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I am going to attempt here to construct some kind of framework in which to prove Janet’s 1926 theorem
(also perhaps better known as the Janet-Cartan theorem from 1927 in the case n = 2):

Theorem 1 [Janet, 1926] Given a disk

BR(0) = {x = (x1, x2) ∈ R
2 : x21 + x22 < R2}

of some radius R > 0 and a positive definite matrix assignment (gij) : BR(0) → GL2(R) where

(gij) =

(

g11 g12
g12 g22

)

and each of the three functions gij : BR(0) → R is real analytic

gij(x) =
∑

|β|≥0

Dβgij(0)

β!
xβ

with the series convergent1 on BR(0), that is gij ∈ Cω(BR(0)) for i, j = 1, 2, consider for each r with
0 < r < R, the Riemannian manifold M = Br(0) with Riemannian metric tensor µ : M → T

2(M)
satisfying µx : TxM × TxM → R by

µx(v, w) = 〈(gij)v,w〉R2 (1)

for x ∈ Br(0), and v = dpx(v), w = dpx(w) ∈ TxM where p : Br(0) → M is considered a global chart
function and dpx : TxR

2 → TxM . Under these assumptions, there is some r > 0 for whichM is realizable
as a surface S in R3 with respect to the Riemannian metric induced from R3. More precisely, there exists
a function X : Br(0) → R3 for which the following hold:

1. X ∈ Cω(Br(0) → R3),

2. X : Br(0) → X(Br(0)) = S is a bijection,

3. S is a regular parameterized surface with

{

∂X

∂x1
,
∂X

∂x2

}

linearly independent for each x ∈ Br(0), and

1See the follow-up section at the end for some clarification on this.
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4. The metric tensor ν : S → T
2(S) satisfying νX : TXS × TXS → R by

νX(v, w) = 〈v,w〉R3

for X ∈ S and

v = α′(α−1(X)), v = [α]

w = α′(α−1(X)), w = [α],

also satisfies
µx(v, w) = νX(dXx(v), dXx(w)) (2)

where

dXx(v) = [X ◦ α], v = [α]

dXx(w) = [X ◦ α], w = [α].

Condition 4, and (2) in particular, is the main condition which makes X :M → S an isometry of Rieman-
nian manifolds as well as an embedding of the Riemannian manifold M as a submanifold (specifically a
surface) in R3.

In the discussion that follows I hope to also mention something about a topic that I consider potentially
somewhat more interesting than the basic embedding problem for Riemannian manifolds which I will call
flexibility. A fair amount of attention has been given to the rigidity of certain embeddings, but I don’t
know that much has been written about the question(s) I’m going to suggest. Perhaps there are things
known, and I just do not know them.

Finally, it should be noted that the real analyticity is apparently required as Nadarishvili and Yuan
(2002) claim a counterexample for a C∞ metric assignment on the disk. My impression is that few people
have gone through these counterexamples (starting with a C2,1 example of Pogorelov in 1971) very carefully.

1 Preliminary normalizations

Dilating MR = BR(0) by a factor µ0(dp0(e1), dp0(e1))
−1/2 we may assume ‖dp0(e1)‖M = 1.

Exercise 1 Explain the details of this normalization.

Consequently, we look for a function X ∈ Cω(Br(0) → R3) with
∣

∣

∣

∣

∂X

∂x1
(0)

∣

∣

∣

∣

= 1.

Let us denote the three real analytic coordinate functions of X by (u, v, w) = (u1, u2, u3). It is also required
that

{

∂X

∂x1
,
∂X

∂x2

}

⊂ R
3

is a linearly independent set. By a rotation of R3, we may assume

∂X

∂x1
(0) = e1 ∈ R

3. (3)

After this, we still have a one parameter family of rotations of R3 leaving e1 fixed which may be used for
the purpose of normalization. In particular, we can assume the nonzero vector

∂X

∂x2
(0) =

(

∂u

∂x2
(0),

∂v

∂x2
(0),

∂w

∂x2
(0)

)
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satisfies
∂w

∂x2
(0) =

∂u3

∂x2
(0) = 0 (4)

and
∂v

∂x2
(0) =

∂u2

∂x2
(0) > 0. (5)

Exercise 2 Find the explicit rotations of R3 involved in the normalizations giving (3), (4) and (5) and
explain their use in detail.

