
Chapter 17

Vector Fields

One notion of a filament/vector field on a (Riemannian) manifoldM is simply
an assignment

v : M →
⋃

Q∈M

LQM

for which v(P ) = vP ∈ LPM = TPM . There is not much calculus one can
hope to do with a vector field in this generality, and we are almost always
interested in vector fields that are at least chart C1. The notion of chart Ck

for k = 0, 1, 2, . . . ,∞ is relatively easy to define for filament fields as follows:
Given any chart (U,p) ∈ A∞

∗ , there is a traditional vector field v : U → Rn

given by v(x) = dξp(x)(vp(x)). The vector field v has coordinate functions
v = (v1, v2, . . . , vn) with each vj ∈ RU for j = 1, 2, . . . , n. We say v is chart
Ck if vj ∈ Ck(U) for each j = 1, 2, . . . , n (and each chart (U,p) ∈ A∞

∗ ).

17.1 Traditional vector fields

17.1.1 Initial source of intuition

The total derivative of a traditional vector field v : U → Rn is given by a
matrix (valued function)

Dv =

(

∂vi
∂xj

)

: U → R
n×n

with rows Dv1, Dv2, . . . , Dvn and columns

∂v

∂x1
,

∂v

∂x2
, . . . ,

∂v

∂xn
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or technically
(

∂v

∂x1

)T

,

(

∂v

∂x2

)T

, . . . ,

(

∂v

∂xn

)T

.

We denote the chart Ck vector fields on M by Vk(M) and in the special case
k = ∞, we write V∞(M) = X (M). Each set Vk(M) is a module over the
ring cCk(M).

17.1.2 The basic question

Aside from gaining some intuition for the basic calculus associated with tra-
ditional vector fields defined on open subsets of Rn, the basic objective of
this chapter is to understand/define a notion of intrinsic derivative of a
filament vector field

v ∈ cC1

(

M →
⋃

Q∈M

LQM

)

.

This proves to be somewhat inconvenient in general since a loss of regularity
is to be expected. Notice that for a traditional vector field v ∈ Ck(U → Rn),
the total derivative satisfies Dv ∈ Ck−1(U → Rn×n). This inconvenience
goes away if we restrict to X (M), which at least for the moment is what I
am going to do. Thus, I emphasize the basic and somewhat difficult question:

What is the intrinsic derivative of v ∈ X (M)?

This question parallels, in a certain sense, the question about the derivative
of a real valued function f : M → R considered in the last chapter, though
that question was rather easier. Here too, a very natural place to start is
groping for some kind of directional derivative

(Duv)(P )

where u ∈ S
n−1
P = {w ∈ TPM : µP (w,w) = 1} ⊂ LPM = TPM .

There are a couple “obvious” sources of intuition and inspiration for such
groping:

1. flat Euclidean space, and

2. submanifolds of Euclidean space (especially hypersurfaces).
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Along with these special kinds of manifolds there is a particular class of
vector fields which it is worth isolating for special attention:

Definition 24. We say a filament field vj ∈ X (M) is locally induced by
ej in the chart (U,p) at P = p(x) if there is some open set V ⊂⊂U for
which

dξQ((vj)Q) = ej = (ej)ξ(Q) for Q ∈ p(V ).

Put another way, vj = dp(ej) = [p ◦ γj] where γj = ξ(Q) + tej , as discussed
in the previous chapter.

17.1.3 Language: notation and terminology

A filament field having the property described in Definition 24 (or something
rather like it) is usually said to mean vj is a coordinate field. I do not really
like this terminology because the field is up in the manifold M rather than
down where the coordinates are, namely in the chart U . There aren’t particu-
larly meaningful coordinates “up inM ,” though one can see something about
what is happening up in M by examining what is going on with coordinates
“down in U .” The field vj in Definition 24 does, however, have something
to do with the coordinates in U and the coordinate field ej : U → Rn in
particular. Let me suggest some possible (nonstandard) terminology. I have
referred to “traditional” vector fields above and also I designated the filament
field vj in Definition 24 as “induced.” Let me start by saying the traditional
vector fields ej for j = 1, 2, . . . , n on any open subset of Rn are coordinate
vector fields. This can be the case with or without a specification of (non-
standard) metric tensor, but these coordinate vector fields will usually be
considered at least implicitly with the standard dot product tensor 〈 · , · 〉Rn

in the background. I’m willing to say the filament field vj satisfying the con-
ditions of Definition 24 is induced on M by the coordinate field ej in
the chart U . For something shorter and adjectival rather than adverbial, I
might suggest vj is a/the coordinate induced (filament) field.

It is worth pointing out, with respect to the special cases which become
important below, that the coordinate field ej on U can also induce a tradi-
tional field when either

1. M is actually flat Euclidean space, or

2. M is a submanifold of some flat Euclidean space.
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The latter special case would also include the situation in which the “ambi-
ent” Euclidean space has the same dimension as M , that is M is an open
subset of Rn specifically with a nonstandard metric.

Figure 17.1: Filament field(s) vj induced on a manifold from the coordiniate
field ej in a chart.

More generally, the term induced or chart induced may be used to
deignate entities that have an intrinsic identity in a manifold M by somehow
derive from entities in a chart. Thus, the translator differential dpx :
TxU → Tp(x)M taking traditional vectors w ∈ TxU to filaments w = dpx(w)
may be said to induce filaments or give induces filaments on M .

Somewhat more informally, we can say a quantity with an identity on
M when expressed using elements from a chart is a chart expression. For
example, given a function f : U → R defined on a chart, we can say the
chart expression for f is f ◦ ξ : p(U) → R. Simiarly, a path α ∈ cP(U) has
chart expression p ◦ α : I → M .

I will try to a certain extent to reserve the term coordinate, e.g., coordi-
nate field, coordinate expression, for quantities expressed in coordinates in a
chart. The coordinate expression for a function f : M → R is f ◦p : U → R.
The coordinate expression for a filament field

w : M →
⋃

Q∈M

TQM
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is a (traditional) vector field w = dξ(w) where wx = dξp(x)(wp(x)). Thus

w : U →
⋃

x∈U

TxU = R
n =

⋃

x∈U

R
n
x
.

(Sometimes the tangent space to Rn at a point x ∈ Rn is expressed Rn
x
instead

of TxR
n.)

Finally, in view of the introduction of the semi-standard notation vj for
coordinate induced filament fields on a manifold (at a point P ∈ M), I will
make the somewhat unfortunate accomodation of trying to avoid using the
symbols v and v for general filament fields and general (traditional) vector
fields respectively from now on. (Maybe there is a better notation for the
coordinate induced filament fields v1, v2, . . . , vn.)

