using the alternative formulation for bimodular tensor fields
T 2(M), define what is meant by a two tensor at a point determined by
B ∈ T 2(M).

16.4 Calculus for manifolds

The starting point for differentiation is with a real valued function with do-
main an open subset of Euclidean space R

n. Let me further suggest starting
with the case n = 1, so that the derivative of of a function f : I → R where
I = (a, b) is an open interval in R and a < x < b is given by

f ′(x) =
df

dx
(x) = lim

v→0

f(x+ v)− f(x)

v
.

This, it may be recalled, may be interpreted as the limit of the average rate
of change of the value of f over the interval from (x, x+ v), that is to say the
instantaneous rate of change of the value of f with respect to displacement
in the domain. It may be pointed out also that the value of the derivative
is associated with the affine approximation of the value of f and a certain
linear function dfx : R → R through the approximation formula

f(x+ v) ≈ f(x) + f ′(x)v = f(x) + dfx(v). (16.6)

If f is differentiable at each point x ∈ (a, b) and the derivative is continuous,
that is f ′ ∈ C0(a, b), then we say f is continuously differentiable and
write f ∈ C1(a, b).

A variety of different phenomena come into play (and come to light) when
the dimension n satisfies n ≥ 2. The starting point in this context is usually
with partial derivatives

Djf(x) =
∂f

∂xj
(x) = lim

v→0

f(x+ vej)− f(x)

v
(16.7)

for j = 1, 2, . . . , n which are based on, and available because of, the preferred
basis {e1, e2, . . . , en} for both the vector space R

n and the vectors space
TxR

n. Here x is a point in some open set U ⊂ R
n providing the domain for

f : U → R.
If all the first partial derivatives exist at a point x ∈ U , then the vector

of first partial derivatives is denoted by Df(x) and is called the gradient of
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f at x. That is, the gradient is given by

Df(x) =

(

∂f

∂x1

(x),
∂f

∂x2

(x), . . . ,
∂f

∂xn

(x)

)

∈ TxR
n.

Again, the value of (16.7) represents the instantaneous rate of change at
x of the value of f with respect to spatial displacement in the direction of
ej ∈ TxU = TxR

n. A function f : U → R is said to be C1(U) if each of the
partial derivatives exists at each point x ∈ U , and the resulting functions

Djf : U → R

are continuous.
This construction may be generalized to unit vectors u ∈ TxU by

Duf(x) = lim
v→0

f(x+ vu)− f(x)

v
. (16.8)

Again, this limit (when it exists) gives the rate of change of the value of f
with respect to spatial displacement in the direction u. These derivatives
are called directional derivatives and the partial derivatives constitute a
special case and/or give examples. Existence of the partial derivatives (16.7)
does not imply the existence of other directional derivatives in general.

The existence (at all points) and continuity however, that is f ∈ C1(U),
does imply the existence of all directional derivatives at all points. The
condition f ∈ C1(U) also implies a local approximation formula

f(x+ v) ≈ f(x) + dfx(v) (16.9)

where dfx : TxU → R is a linear function called the differential at x. The
approximation holds in the sense that

lim
v→0

f(x+ v)− f(x)− dfx(v)

|v|
= 0. (16.10)

Notice the scalar v appearing in the limit (16.8) does not have anything
necessarily to do with the vector v appearing in the limit (16.10).

Exercise 16.8. By setting v = |v| where v is a nonzero vector in the limit
(16.10) reexpress the approximation formula (16.10) in terms of the direc-
tional derivative of f according to (16.8) for an appropriate unit vector u.



16.4. CALCULUS FOR MANIFOLDS 215

More generally, a function f : U → R is said to be differentiable at
x ∈ U if (16.10) holds for some linear function dfx : TxU → R. In this case,
the linear function dfx is determined uniquely with

dfx(v) = Du(x) · v = 〈Du(x),v〉TxU . (16.11)

Let us pause to consider carefully the value of the differential. This value
is sometimes referred to as the directional derivative in the direction v even
when v is not a unit vector, and the notation