With these normalizations the condition for the linear independence of
{

∂X

∂x1
(0),

∂X

∂x2
(0)

}

⊂ R
3

at x = 0 ∈ R2 becomes

∂u

∂x1
(0)

∂v

∂x2
(0)−

∂v

∂x1
(0)

∂u

∂x2
(0) =

∂v

∂x2
(0) =

∂u2

∂x2
(0) > 0.

2 First fundamental form; metric relations

The surface S inherits a metric tensor I with IX : TXS × TXS → R given on traditional vectors2 in
TXS ⊂ R

3 by
IX(v,w) = 〈v,w〉R3.

It is easy to check that the value of IX is obtained in x = (x1, x2) ∈ U ⊂ R2 coordinates in general
associated with a embedding X : U → S with X ∈ C1(U → S) by

IX(v,w) = E α′
1 β

′
1 + F (α′

1 β
′
2 + α′

2 β
′
1) +G α′

2 β
′
2 =

〈(

E F

F G

)(

α′
1

α′
2

)

,

(

β ′
1

β ′
2

)〉

R2

(6)

where

α′ = α′(α−1(X)) = d(X−1)X(v),

β ′ = β ′(α−1(X)) = d(X−1)X(w), (7)

and

E =

∣

∣

∣

∣

∂X

∂x1

∣

∣

∣

∣

2

,

F =

〈

∂X

∂x1
,
∂X

∂x2

〉

R3

G =

∣

∣

∣

∣

∂X

∂x2

∣

∣

∣

∣

2

.

In fact, if α(t) = x+ td(X−1)X(v) and β(t) = x+ td(X−1)X(w), then

〈(X ◦ α)′, (X ◦ β)′〉R3 =

〈

α′
1

∂X

∂x1
(α) + α′

2

∂X

∂x2
(α), β ′

1

∂X

∂x1
(β) + β ′

2

∂X

∂x2
(β)

〉

R3

= α′
1β

′
1

〈

∂X

∂x1
(α),

∂X

∂x1
(β)

〉

R3

+ α′
1β

′
2

〈

∂X

∂x1
(α),

∂X

∂x2
(β)

〉

R3

+ α′
2β

′
1

〈

∂X

∂x2
(α),

∂X

∂x1
(β)

〉

R3

+ α′
2β

′
2

〈

∂X

∂x2
(α),

∂X

∂x2
(β)

〉

R3

2Note: This “first fundamental form” metric tensor for surfaces is nominally different from the Riemannian metric tensors

considered on filaments. This is possible because each filament v ∈ LXS on an embedded surface considered as a Riemannian

manifold corresponds to traditional vector v ∈ TXS ⊂ R3.
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so that evaluating at t = 0 where α(0) = β(0) = X we obtain (6).

Exercise 3 Show that a regular parameterization X ∈ C∞(U → R3) of a surface may be used/interpreted
as a global chart function q : U → X(U) making the image surface X(U) and Riemannian manifold with
Riemannian metric ν : X(U) → T

2(X(U)) satisfying

νX(v, w) = IX(v,w)

where v = dq ◦ d(X−1)(v) and v = dq ◦ d(X−1)(w).

