
Chapter 16

Riemannian spaces (intrinsic
view)

Say we have a complete C∞ atlas A∞
∗ ⊂ A∗ on an n-dimensional topological

manifold M with an initial covering atlas A. My objective here is to first
introduce the Riemannian metric tensor. This requires the introduction
of several linear spaces. First of all, we will assume familiarity with the
filament space LPM associated with each P ∈M , and the differential maps

dpx : TxR
n → Lp(x)M and dξP : LPM → Tξ(P )R

n (16.1)

which are linear isomorphisms defined for each x ∈ U ⊂ R
n and P ∈ p(U) ⊂

M for each chart/chart function pair (U,p) ∈ A∞
∗ . Notice that in principle

there are a lot of these linear spaces and differential maps that help us trans-
late between tangent spaces at points x ∈ R

n and linear filament spaces at
points P ∈M . The differential maps in (16.1) will be inverses of each other
when P = p(x) or equivalently x = ξ(P ).

A next linear space to consider is T 2
P (M) consisting of all bilinear func-

tions b : LPM × LPM → R. These are called variously

1. the bilinear forms at a point P ,

2. the two forms at a point P , and

3. the two tensors at a point P .

All these terms are saying the same thing about a function b : LPM×LPM →
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R which is precisely (and nothing more than) the following:

b(c1v + c2w, z) = c1b(v, z) + c2b(w, z) and

b(z, c1v + c2w) = c1b(z, v) + c2b(z, w)

for v, w ∈ LPM and c1, c2 ∈ R.

Exercise 16.1. Show T 2
P (M) is a real linear space.

Definition 20. An element b ∈ T 2
P M is symmetric if

b(v, w) = b(w, v) for v, w ∈ LPM.

Definition 21. An element b ∈ T 2
P M is positive definite if

b(v, v) ≥ 0 for v ∈ LPM

with equality if and only if v = 0 ∈ LPM .

We next extend the notation T 2
P (M) in a somewhat unorthodox1 way.

Specifically, we let T 2(M) denote the collection of bilinear form fields,
that is the collection of all functions

b :M →
⋃

Q∈M

T
2
Q (M)

satisfying

(i) bP ∈ T 2
P (M) where bP denotes b(P ) ∈ T 2

P (M), and

(ii) The functions gij : U → R by

gij(x) = bp(x)(dpx(ei), dpx(ej))

satisfy gij ∈ C∞(U) whenever (U,p) ∈ A∞
∗ .

We can say that the second condition means we are restricting attention
to bilinear form fields which are chart C∞. Sometimes one says explicitly
that these are “chart smooth bilinear form fields” with the consideration of
form fields of lower regularity possible. Form fields with lower regularity are
certainly possible, but we are going to ignore them for now.

The set T 2(M) is referred to as the collection of

1and somewhat notationally irritating. . .
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1. bilinear form fields on M ,

2. two form fields on M , and

3. two tensors fields on M .

Sometimes the word “field” is left off, so an element b ∈ T 2(M) is called
simply a

1. bilinear form on M ,

2. a two form on M , or

3. a two tensor on M .

These last terms are often used to refer to the corresponding values bP :
LPM × LPM → R “at a point,” without bothering to say “at a point,”
so one has to sort of pay attention and figure out what is intended by the
context—or any way you can. For the time being, I will try to avoid getting
sloppy and retain the “at a point” and/or “field,” when I’m talking about
forms/tensors.

The set T 2(M) of two tensor fields is also a real linear space.

Exercise 16.2. Find the dimension of T 2(M).

However, T 2(M) is more than a linear space:

Exercise 16.3. Show that given b ∈ T 2(M), the function

(fb) :M →
⋃

Q∈M

T
2
Q (M) by (fb)P (v, w) = f(P )bP (v, w)

is a two tensor field on M for every f ∈ cC∞(M).

Exercise 16.4. Show the scaling by chart C∞ functions defined in Exer-
cise 16.3 satisfies the following

(a) (fg)b = f(gb) for f, g ∈ cC∞(M) and b ∈ T 2(M).

(b) 1b = b where 1 denotes the constant function on M with value 1 and
b ∈ T 2(M).