Dvf(x) = dfx(v) = Du(x) · v (16.12)

is introduced as a generalization of (16.8) even when v is not a unit vector.
The meaning in this case however is not that of a spatial directional deriva-
tive, but rather something somewhat more complicated. The idea is that
motion along the direction determined by the vector v is involved with some
(typically) non-unit velocity |v|. This motion is fundamentally externally
driven; in particular such a motion introduces an element fundamentally in-
dependent of the geometry of the ambient space R

n. Perhaps stated more
properly, the motion envisioned is only partially constrained by the geome-
try of the ambient R

n. This kind of motion can be modeled by some path
α : I → U with α′(t0) = v for some t0 in the open interval I with α(t0) = x.
For example,

α(t) = x+ tv

satisfies these conditions with I = (−ǫ, ǫ) for some ǫ > 0 and t0 = 0. Then
dfx(v) is not the rate of change of f with respect to spatial displacement,
but relative to both the direction and the velocity of motion determined by
v. In particular,

dfx(v) =
d

dt
f ◦ α(t)∣

∣

t=t0

. (16.13)

This is the rate of change of the value of f with respect to displacement in
the parameter t. This interpretation relies on being able to make sense of
the velocity determined by v.

In particular, the formula (16.13) may be adapted to a manifold relatively
easily. The vector v is replaced by a filament (equivalence class) [α] where
the path α is taken to have values in the manifold M rather than in some
set U ⊂ R

n. Then for f : M → R, one can consider dfP : LPM → R by

dfP ([α]) =
d

dt
f ◦ α0(t)∣

∣

t=t0

. (16.14)
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This will work fine and define a linear function as long as f ∈ cC1(M) and
α0 ∈ cP1(M) ∩ [α] (at P ) with α0(t0) = P . Without a Riemannian metric
tensor, however, the interpretation of α representing geometric motion along
a path in M at a certain velocity α′(t0) is not available. In particular, the
differential function as defined in (16.14) does not have an interpretation as
a derivative of the function f without the ability to measure the distance of
travel in M determined along the path α as t changes.

Starting back, however, with the notion of a spatial (intrinsic) directional
derivative as in (16.7) or (16.8) we can consider the notion of a derivative
of a function f ∈ cC1(M) as long as we have a Riemannian metric (tensor).
There are (at least) two ways to do this.

We can not start directly with (16.7) because there are no preferred di-
rections and/or no preferred basis in LPM , which we can also denote by
TPM if we make LPM into a vector space by the introduction of the inner
product µP . There is also nominally a fundamental problem with (16.8) as
the vector space structure of Rn is used in the expression x + vu in which
a vector displacement vu ∈ TxU is added to a point x in U . This kind of
structure is not available for M and we cannot add any displacement directly
to P ∈ M . On the other hand, it is natural to reexpress x + vu or x + v
as in the approximation formula (16.10) in terms of a path like the path
α ∈ P1(U) considered above with α(t) = x + tv. In this way, (16.8) can be
written as

Duf(x) = lim
v→0

f(x+ vu)− f(x)

v
= lim

t→0

f ◦ α(t)− f(x)

t

where

t =

∫ t

0

|α′(τ)| dτ

is a generalization of

length

[

α∣
∣

(0,t)

]

to values of t with t < 0. From this point of view, if f : M → R satisfies
f ∈ cC1(M) and M is a Riemannian manifold, then one natural definition of
a directional derivative of f determined by the filament/vector [α] ∈ TPM

is

lim
t→t0

f ◦ α(t)− f(P )
∫ t

t0

(

µα(τ)([α]α(τ), [α]α(τ))
)1/2

dτ
. (16.15)
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A more suggestive, though less general, way to express the intrinsic (spatial)
derivative of the function f : M → R in the direction of the nonzero vector
[α] is

lim
tցt0

f ◦ α(t)− f(P )

length

[

α∣
∣

(t0,t)

] .

We can then essentially reverse what was suggested in Exercise 16.8 by start-
ing with this intrinsic derivative and then expressing it in terms of the dif-
ferential map defined by (16.14). For this, we write (16.15) as

f ◦ α(t)− f(P )

t− t0

1

1
t−t0

∫ t

t0

(

µα(τ)([α]α(τ), [α]α(τ))
)1/2

dτ
.

We then observe that

lim
t→t0

f ◦ α(t)− f(P )

t− t0
=

d

dt
f ◦ α(t)∣

∣

t=t0

= dfP ([α]), (16.16)

and

lim
t→t0

1

t− t0

∫ t

t0

(

µα(τ)([α]α(τ), [α]α(τ))
)1/2

dτ = µP ([α], [α])
1/2 = ‖ [α] ‖TPM .