17.1.4 Derivatives of vector fields

The directional derivative Duw of a (traditional) vector field w : U → Rn

with respect to a unit field u : U → Sn−1 is, first of all, another vector field.
In particular, at each point x ∈ U ⊂ Rn, the value

Duw(x) = Dux
w(x) ∈ TxR

n = R
n,

and this value should depend only on ux instead of the entire unit field u.
In fact, if we recall the total derivative (matrix) Dw, then we can write

Duw(x) = Dw(x) ux = Dw(x) (ux)
T

(where we often suppress the transpose as in the middle expression). This
suggests that the generalized notation

Dzw = Dw(x) zT

for z ∈ Rn, and not just for z = u a unit vector, makes sense in this case
leading to a linear function of z. As in the case of directional derivatives of a
real valued function, if we are going to use this notation we should be careful
to realize the value Dzw is not properly the (intrinsic) directional derivative
of the vector field w but rather a scaling

Dzw = |z| Duw

(

u =
z

|z|

)
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determined by the (Euclidean) norm of z. If we wish to avoid this distinction,
we can reserve the directional derivative notationDuw for situations in which
u ∈ Sn−1 and denote the value Dw(x) zx as the (traditional) differential
of the vector field:

dwx = (dw)x : Rn → R
n by dwx(z) = Dw(x) zT .

Either way, there is a nice linear function dwx : TxR
n → TxR

n associated
with the directional differentiation of a (traditional) vector field.

Exercise 17.1. Noting the parentheses (dw)x inserted above, what can you
say about D(wx) and d(wx)? How about Du(wx)?

Exercise 17.2. Considering the differential of a vector field

w : U →
⋃

x∈U

TxU

for U and open subset of Rn at the point x given by

(dw)x : TxU → TxU

as introduced above, what would be the proper domain and codomain for
the differential field dw? What about for the differential operator d?

While dw : X (U) → X (U) is linear when X (U) denotes the vector
field of C∞ traditional vector fields on U (over R), this function also enjoys
the additional property that

dw(fz) = fdw(z) for f ∈ C∞(U).

That is, dw is “linear” over X (U) also considered as a module over the ring
C∞(U). We can also consider a function with two vector field arguments.
Let L : X (U)× X (U) → X (U) be given by

L(w, z) = dw(z) where L(w, z)x = dwx(zx).

This function is bilinear over X (U) considered as a vector space over R, but
it does not enjoy the same scaling with respect to smooth functions when it
comes to the w dependence (in the first argument of L and in the argument
of the operator d). Specifically,

d(fw)(z) = Dz(fw) = Dzf w + f Dzw.

This is, of course, a Liebnizian product rule, and it is natural (hopefully) to
assume all these properties hold for the derivative(s) of a vector field on a
manifold.
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17.2 Preliminary calculations/reductions

17.2.1 Properties

Given u = uP ∈ S
n−1
P ⊂ TPM and w ∈ X (M) = cV∞(M), I would like to

define the (intrinsic) directional derivative ∇uw(P ), or more generally, if
we take u ∈ X (M) = cV∞(M) with ‖uP‖TPM = 1, a (chart smooth) unit
field, I would like to define the vector field

∇uw.

Hopefully, it’s clear from the example of flat Euclidean space Rn that the
directional derivative ∇uw(P ), which you can also call Duw(P ) if you like,
is (or should be) a vector in TPM . Furthermore, it is natural to expect the
following:

DVF1 point differential ∇uw(P ) taken with u ∈ S
n−1
P as an argument

and w ∈ X (M) fixed determines a (nice) linear function dwP : TPM →
TPM with

dwp(u) = ∇uw(P ) for u ∈ S
n−1
P ⊂ TPM.

See Exercise 16.2 above and Exericse 17.4 below.

DVF2 global differential The linear functions

{

dwP ∈
⋃

Q∈M

i(TQM → TQM) : P ∈ M, w ∈ X (M)

}

from DVF1 determine a function dw : X (M) → X (M) by

dw(z)(P ) = dw(z)P = dwP (zP )

satisfying

(i) dw is linear when X (M) is considered as a vector field over R and

(ii) dw is module linear when X (M) is considered as a module over
cC∞(M).
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Exercise 17.3. Given any (0, 1) tensor θ ∈ T 1(M), that is a function
θ : X (M) → R for which

θ(fw) = fθ(w) for f ∈ cC∞(M)

also known as a one form, and a vector field w ∈ X (M), if we have
an intrinsic derivative of vector fields satisfying DVF1 and DVF2,
then θ ◦ dw is also a (0, 1) tensor. We can denote this particular tensor
by dw∗(θ). What does this imply about the domain and co-domain of
dw∗? (Think in terms of “dual spaces.”)

Note that an important part/assertion of property DVF2 is expressed
in the specification of the codomain of the global differential dw. Specif-
ically, for a smooth vector field z ∈ X (M), the vector field dw(z)
should be chart smooth.

DVF3 connection The global differential dw : X (M) → X (M) from
DVF2 determines a function L : X (M)× X (M) → X (M) by

L(w, z)(P ) = L(w, z)P = dw(z)P = dwP (zP )

which is

(a) bilinear when X (M) is considered as a linear space over R,

(b) cC∞(M) (modular) linear in the second argument

dw(fz1 + gz2) = L(w, fz1 + gz2)

= fL(w, z1) + gL(w, z2)

= f dw(z1) + g dw(z2)

(f, g ∈ cC∞(M), z1, z2 ∈ X (M))

when X (M) is considered as a module over cC∞(M), and

(c) Leibnizian

L(fw, z) = d(fw)(z)

= df(z) w + fdw(z)

= df(z) w + fL(w, z)

(f ∈ cC∞(M), z, w ∈ X (M))

in the first argument.
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Exercise 17.4. Let X be any real linear space. Consider in this exercise
functions G : TPM → X and g : Sn−1

P → X .

(i) Show that if G is linear, and

g = G∣
∣

S
n−1
P

, (17.1)

then g(−w) = −g(w) and

g

(

z + w

‖z + w‖

)

=
1

‖z + w‖

[

‖z‖ g

(

z

‖z‖

)

+ ‖w‖ g

(

w

‖w‖

)]

(17.2)

for z, w ∈ TPM with z, w, z + w 6= 0.

(ii) Show that if g satisfies g(−w) = −g(w) and

g

(

z + w

‖z + w‖

)

=
1

‖z + w‖

[

‖z‖ g

(

z

‖z‖

)

+ ‖w‖ g

(

w

‖w‖

)]

for z, w ∈ TPM with z, w, z+w 6= 0, then there exists a linear function
G : TPM → X for which

G∣
∣

S
n−1
P

= g. (17.3)

(iii) Show that if g satisfies g(−w) = −g(w) and

g

(

z + w

‖z + w‖

)

=
1

‖z + w‖

[

‖z‖ g

(

z

‖z‖

)

+ ‖w‖ g

(

w

‖w‖

)]

for z, w ∈ TPM with z, w, z + w 6= 0, then the linear function G :
TPM → X obtained in part (ii) is uniquely determined by these con-
ditions.