Note the differential d(X−1)X : TXS → TxR
2 appearing in Exercise 3 and in (7) of the map X ∈ C1(U →

S) is a slightly different kind of differential than we have seen/considered before. We have traditional
differentials dψx : TxR

n → Tψ(x)R
n on open subsets of Euclidean space mapping traditional vectors v ∈

TxR
n to traditional vectors dψx(v) ∈ Tψ(x)R

m. We have also introduced translator differentials dpx :
TxR

n → TPM taking traditional vectors v ∈ TxR
n to filaments v = dpx(v) ∈ TPM where M is a manifold

and P = p(x). Here dX : TxR
2 → TXS and d(X−1)X : TXS → TxR

2 are special to a surface S regularly
parameterized by a function X ∈ C1(U → S). These differentials also map traditional vectors, but only
involve vectors in the tangent space of the surface at a particular point X = X(x). There is a simple
relation between traditional differentials and these surface differentials. Specifically, if X̄ : U ×R → R

3

is any C1 extension of X such that
X̄∣

∣

V

∈ C1(V → R
3)

is a diffeomorphism of open sets V and X̄(V ) in R3, then

d(X̄−1)X(v) = d(X−1)X(v) for v ∈ TXS.

As a result of the discussion above the metric relation (2) asserted in the statement of Jenet’s theorem
above reduces to three first order partial differential equations:















































g11 =

(

∂u

∂x1

)2

+

(

∂v

∂x1

)2

+

(

∂w

∂x1

)2

g12 =
∂u

∂x1

∂u

∂x2
+

∂v

∂x1

∂v

∂x2
+
∂w

∂x1

∂w

∂x2

g22 =

(

∂u

∂x2

)2

+

(

∂v

∂x2

)2

+

(

∂w

∂x2

)2

.

It will be noted that these equations amount to E = g11, F = g12 and G = g22. Thus, if we can find some
r > 0 so that these equations hold for (real analytic functions) u, v, w on Br(0) ⊂ R2, then we have proved
Janet’s theorem.

3 Series expansions

Of course, we also have the normalization/point conditions

u(0) = 0, v(0) = 0, w(0) = 0,

∂u

∂x1
(0) = 1,

∂v

∂x1
(0) = 0 =

∂w

∂x1
(0),

and
∂v

∂x2
(0) > 0 =

∂w

∂x1
(0).
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These imply the (multivariable) series expansions

u = x1 +
∑

|β|≥2

Dβu(0)

β!
xβ ,

v =
∂v

∂x2
(0) x2 +

∑

|β|≥2

Dβv(0)

β!
xβ, and

w =
∑

|β|≥2

Dβw(0)

β!
xβ .

3.1 First order derivatives/coefficients

If we evaluate the PDEs at x = 0 we see the relations














































1 =

(

∂u

∂x1
(0)

)2

g12(0) =
∂u

∂x1
(0)

∂u

∂x2
(0)

g22(0) =

(

∂u

∂x2
(0)

)2

+

(

∂v

∂x2
(0)

)2

.

The first equation corresponds to a normalization of which we have already taken account so that the
second equation becomes

∂u

∂x2
(0) = g12(0).

Taking into account the normalization
∂v

∂x2
(0) > 0,

The third equation implies

∂v

∂x2
(0) =

√

g22(0)− [g12(0)]2 =
√

g11(0)g22(0)− [g12(0)]2 > 0.

Thus, all the values u(0) = 0, v(0) = 0, and w(0) = 0, which are the same as the zero order coefficients in
the series, are determined by normalization, and all the first order derivatives

∂u

∂x1
(0) = 1,

∂u

∂x2
(0) = g12(0)

∂v

∂x1
(0) = 0,

∂v

∂x2
(0) =

√

g22(0)− [g12(0)]2,

and
∂w

∂x1
(0) = 0,

∂w

∂x2
(0) = 0,

which are the same as the first order coefficients in the series are either determined by normalization or
directly by the PDEs evaluated at x = 0.
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3.2 Second order derivatives/coefficients

I’m going to change notation at this point in order to simplify the forms of the expressions and better keep
track of what is going on. The changes I am going to make have already been reference above. First, I will
index the unknown functions writing X = (u, v, w) = (u1, u2, u3). Second I will use multi-index notation
for partial derivatives so that

De1 =
∂

∂x1
and De2 =

∂

∂x2
.