Thus, we can express the intrinsic derivative in terms of the differential map
as

1

µP ([α], [α])1/2
dfP ([α]). (16.17)

Notice the expression

dfP ([α]) =
d

dt
f ◦ α(t)∣

∣

t=t0

does not rely on the metric tensor and is fundamentally independent of dis-
tance measurement on M . The natural expression (16.17) for an intrinsic
(spatial) derivative on the other hand, has a clear dependence on the value
of µ at P in the “direction” determined by the filament vector [α].

Exercise 16.9. Justify carefully the first equality in (16.16).
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A second approach to the value of the intrinsic/spatial derivative of a
function f ∈ cC1(M) as a directional derivative is by initially taking a
normalized filament vector [α] ∈ TPM satisfying µP ([α], [α]) = 1. Natu-
rally since TPM = LPM is an inner product space with the inner product
µP : LPM × LPM → R, we can also start with any [α] ∈ TPM\{0} and
consider the scaled filament vector

u =
[α]

µP ([α], [α])1/2
=

[α]

‖ [α] ‖
.

Notice we have used the Riemannian metric tensor µ to define u. Then we
can call

Duf(P ) = dfP (u) = lim
tցt0

f ◦ α(t)− f(P )

length

[

α∣
∣

(t0,t)

]

the directional derivative of f in the filament direction u where α ∈ u.
In this way, we see the situation parallels to a large extent our discussion of
directional derivatives and the differential in calculus. Specifically, the value
of the differential dfP ([α]) gives an unambiguous intrinsic (spatial directional)
derivative when [α] satisfies ‖ [α] ‖TPM = 1 with respect to the Riemannian
norm (induced by the Riemannian inner product µP ). For other filament
vectors we can adopt a version of (16.12) by setting/defining

D[α]f(P ) = dfP ([α]). (16.18)

This is first and foremost defining a convenient notation for the value of the
differential. One should be careful however about the interpretation: As a
derivative the value dfP ([α]) takes into account a secondary velocity or rate
of change of distance on M given by

ds

dt
= ‖ [α] ‖

relative to some essentially external “driving” parameter t related to α. This
value is not properly an intrinsic derivative unless ‖ [α] ‖ = 1. Again, this is
the same as in calculus. We can adopt the notation of (16.18) but we should
be especially careful to keep in mind the meaning in the context of a manifold
where the actual calculus related to a function f : M → R is somewhat more
subtle than what one encounters for f : U → R for U ⊂ R

n because the
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simple flat geometry of U can obscure the fundamental role played by length
in the (underlying) manifold.

What is notably lacking in our discussion so far is the appearance of an
expression parallel to the Euclidean inner product(s) appearing in (16.11) and
(16.12) derived from the chain rule and using partial derivatives which in turn
depend on the preferred basis vectors {e1, e2, . . . , en} and the corresponding
coordinate functions in R

n. These latter are not available on a manifold or
in TPM , and in short we have as yet no notion of the gradient of a function
f ∈ cC1(M). We can take this as our next major question:

Exercise 16.10. We have discussed an intrinsic directional derivative
Duf(P ) of a function f ∈ cC1(M) in a direction [α] ∈ TPM\{0} on a
manifold M . We have also discussed a differetial map dfP : TPM →
R associated with the same function. In the context of a function f ∈
cC1(M) where M is a manifold, identify the gradient of f . (You should
first contemplate what “kind” of object the gradient might be and notice that
it cannot be a vector of partial derivatives. “Preferred” partial derivatives
are not available, though as noted above we do have a notion of directional
derivative. For example, the directional derivative of f in a direction u ∈
TPM with µP (u, u) = 1 is a “real number,” and the differential of f at P is
a “linear map.” Once you know what kind of object the gradient should be,
then explain how this object is actually determined using f and explain the
relations between and among the gradient, the directional derivative, and the
differential.)