(c) (f + g)b = fb+ gb for f, g ∈ cC∞(M) and b ∈ T 2(M).
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(d) f(b1 + b2) = fb1 + fb2 for f ∈ cC∞(M) and b1, b2 ∈ T 2(M).

This makes T 2(M) a module over the ring cC∞(M).

With these definitions/spaces we are in a position to easily and cleanly
give one definition of a/the Riemannian metric tensor:

Definition 22. A Riemannian metric tensor on a C∞ manifold M is a
(smooth) symmetric, positive definite, two form field.

16.1 The metric in coordinates

Say we have a Riemannian metric tensor µ ∈ T 2(M). Then given a chart/chart
function (U,p) ∈ A∞

∗ , we can define a Riemannian metric tensor g on U (con-
sidered as a manifold) by

gx(v,w) = µp(x)(dpx(v), dpx(w)).

Note the following:

1. In this formulation g ∈ T 2(U).

2. gx ∈ T 2
x
(U).

3. gx : TxR
n × TxR

n → R.

It is natural to compare gx to the Euclidean inner product and also to express
gx in terms of the Euclidean inner product. Specifically, given

v =

n
∑

i=1

viei and w =

n
∑

j=1

wjej

in TxU , we have

gx(v,w) =

n
∑

i,j=1

viwjgx(ei, ej)

=
n

∑

i=1

〈zi,w〉

=

〈

n
∑

i=1

zi,w

〉
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where

zi = vi(gx(ei, e1), gx(ei, e2), . . . , gx(ei, en)).

At this point, let us be somewhat careful concerning our convention(s) for
Euclidean vectors. We have (largely for typographical convenience) presented
vectors v ∈ TxR

n as row vectors v = (v1, v2, . . . , vn). This presents certain
inconviences for the usual conventions involved with linear functions on Eu-
clidean vector spaces and the relation with matrix multiplication. Here, if
we wish to be careful, we should introduce the column vector

vT =











v1
v2
...
vn











which is the transpose of v. Then we can write

zTi = vi











gx(ei, e1)
gx(ei, e2)

...
gx(ei, en)











and

n
∑

i=1

zTi =











∑n
i=1 gx(ei, e1) vi

∑n
i=1 gx(ei, e2) vi

...
∑n

i=1 gx(ei, en) vi











.

Setting gij = gij(x) = gx(ei, en) for i, j = 1, 2, . . . , n and denoting the matrix
with gij in the i-th row and j-th column by (gij), we see this is the usual
notation for the matrix multiplication (gij)v

T . That is,

gx(v,w) = 〈[(gij)v
T ]T ,w〉 = w(gij)v

T .

On the other hand, we also have by the symmetry gij = gji, so it’s easy to
check

gx(v,w) = v(gij)w
T

as well.
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Exercise 16.5. Use the symmetry of the metric tensor µ to show gij = gji
where

gx(v,w) = µp(x)(dpx(v), dpx(w)) (16.2)

and

gij = gij(x) = gx(ei, ej)

for i, j = 1, 2, . . . , n.

Any bilinear form field b ∈ T 2(U) on an open subset U of Rn is deter-
mined by a matrix (gij) with

bx(v,w) = w(gij)v
T (16.3)

where

gij = gij(x) = bx(ei, ej)

for i, j = 1, 2, . . . , n as described above. We can do this because there are
“natural” coordinates determined on U and every tangent space TxU = TxR

n

by the standard unit basis vectors e1, e2, . . . , en. We need to be a little careful
in this case because there are (always) two Riemannian structures on U in
such a situation. One is the “usual” Riemannian structure on U in which
TxU = TxR

n is considered with the usual Euclidean inner product. The other
is where we nominally erase the Euclidean inner product (though still use
use it as a technical device as in (16.3)) and consider TxU as a linear space
with the inner product determined by bx. We can even go back to filaments
in LxU , though that is unnecessary.