Exercise 17.5. Assuming DVF3 applies to the directional derivative of a
vector field, show that given a unit vector u ∈ S

n−1
P ⊂ TPM at a point P ,

there holds

(a) ∇u(aw1+bw2) = a∇uw1+b∇uw2 for a, b ∈ R and wj ∈ X (M), j = 1, 2.

(b) ∇u(fw) = Duf w + f Duw for f ∈ cC∞(M) and w ∈ X (M).
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Notes on the heuristic conditions DVF1, DVF2, and DVF3:

1. We saw in the previous chapter how the directional derivative Duf =
∇uf with u ∈ S

n−1
P ⊂ TPM and f ∈ cC∞(M) determines the differen-

tial map dfP : TPM → TPM . The construction summarized by point
differential property DVF1 for the differential map dwP : TPM →
TPM associated with the (intrinsic) derivative of a vector field is more
complicated. This construction should be given careful attention.

Exercise 17.6. In my introduction to this section I wrote “. . . if we
take u ∈ X (M) a unit field. . . ”. Unit vector fields like this do not
exist on all manifolds. Show that if there is a global chart (U,p) ∈ A∞

∗

for the manifold M , then there exists a unit field on M .

Remember that for a unit vector u ∈ TPM , there is a pretty nice way
to understand the intrinsic derivative of a function f ∈ cC∞(M) as the
rate of change of f in the direction of u = [α], namely

Duf = lim
tցt0

f ◦ α(t)− f(P )

lengthM

[

α∣
∣

[t0,t]

] . (17.4)

I do not know a similar way to understand the intrinsic derivative of a
vector field on M . One thing that cannot work (as far as I know) is a
naive difference quotient like (17.4). The problem is that the vectors
wα ∈ TαM and wP ∈ TPM are not in the same vector spaces. The
space M is not flat in general and things may have changed from α(t)
to P . In short, the value wα −wP you would want in the numerator of
a difference quotient is not wel-defined. We use very strongly in (17.4)
the fact that the values of f fall in a single well-defined vector space,
namely R. Note carefully the codomain of a vector field

w : M →
⋃

Q∈M

TQM,

which is not a linear space. Sometimes it is convenient to “encode” the
restriction w(P ) = wP ∈ LPM = TPM by taking a cross-product with
M

M ×
⋃

Q∈M

TQM
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and specifying a particular subset of that cross-product in which the
“base point” of each vector is referenced or indexed, namely

{

(P, [α]) ∈ M ×
⋃

Q∈M

TQM : [α] ∈ TPM

}

.

This subset is usually denoted by TM and is called the tangent bun-
dle. This set can be made into a manifold and one can define a map
W : M → TM by

W (P ) = (P,wP )

using a vector field w. One can get further into bundling if one wishes,
but the manifold TM is still not a linear space, and there is no reason-
able way to put a linear structure on it in general. Presumably as a
result one can still find no reasonable difference quotient definition for
the intrinsic derivative of a vector field on a (Riemannian) manifold.
At least I have not found such a definition.

But I do know the angles between vectors (at the same point in M)
and lengths of curves in M can be measured, and an intrinsic deriva-
tive should have something to do how these quantities are changing
together. It is quite reasonable to suspect, I think, that a single vector
Duw should contain the information about how w changes in the unit
vector direction u = uP . These are perhaps two good starting points:

(a) There should be a derivative Duw = ∇uw of a vector field w ∈
X (M) in the direction u = uP ∈ S

n−1
P ⊂ TPM .

(b) That derivative ∇uw(P ) should be a vector in TPM .

The directional derivative of a traditional vector field w on Rn is given
by a matrix of partial derivatives,

Duw(x) =

(

∂wi

∂xj
(x)

)

so this somehow corresponds to a linear function (at each point) L :
TxR

n → TxR
n. Thus, we might expect something similar for the intrin-

sic derivative of a vector field on a manifold. On the other hand, the
situation is somewhat more complicated on a non-flat/non Rn space,
so we should think carefully about what to expect.
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Exercise 17.7. Consider the following property of an assumed intrinsic
derivative ∇uw of a vector field w ∈ X (M) in the direction u = uP ∈
TPM .

∇−uw(P ) = −∇uw(P ) for u ∈ S
n−1
P , w ∈ X (M).

Do you consider this property natural, necessary, or both? Explain
why.

Exercise 17.8. Formulate condition (17.2) as it would apply to the
directional derivative g = ∇w leading to the assumed (point) differen-
tial map of property DVF1. Do you consider this property natural,
necessary, or both? Explain why.

2. Notice the connection property DVF3 relies crucially on the construc-
tion of the global differential map dw : X (M) → X (M) from DVF2.

3. As with the determination of the intrinsic derivative Duf = ∇uf
of a function in cC∞(M), one should expect the metric tensor µ :
X (M) × X (M) → R to play a role in the determination of the in-
trinsic derivative ∇uw of a vector field w ∈ X (M). Recall, however,
that it was possible to define the differential map dfP : TPM → R

for a real valued function without using the metric tensor.1 Thus the
formulation of property DVF3 in particular does not actually depend
on the metric tensor.

4. One way to understand that the metric tensor is not used “enough”
(since it is not used at all) in the formulation of the properties DVF1,
DVF2, and DVF3 is that these properties are not adequate to deter-
mine the value of the intrinsic directional derivative ∇uw of a vector
field. To make this assertion a little more precise, it is possible to find
many different functions

L : X (M)× X (M) → X (M)

which are

1Remember that it is fine to define Duf(P ) as dfP (u) for u ∈ S
n−1
P ⊂ TPM , but the

definition of Sn−1
P = {z ∈ TPM : µP (z, z) = 1} depends on the metric tensor. Similarly,

you can have a differential map, but no way to connect it to the geometry of (functions
on) M .
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(a) bilinear when X (M) is considered as a linear space over R,

(b) cC∞(M) (modular) linear in the second argument

L(w, fz1 + gz2, w) = fL(z1, w) + gL(z2, w)

(f, g ∈ cC∞(M), z1, z2 ∈ X (M))

when X (M) is considered as a module over cC∞(M), and

(c) Leibnizian

L(fw, z) = df(z) w+ fL(w, z) (f ∈ cC∞(M), z, w ∈ X (M))

in the first argument.