Exercise 16.11. Note that one difference between the discussion of deriva-
tives for functions f : I → R where I = (a, b) is an open interval of R and
the discussion of derivatives for functions f : U → R where U is an open
subset of Rn is that in one space dimension existence of a derivative at a
point implies local approximation while the existence of partial derivatives
(or even all directional derivatives) at a point in dimension n ≥ 2 does not
necessarily imply local approximation. On the other hand, there are a num-
ber of constructions we discussed in higher dimensions that do have natural
and meaningful “specializations” to the case n = 1, but these are usually not
discussed and we did not discuss them.

(a) Give an example in which all the directional derivatives of a function
f : R2 → R exist at a point but no local approximation formula holds
at that point.
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(b) Go back and think about how the “differentiability” constructions asso-
ciated with f : U → R where U is an open subset of Rn apply in the
case n = 1. In particular, what form do the directional derivatives of
(16.8) and (16.12) take in the case n = 1? (Do you find anything new?)

(c) Apply the discussion of derivatives/directional derivatives, differentials,
and the gradient to a function f : M → R where M is a (Riemannian)
manifold of dimension n = 1.

16.5 Follow-up questions

One perfectly good answer to the question

“What is the (intrinsic) gradient of f ∈ cC∞(M)?”

is that the (intrinsic) gradient Df(P ) is the unique vector

w ∈ LPM = TPM

for which
µP (w, u) = Duf(P )

for every

u ∈ S
n−1
P = {z ∈ TPM : µP (z, z) = 1} ⊂ LPM = TPM.

Exercise 16.12. Show the following:

(a) Given a filament w ∈ TPM for which µP (w, u) = Duf(P ) for every
u ∈ S

n−1
P , there holds

µP (w, v) = dPf(v) for every v ∈ TPM . (16.19)

(b) If (16.19) holds, then the vector w is unique.

Exercise 16.13. (existence of the gradient) Show that given f ∈ cC∞(M),
there exists a vector w ∈ TPM for which (16.19) holds. Hints: Take a chart
(U,p) ∈ A∞

∗ with ξ(P ) ∈ U and. . .

(a) Recall/show {v1, v2, . . . , vn} is a basis for TPM where
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(i) vj = [p ◦ γj ] ∈ TPM for j = 1, 2, . . . , n with

(ii) γj(t) = ξ(P ) + tej for j = 1, 2, . . . , n.

Note carefully: The filaments v1, v2, . . . , vn have nothing to do with the
filament v appearing in (16.19) though they share a symbol “v.”

(b) Make a formal calculation based on (16.19) under the assumption

w =

n
∑

j=1

wjvj (16.20)

with w1, w2, . . . , wn ∈ R. Obtain from your calculation expressions
for the coefficients w1, w2, . . . , wn which are independent of w though
dependent on the chart. (This tells you what w must be.)

(c) Define w by (16.20) using the values for the coefficients you obtained
from the formal calculation of part (b), and show the resulting filament
satisfies (16.19).

Having made sense of the (directional and total) derivative of a function
f : M → R, here is an interesting question to ask:

What are some interesting real valued functions f : M → R to
differentiate (and find the gradient of)?

Exercise 16.14. Calculate the gradient(s) of the coordinate functions x1,
x2, and x3 on

M = S
2 = {x = (x1, x2, x3) ∈ R

3 : x2
1 + x2

2 + x2
3 = 1}.

Exercise 16.15. Let u ∈ TPS
n−1 be a classical vector in R

n at some point
P ∈ S

n−1. Calculate the intrinsic directional derivatives Dufj(P ) = ∇ufj(P )
of the coordinate functions fj : S

n−1 → R given by

fj(Q) = qj for j = 1, 2, . . . , n

where Q = (q1, q2, . . . , qn). Here

M = S
n−1 = {x = (x1, x2, . . . , xn−1) ∈ R

n : x2
1 + x2

2 + · · ·+ x2
n = 1}.
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Exercises 16.14 and 16.15 involve one of the most interesting examples of
Riemannian manifolds, namely hypersurfaces in Euclidean space. These are
also examples of submanifolds which share many of the same properties of
hypersurfaces and from which much of the intuition for Riemannian geometry
is/was derived. In fact, all of the main motivational problems of Riemannian
geometry presented in these notes, namely Willmore’s conjecture, Lawson’s
conjecture, and Wente’s conjecture are conjectures about submanifolds. The
exception is the Poincaré conjecture, which is not properly a problem from
Riemannian geometry but just happens to have been resolved using Rieman-
nian geometry.