With these changes the system of PDEs can be written as

3
∑

j=1

(De1uj)
2 = g11

3
∑

j=1

(De1uj)(D
e2uj) = g12

3
∑

j=1

(De2uj)
2 = g22.

We note that there are three second order partial derivatives of each of the functions uj for j = 1, 2, 3,
making nine second order coefficients in the three series for u = u1, v = u2 and w = u3. The second order
partial differential operators are

D2e1 =
∂2

∂x21
, De1+e2 =

∂2

∂x1∂x2
, and D2e2 =

∂2

∂x22
.

Applying De1 to the three equations, we obtain three quasilinear second order PDEs

3
∑

j=1

(De1uj)D
2e1uj =

1

2
De1g11

3
∑

j=1

[(De2uj)D
2e1uj + (De1uj)D

e1+e2uj] = De1g12

3
∑

j=1

(De2uj)D
e1+e2uj =

1

2
De1g22.

Similarly, differentiating with respect to x2 we get three quasilinear second order PDEs:

3
∑

j=1

(De1uj)D
e1+e2uj =

1

2
De2g11

3
∑

j=1

[(De2uj)D
e1+e2uj + (De1uj)D

2e2uj] = De2g12

3
∑

j=1

(De2uj)D
2e2uj =

1

2
De2g22.
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Evaluating these six equations at x = 0, we obtain six linear equations for the nine unknown values
Dei+ejuk(0), i, j = 1, 2, k = 1, 2, 3. Substituting the known first order coefficient values, this system of six
linear equations becomes

D2e1u1(0) =
1

2
De1g11(0)

g12(0)D
2e1u1(0) +

√

g22(0)− [g12(0)]2D
2e1u2(0) +De1+e2u1(0) = De1g12(0)

g12(0)D
e1+e2u1(0) +

√

g22(0)− [g12(0)]2D
e1+e2u2(0) =

1

2
De1g22(0)

De1+e2u1(0) =
1

2
De2g11(0)

g12(0)D
e1+e2u1(0) +

√

g22(0)− [g12(0)]2D
e1+e2u2(0) +D2e2u1(0) = De2g12(0)

g12(0)D
2e2u1(0) +

√

g22(0)− [g12(0)]2D
2e2u2(0) =

1

2
De2g22(0).

As I look at this system the first obvious (striking) observations are that the values of the two derivatives

D2e1u1(0) and De1+e2u1(0)

are completely determined by the first and fourth equations respectively and all three values

D2e1u3(0) = D2e1w(0), De1+e2u3(0) = De1+e2w(0), and D2e2u3(0) = D2e2w(0)

are entirely absent from the system of equations. Rewriting the system in terms of the four remaining
unknown (and appearing) second derivative values, we have

√

g22(0)− [g12(0)]2D
2e1u2(0) = De1g12(0)−

1

2
g12(0)D

e1g11(0)−
1

2
De2g11(0)

√

g22(0)− [g12(0)]2D
e1+e2u2(0) =

1

2
De1g22(0)−

1

2
g12(0)D

e2g11(0)

√

g22(0)− [g12(0)]2D
e1+e2u2(0) +D2e2u1(0) = De2g12(0)−

1

2
g12(0)D

e2g11(0)

g12(0)D
2e2u1(0) +

√

g22(0)− [g12(0)]2D
2e2u2(0) =

1

2
De2g22(0).

These remaining four equations determine the four unknowns

D2e1u2(0), De1+e2u2(0), D2e2u1(0), and D2e2u2(0)

uniquely. Thus, all second order coefficients for u1 = u and u2 = v are determined uniquely, while all three
second order coefficients for u3 = w are seemingly left entirely unprescribed.
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3.3 Flexibility (questions)