In fact, there is a different such function L with L(w, z) = dw(z) and
dw(u) = ∇uw for every different metric tensor on M . (And there are
even others on certain manifolds that do not even come from Rieman-
nian metric tensors at all, so these presumably have nothing to do with
geometry.)

A function L : X (M) × X (M) → X (M) on a topological manifold
with an atlas A∞

∗ satisfying (a), (b) and (c) is called a “connection.”
One might mistakenly take a connection and define a differential map
dw : X (M) → X (M) for filament fields by

dw(z) = L(w, z). (17.5)

If you’re just interested in topology, maybe there is not much harm done
by such a definition. It doesn’t have anything to do with geometry how-
ever and specifically with the notion of an intrinsic derivative of a vector
field. More precisely, the real problem with such a definition arises if
your topological manifold happens to be a Riemannian manifold with
a metric tensor µ : X (M) × X (M) → R. Then dw(z) = L(w, z) and
dwu(P ) = L(w, u)P for u ∈ S

n−1
P in particular (based on some arbitrary

connection) doesn’t have anything to do with an intrinsic derivative of
the vector field w ∈ X (M). Of course, this problem or concerns about
“what is geometry?” do not stop a lot of people from making the
atrocious definition (17.5) using some arbitrary connection. And such
people often go further. Specifically one might be tempted to define a
directional derivative of a filament field w in the direction z to be

∇zw = L(w, z). (17.6)
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Again, this may be some kind of amusing algebraic exercise, but it’s not
geometry and it’s certainly not geometry with calculus. There’s nothing
wrong with amusing algebraic exercises per se, but the real problem
arises when there is actually a Riemannian metric around with which
to measure angles and distance and do geometry. In that case, if you
take an arbitrary connection L : X (M)×X (M) → X (M) and write
down the value given in (17.6), then we know first of all that the value
has some complicated scaling business going on that differentiates it
somewhat from any kind of honest directional derivative. But even if we
restrict to a unit vector u ∈ S

n−1
P , then L(w, u)P is not the directional

derivative of w in the direction u. There is a real meaning of ∇uw as
a derivative on a Riemannian manifold, so we shouldn’t waste that on
a connection. We should figure out what the value is.

It turns out there are two more properties. One of them is certainly pretty
natural, and it depends pretty strongly on the metric. It can be stated like
this:

DVF4 metric compatibility Given any two vector fields w1, w2 ∈ X (M)
and a (locally) unit2 u in X (M) there holds

Duµ(w1, w2) = µ(∇uw1, w2) + µ(w1,∇uw2). (17.7)

This says differentiation satisfies a product rule (or is Leibnizian if you
like) with respect to the metric. That is, it says something about the
way angles between vector fields change.

This is a key property, and it is certainly something that holds in Euclidean
space. As a consequence it will also hold for submanifolds of Euclidean
space. Incidentally, it is property DVF4 which suggests inner products of
vector fields µ(w1, w2) give interesting real valued functions in cC∞(M) to
differentiate.

Notice that by the module linearity in the argument z of

1. the differential df(z) for real value functions f ,

2Note that there may be no vector field u ∈ X (M) with µQ(uQ, uQ) = 1 for all Q ∈ M .
It is always possible to take any vector field z ∈ X (M) with zP 6= 0 and find an open set
p(U) ⊂ M with P ∈ p(U) and another vector field u ∈ X (M) with u = z/µ(z, z)1/2 on
p(U) so that u is locally a unit field.
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2. the metric tensor µ(z, w) for µ : X (M)× X (M) → R, and

3. the differential dw(z) for vector fields from property DVF2

it follows from (17.7) that for any z, w1, w2 ∈ X (M) there should hold

dµ(w1, w2)(z) = µ(dw1(z), w2) + µ(w1, dw2(z))

in terms of the intrinsic differential map and of course

dµ(w1, w2)(z) = µ(L(w1, z), w2) + µ(w1, L(w2, z))

in terms of the intrinsic connection L.
The final property is the one I find the most difficult to motivate, but I

think I have a calculation that does motivate it pretty well (in some sense).
The final property is also independent of the metric tensor, but it has some-
thing to do with charts and their interaction with the intrinsic derivative of
vector fields.

DVF5 symmetry Given any P ∈ M and a chart (U,p) ∈ A∞
∗ there holds

[d(dp(ei))(dp(ej))]Q = [d(dp(ej))(dp(ei))]Q (17.8)

for i, j = 1, 2, . . . , n and Q in some open set p(V ) with ξ(P ) ∈ V ⊂⊂U .
This says, for one thing, that the vector fields induced by the coordinate
fields in a chart are somehow special. In terms of the notation vj =
dp(ej) for j = 1, 2, . . . , n for the coordinate induced fields introduced
above, the relation (17.8) reads

dvi(vj) = dvj(vi) (17.9)

for each chart (U, dp) ∈ A∞
∗ .

It should be noted that by vj = dp(ej) for j = 1, 2, . . . , n in (17.8) we
mean any field w in X (M) for which

w∣
∣

p(V )

= dp(ej). (17.10)

Technically, dp(ej) is properly only an element of X (p(U)) defined on the
(full dimension) open submanifold p(U) ⊂ M . But given any V ⊂⊂U , it can
be shown that dp(ej) has an extension to a vector field w ∈ X (M) satisfying
(17.10).
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Exercise 17.9. Express (17.8) in terms of the intrinsic connection L :
X (M)× X (M) → X (M) defined in property DVF3.

A connection satisfying the symmetry property DVF5 is also said to
be torsion free. One can reasonably object to the notation used in (17.8)
though I think it is basically correct. One has there of course the differential
map associated with a particular vector field d(dp(ei)) = dvi : TPM → TPM
which (especially the first expression used in (17.8)) is rather ugly. I have
attempted to restrict the use of the symbol Du and/or ∇u for an intrinsic
derivative to situations when u is a unit length vector to better capture and
illustrate the geometry in the manifold. It is common to allow the “direction”
of differentiation appearing in these symbols to be any tangent vector. From
this point of view the value dw(z) of the differential map may be written as
∇zw. Again, I have tried to avoid this in order to emphasize the geometry.
If this is allowed, the symmetry conditions (17.8) and (17.9) can take the
considerably prettier (and familiar) form

∇vivj = ∇vjvi, i, j = 1, 2, . . . , n.

A good deal more should be said in terms of the motivation and/or neces-
sity of properties DVF1-DVF5. One interesting direction, especially with
respect to the properties DVF1-DVF3 is to consider each of the properties
for the derivatives of the traditional vector fields dξ(v) induced locally using
the translator differential of a coordinate function ξ : p(U) → Rn.

