Final Problems Riemannian geometry

MATH 6455, spring semester 2024

John McCuan

April 30, 2024

Problem 1 Let M denote the real line as a topological manifold. Consider the global charts

- (i) $\mathbf{p} : \mathbb{R}^1 \to M$ by $\mathbf{p}(x) = x^3$,
- (ii) $\mathbf{q}: \mathbb{R}^1 \to M$ by $\mathbf{q}(x) = x^{1/3}$, and
- (iii) $\operatorname{id} : \mathbb{R}^1 \to M$ by $\operatorname{id}(x) = x$.

Let \mathcal{A}_* denote the maximal C^{∞} atlas for M containing id : $\mathbb{R}^1 \to M$.

- (a) Is $\mathbf{p} \in \mathcal{A}_*$?
- (b) Is $q \in A_*$?

Problem 2 Let M, \mathbf{p} , \mathbf{q} and \mathcal{A}_* be as in Problem 1.

(i) Let \mathcal{A}^P_* denote the maximal C^{∞} at las for M containing $\mathbf{p}: \mathbb{R}^1 \to M$.

(ii) Let \mathcal{A}^q_* denote the maximal C^{∞} atlas for M containing $\mathbf{q}: \mathbb{R}^1 \to M$.

What can you say about the (relations among) the sets \mathcal{A}_* , \mathcal{A}^p_* and \mathcal{A}^q_* ?

Problem 3 Let M, \mathbf{p} , \mathbf{q} , \mathcal{A}_* , \mathcal{A}^p_* and \mathcal{A}^q_* be as in Problem 2.

- (i) Let \mathbb{R} denote the Riemannian manifold (M, \mathcal{A}_*) with the standard inner product given by multiplication.
- (ii) Let M(p) denote any Riemannian manifold (M, \mathcal{A}^p_*) determined by some metric tensor μ .

A function $\psi: M(p) \to \mathbb{R}$ for which $\psi \circ \mathbf{p} \in C^{\infty}(\mathbb{R}^1)$ is a diffeomorphism, i.e., $\psi^{-1}: \mathbb{R} \to M(p)$ exists and $(\psi \circ \mathbf{p})^{-1} \in C^{\infty}(\mathbb{R}^1)$, is an **isometry** if

$$(\psi \circ \alpha)'(t_1)(\psi \circ \beta)'(t_2) = \mu_x([\alpha], [\beta])$$

for all $\alpha, \beta \in c\mathfrak{I}^{\infty}(M(p))$ with $\alpha(t_1) = \beta(t_2) = x \in M(p)$. Recall that $c\mathfrak{I}^{\infty}(M(p))$ denotes the chart smooth embedded paths in M(p) so that t_1 and t_2 are well-defined.

Characterize the metrics μ for which there exists an isometry $\psi: M(p) \to \mathbb{R}$.

Problem 4 Given Riemannian manifolds M and N with maximal C^{∞} atlases \mathcal{A}_* and \mathcal{B}_* and Riemannian metric tensors μ and ν respectively, a function $\psi: M \to N$ is an **isometry** if

(i)

$$\eta \circ \psi \circ \mathbf{p}_{\big|_{\xi(W)}} \in C^{\infty}(\xi(W))$$

whenever $\mathbf{p} : U \to M$ and $\mathbf{q} : V \to N$ are chart functions in \mathcal{A}_* and \mathcal{B}_* respectively with inverses $\xi : \mathbf{p}(U) \to U$ and $\eta : \mathbf{q}(V) \to V$ and for which $W = \mathbf{p}(U) \cap \mathbf{p}(V) \neq \phi$.

(ii) $\psi^{-1}: N \to M$ exists and

$$\xi \circ \psi^{-1} \circ \mathbf{q}_{|_{\eta(W)}} \in C^{\infty}(\eta(W))$$

whenever $\mathbf{p} : U \to M$ and $\mathbf{q} : V \to N$ are chart functions in \mathcal{A}_* and \mathcal{B}_* respectively with inverses $\xi : \mathbf{p}(U) \to U$ and $\eta : \mathbf{q}(V) \to V$ and for which $W = \mathbf{p}(U) \cap \mathbf{p}(V) \neq \phi$.

(iii)

$$\mu_P([\alpha], [\beta]) = \nu_{\psi(P)}([\psi \circ \alpha], [\psi \circ \beta])$$

for all $\alpha, \beta \in c\mathfrak{I}^{\infty}(M)$ with $\alpha(t_1) = \beta(t_2) = P \in M$.

Let M be a connected one dimensional Riemannian manifold with Riemannian metric tensor μ . Characterize all the possible isometry classes for M, i.e., give a family \mathcal{M} of "standard" one dimensional Riemannian manifolds like \mathbb{R} and \mathbb{S}^1 such that not two are isometric and every M is isometric to one of the manifolds in \mathcal{M} .

Problem 5 Calculate the Riemannian curvature operator and the Ricci curvature operator on $\mathbb{S}^n \subset \mathbb{R}^{n+1}$ for $n \geq 4$. In this problem \mathbb{S}^n is considered with the Riemannian metric tensor induced on \mathbb{S}^n as a submanifoled of the ambient \mathbb{R}^{n+1} .

Problem 6 (Challenge) Consider the one parameter family of Riemannian metric tensors $\mu(t)$ on $\mathbb{S}^n \subset \mathbb{R}^{n+1}$ satisfying

$$\frac{d}{dt}\mu(t) = \operatorname{Ric}^{M(t)} \quad \text{with} \quad \mu(0) = \langle \cdot, \cdot \rangle_{\mathbb{R}^{n+1}}.$$
(1)

Describe the resulting Riemannian manifolds M(t). For this problem M(0) is \mathbb{S}^n considered with the Riemannian metric tensor induced on \mathbb{S}^n as a submanifoled of the ambient \mathbb{R}^{n+1} , but M(t) is \mathbb{S}^n considered as a Riemannian manifold with the metric tensor $\mu(t)$ determined by the initial value problem (1). Hint: Write (1) down locally in terms of a chart $\mathbf{p}: U \to \mathbb{S}^n$ where U is a ball in \mathbb{R}^n and the equation takes the form

$$\frac{d}{dt}g_{ij} = \operatorname{Ric}_{ij}^{M(t)}$$

where $g_{ij} = \mu(v_i, v_j)$ and $\operatorname{Ric}_{ij} = \operatorname{Ric}(v_i, v_j)$ are real valued functions on U. This gives Hamilton's Ricci flow on a sphere.