It is not surprising that some of the second order coefficients are left unprescribed or, as one might say, that
there is some flexibility in choosing these coefficients. Presumably, one can continue to obtain conditions
on the coefficients of all orders leading to convergent power series for u, v, and w giving Janet’s embedding.
I assume this will require a more organized treatment of taking higher order derivatives of the system of
PDE’s. Hopefully, the basic procedure of differentiating the system of PDEs and evaluating at x = 0 ∈ R2

to determine some of the coefficients is illustrated by the discussion above.
Were we to have one solution giving an embedding however, one heuristically expects there should be

many other such solutions corresponding to “flexing” the surface that has been obtained. If we assume for
a moment that a solution could be obtained by taking

D2e1w(0) = De1+e2w(0) = D2e2w(0) = 0, (8)

then perhaps we could say that a solution/embedding obtained for any other choice of these three constants
corresponds to a “flexing” of the original solution surface. Thus, we might imagine there is at least a three-
parameter family of flexings. It is likely that more dimensions are picked up at each level of determining
the coefficients leading to an infinite dimensional family of flexings.

Exercise 4 If it is assumed that there exists a solution surface satisfying (8), can you prove that there
is a solution/flexing corresponding to each nonzero choice for these three derivative values? Say you have
convergent series solutions for u, v, and w that solve the entire problem and the coefficients for w satisfy
(8). How would the coefficients need to be modified to give a solution with D2e1w(0) = 2 corresponding
to adding x21 to the value of w?

Exercise 5 Do you expect some surfaces to be more “flexible” than others? For example, should a convex
cap be less flexible than a negatively curved saddle? Can you quantify this?

Exercise 6 Can you imagine a quantitative measure of comparison among flexings of a given surface, so
that one surface might be considered more “relaxed” than another, and perhaps one could look for an
optimally relaxed embedding of a Riemannian manifold?

Exercise 7 Can you connect the discussion/construction above with the 1926 paper of Janet or with the
1927 paper of Cartan?

4 Follow-up

In the statement of Janet’s theorem my wording suggests that g ∈ Cω(BR(0)) amounts to the same thing
as the convergence of the multivariable power series to the value of the function

g(x) =
∑

β∈N2

Dβg(0)

β!
xβ

on BR(0). This is not quite correct.

Exercise 8 Consider the function f : R → (0,∞) by

f(x) =
4

4 + x2
.

Show that this function satisfies f ∈ Cω(R) but the radius of convergence at x = 0 is finite. Hint: To
understand how the radius of convergence is determined at each point, consider f : C → C by

f(z) =
4

4 + z2
.
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If we take the matrix assignment

(gij) =







16

(4 + |x|2)2
0

0
16

(4 + |x|2)2







for all x = (x, y) = (x1, x2) ∈ R
2, then we know a solution for the embedding problem described above,

namely X = (u, v, w) with

u(x, y) =
4x

4 + x2 + y2
, v(x, y) =

4y

4 + x2 + y2
, and w(x, y) =

2(x2 + y2)

4 + x2 + y2
(9)

corresponding to a kind of stereographic projection.

Exercise 9 Check that (9) gives a solution to Janet’s embedding problem resulting in a sphere

S = {x = (x1, x2, x3) ∈ R
3 : x21 + x22 + (x3 − 1)2 = 1, x3 < 2}

punctured at the north pole. What are the series coefficients (and the radius of convergence) in this case?
In particular, do the conditions (8) hold?

There are a couple other cases where an explicit solution of Janet’s theorem is known. One is for the
flat tensor (gij) = (δij) on the plane.

Exercise 10 Analyze the flexings of S = {(x1, x2, 0) : x = (x1, x2) ∈ R2} given by X(x) = (x1, x2, 0)
using power series.

Another explicit solution is given (along with explicit flexing) for a deformation of a portion of Enneper’s
minimial surface to a portion of the catenoid. I won’t write this down at the moment, but it involves the
Weierstrass representation theorem for minimal surfaces.

9