Exercise 17.10. Consider generalizing Exercise 17.4 for application to the
(directional) derivative of a traditional vector field w : U → Rn induced in
coordinates by a vector field w ∈ X (M) on a manifold M :

(a) Given P = p(x) with x ∈ U , consider the set

Σx = {dξP (u) : u = uP ∈ S
n−1
P } ⊂ TxR

n = R
n.

S
n−1
P is a sphere. What kind of set is Σx?

(b) Compose and complete a version of Exercise 17.4 replacing M with Rn,
TPM with TxR

n and S
n−1
P with Σx.

(c) What are the conditions required for the extension of g : Σx → X to a
linear function G : TxR

n → TxR
n? Are these natural and/or necessary

conditions for the function g : Σx → TxR
n given by g(u) = Duw?
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Another approach might be through local embedding.

Exercise 17.11. Read the initial history section of the paper the imbed-

ding problem for riemannian manifolds (1955) by John Nash and the
introduction to the preprint Counterexamples for local isometric embedding

(2002) by Nicolai Nadirashvili and Yu Yuan.

(a) What interesting things do you find there?

(b) Is the question of (isometrically) embedding some neighborhood p(U)
containing a point P in a two-dimensional Riemannian manifold as a
submanifold of R3 settled?

Rather than pursue these directions further at the moment, let me proceed
under the assumption that at least properties DVF1-DVF3 hold for the
(directional) derivative of a vector field w ∈ X (M). There is also a section
below specifically intended to motivate property DVF5.

17.2.2 First reduction

Say we have a filament/vector u ∈ S
n−1
P ⊂ TPM at a point P in a Riemannian

manifold M , and we also have a vector field w ∈ X (M). Our objective is to
determine an expression for the directional derivative ∇uw(P ) = (∇uw)P ∈
TPM .

With respect to a local chart (function) p : U → M with ξ(P ) ∈ U , we
can write

w =

n
∑

j=1

bjvj

where b1, b2, . . . , bn ∈ C∞(U) are real valued functions. Using the properties
DVF1-DVF3 and leaving off the evaluation so that ∇uw = ∇uw(P ),

∇uw = dw(u)

= ∇u

(

n
∑

j=1

bjvj

)

=

n
∑

j=1

[Dubj vj + bj ∇uvj ]

=
n
∑

j=1

[Dubj(P ) (vj)P + bj(P ) (∇uvj)P ].
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Recall that we already know the values of the directional derivatives Dubj(P )
given by

Dubj(P ) =
d

dt
(bj ◦ p)(x+ tdξP (u))

∣

∣

t=0

= 〈D(bj ◦ p)(x), dξP (u)〉TxU

where x = ξ(P ). That is,

Dubj(P ) =

n
∑

i=1

ai
∂(bj ◦ p)

∂xi
(x)

where

u = uP =

n
∑

i=1

aivi

for some a1, a2, . . . , an ∈ R since

dξP (u) =

n
∑

i=1

aidξP (vi) =

n
∑

i=1

ai ei = (a1, a2, . . . , an)

and

D(bj ◦ p)(x) =

(

∂(bj ◦ p)

∂x1
(x),

∂(bj ◦ p)

∂x2
(x), . . .

∂(bj ◦ p)

∂xn
(x)

)

.

We conclude that it is enough to determine the values of the directional
derivatives ∇uvj(P ) = (∇uvj)P for j = 1, 2, . . . , n. Put another way, if we
find the values of the special directional derivative vector fields ∇uvj , we can
find a formula in terms of a chart function for ∇uw.

Exercise 17.12. Assuming u ∈ X (M) is a globally defined unit field,3

what qualification is necessary if one wishes to write something like ∇uvj ∈
X (M)? (Hint: Should one expect ∇uvj is defined on all of M?)

It may be noted that for this first reduction, we have used only the special
case of DVF3 described in Exercise 17.5, namely

(DVF3*) directional differentiation of vector fields is linear/Leibnizian
Given u ∈ S

n−1
P ⊂ TPM fixed, the function ∇u : X (M) → X (M) sat-

isfies

3Global unit fields do not exist on some manifolds, but they can exist on some manifolds.
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(a) ∇u is linear when X (M) is considered a linear space over R:

∇u(aw1+bw2) = a∇uw1+b∇uw2 (a, b ∈ R, wj ∈ X (M), j = 1, 2).

(b) ∇u is Leibnizian when X (M) is considered a module over cC∞(M):

∇u(fw) = Duf w + f ∇uw (f ∈ cC∞(M), w ∈ X (M)).

17.2.3 Second reduction

Again we start with a filament/vector u ∈ S
n−1
P ⊂ TPM at a point P in a

Riemannian manifold M . Our objective now is to start with a local chart
(function) p : U → M with ξ(P ) ∈ U and determine a formula for

∇uvj for j = 1, 2, . . . , n

where vj ∈ X (p(U)) given by (vj)Q = dpξ(Q)(ej) for Q ∈ p(U) is a vector
field on the open submanifold p(U) of M .

As above we can write

u = uP =
n
∑

i=1

aivi =
n
∑

i=1

ai(vi)P

where a1, a2, . . . , an are real numbers. real valued functions.
Again, we suppress the evaluation at P so ∇uvj = (∇uP

vj)P and now we
use DVF1 to write

∇uvj = dvj(u)

= dvj

(

n
∑

i=1

aivi

)

=
n
∑

i=1

dvj(vi).

The conclusion here is that if we can determine the differential values dvj(vi)
or equivalently the directional derivatives

‖vi‖∇ui
vj for i, j = 1, 2, . . . , n,

then we will be able to determine an expression for the directional derivative
∇uw(P ) = (∇uw)P ∈ TPM .
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Putting the reductions considered above together, using the properties
DVF1-DVF3 freely, and leaving off the evaluation so that ∇uw = ∇uw(P ),

∇uw = dw(u)

= dw
(

∑

aivi

)

=

n
∑

i=1

aidw(vi)

=
n
∑

i=1

aiL(w, vi)

=
n
∑

i=1

aiL

(

n
∑

j=1

bjvj , vi

)

=

n
∑

i=1

ai

n
∑

j=1

[dbj(vi) vj + bj L (vj , vi)]

=
n
∑

i=1

ai

n
∑

j=1

[dbj(vi) vj + bj dvj (vi)].

Introducing the basis {u1, u2, . . . , un} consisting of unit vectors

ui =
vi

‖vi‖TPM
for i = 1, 2, . . . , n,

we can express this result in terms of directional derivatives while respecting
the convention that such directional derivatives are only taken in unit vector
directions:

∇uw =

n
∑

i=1

ai‖vi‖

n
∑

j=1

[Dui
bj vj + bj ∇ui

vj ]

=

n
∑

i=1

ai‖vi‖TPM

n
∑

j=1

[Dui
bj(P ) (vj)P + bj(P ) ∇ui

vj(P )]

=

n
∑

i=1

ai‖vi‖TPM

n
∑

j=1

[Dui
bj(P ) (vj)P + bj(P ) (∇ui

vj)P ].

Again, we conclude that it is enough to determine the values of the directional
derivatives ∇ui

vj(P ) = (∇ui
vj)P and/or the differential values dvj(vi) for
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i, j = 1, 2, . . . , n in particular. Put another way, if we find the values of the
special directional derivative vector fields ∇ui

vj , we can find a formula in
terms of a chart function for ∇uw.

Exercise 17.13. What qualification is necessary if one wishes to write some-
thing like ∇ui

vj ∈ X (M)? (Hint: Should one expect ∇ui
vj is defined on all

of M?)

17.2.4 Levi-Civita calculation

The determination dvj(vi) depends on DVF4 and DVF5: Consider i, j, k ∈
{1, 2, . . . , n}.

dµ(vj, vk)(vi) = µ(dvj(vi), vk) + µ(vj, dvk(vi)) (17.11)

dµ(vk, vi)(vj) = µ(dvk(vj), vi) + µ(vk, dvi(vj)) (17.12)

dµ(vi, vj)(vk) = µ(dvi(vk), vj) + µ(vi, dvj(vk)). (17.13)

It was mentioned in the introduction of the (axiomatic) Leibnizian/metric
compatibility property of the differential of a vector field DVF4 that a real
valued function given by the inner product of two vector fields can be an
interesting function to differentiate. On the left of each identity (17.11-
17.13) the differential of a real valued function with values given by the
inner product of two special (coordinate induced) vector fields on p(U) ⊂ M
appears. These real valued functions are essentially the metric coefficients
gjk, gki, and gij. Thus, (17.11-17.13) may also be written as

µ(dvj(vi), vk) + µ(vj , dvk(vi)) = d(gjk ◦ ξ)(vi) (17.14)

µ(dvk(vj), vi) + µ(vk, dvi(vj)) = d(gki ◦ ξ)(vj) (17.15)

µ(dvi(vk), vj) + µ(vi, dvj(vk)) = d(gij ◦ ξ)(vk). (17.16)

Exercise 17.14. Rewrite the three identities (17.14-17.16) in terms of di-
rectional derivatives.

Adding the first two identities (17.14) and (17.15), subtracting the third
(17.16), and noting the symmetry condition DVF5 dvj(vi) = dvi(vj) for
coordinate induced fields we find

2µ(dvj(vi), vk) = d(gjk ◦ ξ)(vi) + d(gki ◦ ξ)(vj)− d(gij ◦ ξ)(vk).
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Thus,

µ(dvj(vi), vk) =
1

2
[d(gjk ◦ ξ)(vi) + d(gki ◦ ξ)(vj)− d(gij ◦ ξ)(vk)] (17.17)

is determined for each k = 1, 2, . . . , n by known quantities (or at least direc-
tional derivatives/differentials of real valued functions which we know how
to intrinsically differentiate). This is the main calculation which lies at the
heart of a famous theorem of Levi-Civita (1917). Notice that the key idea was
permuting the indices in the Leibniz/metric compatibility formula and then
using the symmetry/torsion free property. It should be at least intuitively
clear that if we know the inner products

µ(dvj(vi), vk) = µP (dvj(vi), vk)

for k = 1, 2, . . . , n, then we should know the vector dvj(vi). To make this
explicit, let us express dvj(vi) in terms of the basis {v1, v2, . . . , vn}:

dvj(vi) = ‖vi‖ ∇ui
vj =

n
∑

ℓ=1

Γℓ
ij vℓ. (17.18)

The coefficients Γℓ
ij in the linear combination of the vectors in the basis

{v1, v2, . . . , vn} of TPM for dvj(vi) are called the Christoffel symbols.
The notation in which the Christoffel symbols Γk

ij appear here is a gen-
eralization of the notation used for submanifolds: In that case, say we have
a regularly parameterized n-dimensional submanifold M = S of RN given
(locally) by a parameterization

X : U → S ⊂ R
N .

In this case, there is a basis
{

∂X

∂x1
,
∂X

∂x2
, . . . ,

∂X

∂xn

}

=

{

∂X

∂x1
(x),

∂X

∂x2
(x), . . . ,

∂X

∂xn
(x)

}

of traditional vectors for TPS considered as a linear/vector subspace RN

where X(x) = P ∈ S. It will be noted that this basis of traditional vectors
corresponds (via differential translation) to the filament basis {v1, v2, . . . , vn}
for TPM . Furthermore, for each j = 1, 2, . . . , n there is a (local) vector field

∂X

∂xj
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tangent to M = S, and the partial derivative

∂

∂xi

(

∂X

∂xj

)

=
∂2X

∂xj∂xi

is a natural vector to consider (in TPR
N = RN). Typically,

∂2X

∂xj∂xi
/∈ TPS

but there is a decomposition

∂2X

∂xj∂xi
=

(

∂2X

∂xj∂xi

)T

+

(

∂2X

∂xj∂xi

)⊥

into tangent and normal components with

(

∂2X

∂xj∂xi

)T

∈ TPS

and
〈

(

∂2X

∂xj∂xi

)⊥

,
∂X

∂xk

〉

RN

= 0, k = 1, 2, . . . , n.

In this case, we write

(

∂2X

∂xj∂xi

)T

=

n
∑

j=1

Γk
ij

∂X

∂xk

where the coefficients Γk
ij are the (traditional) Christoffel symbols. To the

extent that dvj(vi) = ‖vi‖ ∇ui
vj corresponds to

(

∂2X

∂xj∂xi

)T

,

the simple fact that partial derivatives commute

∂2X

∂xj∂xi
=

∂2X

∂xi∂xj
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gives some motivation for the symmetry property DVF5 according to which
dvj(vi) = dvi(vj) or

‖vi‖ ∇ui
vj = ‖vj‖ ∇uj

vi,

though we will attempt to offer additional motivation from another more
intrinsic perspective below.

Returning to the determination of the Christoffel symbols in the case of
a Riemannian manifold, if we substitute (17.18) in (17.17) we find

n
∑

ℓ=1

Γℓ
ijµ(vℓ, vk) =

1

2
[d(gjk ◦ ξ)(vi) + d(gki ◦ ξ)(vj)− d(gij ◦ ξ)(vk)]. (17.19)

Note that in the formulation above the metric coefficients have domain
the chart U so that gij ∈ C∞(U), but the Christoffel symbols have Γk

ij ∈
cC∞(p(U)). This distinction of domain is often the victim of, as Spivak puts
it, casual confusion and relations like (17.17) are expressed as

µ(dvj(vi), vk) =
1

2
[dgjk(vi) + dgki(vj)− dgij(vk)].

It’s difficult to argue with the elegance, but I’m usually inclined to try to
avoid the confusion.

The left side of (17.19) is the k-th entry in the product

(gkℓ ◦ ξ)











Γ1
ij

Γ2
ij
...
Γn
ij











.

Thus, denoting the inverse of the matrix (gij) = (gij ◦ξ) of metric coefficients
by

(gij) = (gij)
−1,

we conclude

Γk
ij = Γk

ij ◦ p =
1

2

n
∑

ℓ=1

gkℓ[dgjℓ(vi) + dgℓi(vj)− dgij(vℓ)] (17.20)

=
1

2

n
∑

ℓ=1

gkℓ
[

∂gjℓ
∂xi

+
∂gℓi
∂xj

−
∂gij
∂xℓ

]

. (17.21)
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Computationally, probably the most useful formula for the Christoffel sym-
bols is given by (17.21) and indeed, when casual confusion happens to be
avoided, the Γk

ij are often considered as functions with domain U rather than
p(U) as we have considered them here.

Notice the special differential values dvi(vj) and the special directional
derivatives

∇ui
vj =

1

‖vi‖TPM
dvj(vi) =

1

(gii ◦ ξ)1/2

n
∑

k=1

Γk
ij vk

in particular, depend very strongly and in a very nonobvious way on the
Riemannian metric (coefficients) through (17.20). This is, as far as I know,
the way the formula for the intrinsic (directional) derivative of a vector field
on a Riemannian manifold is obtained.

To review, the special directional derivatives

∇ui
vj =

1

(gii ◦ ξ)1/2

n
∑

k=1

Γk
ij vk

are expressed in terms of the differential values

dvj(vi) =

n
∑

k=1

Γk
ij vk.

The coefficients determining these special vector fields are given by (17.20)
in terms of the metric coefficients (and thier derivatives).

If you have a general vector field w ∈ X (M), and you want to differenti-
ate it in the direction u ∈ S

n−1
P at a point P ∈ M , then find a chart function

p : U → M with ξ(P ) = x ∈ U , and expand w and u in terms of the chart
induced basis

{v1, v2, . . . , vn} = {dp(e1), dp(e2), . . . , dp(en)}

with

u =
n
∑

i=1

aivi and w =
n
∑

j=1

bjvj .
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Use the linear and Leibnizian properties to express

∇uw =

n
∑

i=1

ai

n
∑

j=1

[Dvibj vj + bj dvj(vi)]

=
n
∑

i=1

ai

n
∑

j=1

[Dvibj(P ) (vj)P + bj(P ) (dvj(vi))P ]

=

n
∑

j=1

Dubj(P ) (vj)P +

n
∑

j=1

bj(P ) ∇uvj(P )

=
n
∑

j=1

Dubj(P ) (vj)P +
n
∑

i,j=1

ai bj(P ) ‖ui‖ ∇ui
vj(P )

=

n
∑

j=1

Dubj(P ) (vj)P +

n
∑

i,j,k=1

ai bj(P ) Γk
ij (vk)P .

17.2.5 Alternative forms/discussion/review

Given the formula

∇uw =

n
∑

j=1

Dubj(P ) (vj)P +

n
∑

i,j,k=1

ai bj(P ) Γk
ij (vk)P (17.22)

it is common to change indices in the first summation to express the result
in terms of the basis {v1, v2, . . . , vn} for TPM :

∇uw =

n
∑

k=1

Dubk(P ) (vk)P +

n
∑

i,j,k=1

ai bj(P )Γk
ij (vk)P .

The coefficients/real numbers ai, i = 1, 2, . . . , n are often commonly inter-
preted in a different way. Specifically, we know u = [α] has a generating
curve/path α : I → M , and ξ ◦ α : I → U is a traditional4 embedded path
in I∞(U). In this way the isolated vector u = uP ∈ TPM is taken as the

4What we mean by “traditional” here is that ξ ◦α has a traditional derivative (ξ ◦α)′ ∈
Rn in contrast to the filament u = [α] ∈ TPM for which α ∈ cC∞(M) and α : I → M
may admit no notion of a derivative α′, though many authors simply denote the filament
u = [α] in this case by α′.
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value at P of a vector field u ∈ X (A) or u ∈ X (p(A0)) with respect to the
one-dimensional submanifolds

A = {α(t) : t ∈ I} or A0 = {ξ ◦ α(t) : t ∈ I, α(t) ∈ p(U)}.

An emphasis may then be put on the parameter t so that for example the
coefficients a1, a2, . . . , an can be expressed differently: The path ξ ◦ α has
coordinate functions ξ1 ◦ α, ξ2 ◦ α, . . . , ξn ◦ α and

ξ ◦ α(t) =
n
∑

i=1

ξi ◦ α ei.

Thus, the traditional tangent vector to A0 is

(ξ ◦ α)′(t) =

n
∑

i=1

(ξi ◦ α)′(t) ei

with
n
∑

i=1

(ξi ◦ α)′(t0) ei = dξP (u).

This means

u =

n
∑

i=1

ai vi =

n
∑

i=1

(ξi ◦ α)′(t0) vi

and
ai = (ξi ◦ α)′(t0) (i = 1, 2, . . . , n).

This alternative expression is often written simply as

ai =
d(ξi ◦ α)

dt

or even

ai =
dξi

dt

so that (17.22) is written something like

∇uw =

n
∑

j=1

Dubj(P ) (vj)P +

n
∑

i,j,k=1

d(ξi ◦ α)

dt
bj(P ) Γk

ij (vk)P .
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One can then further interpret the directional derivative ∇uw(P ) as a deriva-
tive “along the path α” and write

∇uw =
Dw

dt

where the complicated operator

D

dt
: X (M) → X (A)

depends on the path A and is called the covariant derivative along α.
Notice that this allows extension (and we have incorporated) some kind of
derivative of the vector field w ∈ X (M) at each point α(t) along the path
instead of simply at P = α(t0) though this will only be a proper directional
derivative at points Q = α(t) where the filament [α] ∈ TQM has unit length.5

Also, the covariant derivative of w along α depends on the entire pathA ⊂ M ,
but in reality the value in principle depends only on the filament [α] at each
point Q = α(t). Like other intrinsic derivatives, the covariant derivative
along a path applies naturally to real valued functions f ∈ cC∞(M) as well
as vector fields with

Df

dt
=

d(f ◦ α)

dt
so that at P

Dubj(P ) = (bj ◦ α)
′(t0) =

Dbj
dt

(j = 1, 2, . . . , n)

and (17.22) is often written as

Dw

dt
=

n
∑

j=1

Dbj
dt

vj +

n
∑

i,j,k=1

Dξi

dt
bj Γ

k
ij vk.

Compare the formulas on the bottom of page 52 and in the middle of page 56
of Chapter 2 of [2].

Returning to (17.22)

∇uw =
n
∑

j=1

Dubj(P ) (vj)P +
n
∑

i,j,k=1

ai bj(P ) Γk
ij (vk)P

5Of course a representative path α for the filament may be chosen (by reparameteriza-
tion for example) to have constant unit length µα([α], [α]) = 1, and then Dw/dt = ∇[α]w
at each Q = α(s).
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consider a special case (or two). If M = U ⊂ Rn, then the coordinate basis
fields vj for j = 1, 2, . . . , n are given by vj = [γj] with γj(t) = P+tej = x+tej
for j = 1, 2, . . . , n, and the (local/global) metric coefficients are

gij = δij =

{

0, i 6= j
1, i = j

are constants for i, j = 1, 2, . . . , n. In particular, all the differential values

dµ(vj, vk)(vi) = d(gjk ◦ ξ)(vi)

appearing in (17.19)

n
∑

ℓ=1

Γℓ
ijµ(vℓ, vk) =

1

2
[d(gjk ◦ ξ)(vi) + d(gki ◦ ξ)(vj)− d(gij ◦ ξ)(vk)].

are zero. This implies the important numbers

k
k
ij =

1

2
[d(gjk ◦ ξ)(vi) + dgki(vj)− dgij(vk)] = 0 (i, j, k = 1, 2, . . . , n)

vanish as well so that (17.20) becomes

Γk
ij =

n
∑

ℓ=1

gkℓ kℓ
ij = 0

for i, j, k = 1, 2, . . . , n or











Γ1
ij

Γ2
ij
...
Γn
ij











= (gkm)











k1
ij

k2
ij
...

kn
ij











= 0 (17.23)

and formula (17.22) becomes simply

∇uw =
n
∑

j=1

Dubj(P ) (vj)P . (17.24)

In this case, w and u correspond by differential translation d(idU) : X (U) →
Rn to a traditional vector field w = (b1, b2, . . . , bn) and a traditional unit
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vector u = (a1, a2, . . . , an) ∈ TPR
n. The number Dubj(P ) is Dubj(P ) =

〈Dbj(P ),u〉Rn. The main point is that the formula for the intrinsic derivative
of the vector field w in (17.24) says that one should simply (intrinsically)
differentiate the coefficients of w with respect to the basis {v1, v2, . . . , vn}. In
particular, if u is taken to be a standard basis vector as well so that u = ek
for some k ∈ {1, 2, . . . , n}, then

∇uw =

n
∑

j=1

∂bj
∂xk

(P ) (vj)P

corresponding to

Dek
w =

n
∑

j=1

∂bj
∂xk

(P ) ej.

If we take a chart, even for this trivial manifoldM = U ⊂ Rn, then we get
a first hint as to how the metric tensor/distance on M might come into play
in taking a derivative of a vector field on M and indeed must come into play.
Say we consider M ⊂ R2 again with the standard/trivial metric tensor, but
let us assume M is a region in the plane admitting a chart function given by
polar coordinates p : U → M with U ⊂ (0,∞)× (θ0, θ0 + 2π) where θ0 ∈ R

is fixed and

p(r, θ) = (r cos θ, r sin θ).

Here again the coordinate filaments vj = [αj ] = dp(ej) for j = 1, 2 with
α1(t) = x + t(x/|x|) and α2(t) = |x|(cos(θ + t), sin(θ + t)) where x =
|x|(cos θ, sin θ) correspond to the traditional vector fields v = x/|x| and
w = x⊥ = |x|(− sin θ, cos θ). This situation is discussed in more detail with
illustrations in the next section. The metric coefficients in this case, however
are not (all) constant with gij : U → R by

g11(r, θ) = |v|2 = 1

g12(r, θ) = v ·w = (cos t0, sin t0) · (−r sin t0, r cos t0) = 0

g22(r, θ) = |w|2 = r2.

In particular,

d(g22 ◦ ξ)(v1) = Dv(g22 ◦ ξ) = De1g22 =
∂g22
∂r

= 2r.
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The other differential values d(gij ◦ ξ)(vk) are zero. Computing

k
k
ij ◦ p =

1

2

[

∂gjk
∂xi

+
∂gki
∂xj

−
∂gij
∂xk

]

for i, j, k = 1, 2, . . . , n we find

k
1
11 =

1

2

[

∂g11
∂r

+
∂g11
∂r

−
∂g11
∂r

]

= 0

because g11 ≡ 1.

k
2
11 =

1

2

[

∂g12
∂r

+
∂g21
∂r

−
∂g11
∂θ

]

= 0

because g12 = g21 ≡ 0 and g11 ≡ 1.

k
1
12 =

1

2

[

∂g21
∂r

+
∂g11
∂θ

−
∂g12
∂r

]

= 0

because g12 = g21 ≡ 0 and g11 ≡ 1.

k
2
12 =

1

2

[

∂g22
∂r

+
∂g21
∂θ

−
∂g12
∂θ

]

= r

because g22(r, θ) = r2, and g12 = g21 ≡ 0.

k
1
21 =

1

2

[

∂g11
∂θ

+
∂g11
∂r

−
∂g21
∂r

]

= 0

because g21 ≡ 0 and g11 ≡ 1.

k
2
21 =

1

2

[

∂g12
∂θ

+
∂g22
∂r

−
∂g21
∂θ

]

= r

because g22(r, θ) = r2, and g12 = g21 ≡ 0.
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Exercise 17.15. Give an alternative justification that (k1
21,k

2
21) = (0, r) by

showing the symmetry relation

k
k
ji = k

k
ij for i, j, k = 1, 2, . . . , n

in general.

k
1
22 =

1

2

[

∂g21
∂θ

+
∂g12
∂θ

−
∂g22
∂r

]

= −r

because g21 = g21 ≡ 0 and g22(r, θ) = r2.

k
2
22 =

1

2

[

∂g22
∂θ

+
∂g22
∂θ

−
∂g22
∂θ

]

= 0

because gij is independent of θ for i, j = 1, 2.

Exercise 17.16. Compute the Christoffel symbols for polar coordinates and
show the values were correctly computed in the video

https://www.youtube.com/watch?v=4UVJTYL4pQk

Hint: Assemble the McAwful symbols kk
ij computed for you above into three

or four vectors and then apply the formula appearing (17.23).

17.2.6 Symmetry for (certain) flat manifolds

.