In any case, when we use the clean definition of the Riemannian metric
tensor, then the function gx ∈ T 2(U) may be considered a coordinate ex-
pression of the metric tensor, and the corresponding matrix assignment (gij)
may also be thought of as a kind of coordinate expression for the metric
tensor. In particular, the functions gij ∈ C∞(U) given by

gij(x) = µp(x)(dpx(ei), dpx(ej))

are often called the coordinate coefficients of the metric tensor or more
commonly metric coefficients.
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16.1.1 Coordinate transformation formula

Once the metric is expressed in coordinates as described above, it is interest-
ing to derive a coordinate transformation formula for the metric coefficients.
Say (V,q) is an overlapping chart/chart function so that

ψ = η ◦ p∣
∣

ξ(W )

and φ = ψ−1 = ξ ◦ q∣
∣

η(W )

are the corresponding changes of coordinates where W = p(U) ∩ q(V ) as
usual and also with coordinate functions ξ = p−1 and η = q−1 as usual.
Then we have alternative metric coefficients

hij(x) = µq(x)(dqx(ei), dqx(vj)) (16.4)

with respect to (V,q), and there should be a formula for (hij) in terms of
(gij) and the change of variables obtained using the chain rule, that is a
coordinate transformation rule (for the metric).

Starting with (16.4) we should have

hij(x) = µq(x)(dpq(x) ◦ dφx(ei), dpq(x) ◦ dφx(ej)).

Exercise 16.6. Show that given overlapping chart/chart functions (U,p)
and (V,q) and v ∈ TxV = TxR

n there holds

dqx(v) = dpφ(x) ◦ dφx(v) = dpφ(x)([Dφ(x)v
T ]T )

where φ = ξ ◦ q∣
∣

η(W )

and W = p(U) ∩ q(V ) as usual.

According to (16.2) then

hij(x) = µp◦φ(x)(dpφ(x)([Dφ(x)e
T
i ]

T ), dpφ(x)([Dφ(x)e
T
j ]

T )

= gφ(x)([Dφ(x)e
T
i ]

T , [Dφ(x)eTj ]
T )

= [Dφ(x)eTj ]
T (gij(φ(x)) Dφ(x)e

T
i

= ejDφ(x)
T (gij(φ(x)) Dφ(x)e

T
i

= ej [Dφ(x)
T (gij(φ(x)) Dφ(x)] e

T
i .

Recalling our convention that ej = (0, 0, . . . , 1, . . . , 0) is a row vector with
1 in the j-th entry and zeros elsewhere, we see

ej [Dφ(x)
T (gij(φ(x)) Dφ(x)]
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is the j-th row of the matrix Dφ(x)T (gij(φ(x)) Dφ(x) and

ej [Dφ(x)
T (gij(φ(x)) Dφ(x)] e

T
i

is the row j and column i entry of the same matrix. Thus, technically we
have shown

(hij)
T = Dφ(x)T (gij(φ(x)) Dφ(x).

On the other hand, both the matrix (hij) and the matrixDφ(x)T (gij(φ(x))Dφ(x)
are symmetric, so we have also

(hij) = Dφ(x)T (gij(φ(x)) Dφ(x) (16.5)

which is the usual coordinate transformation formula for the metric coeffi-
cients under a change of coordinates.

16.1.2 An alternative formulation

The discussion of the previous section suggests an alternative to the “clean”
definition of the metric tensor.

Definition 23. A Riemannian metric tensor on a C∞ manifold M is a
matrix assignment

µ : A∞

∗ →
⋃

(V,q)∈A∞

∗

[GLn(R)]
V

satisfying

(i) µ(U,p) is a C∞ matrix valued function on U with values (gij(x)) ∈
Sym+

n (R) for each x ∈ U where Sym+
n (R) denotes the symmetric pos-

itive definite matrices in GLn(R).

(ii) Given overlapping chart/chart functions pairs (U,p) and (V,q) with
the usual notation and µ(V,q) having values (hij(x) for x ∈ U , the
coordinate transformation formula

(hij) = Dφ(x)T (gij(φ(x)) Dφ(x)

always holds (for every (U,p) and (V,q) and every x ∈ V ).
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The requirement that µ(U,p) = (gij) is C
∞ in condition (i) simply means

gij ∈ C∞(U). Notice also that one can write

µ : A∞
∗ →

⋃

(V,q)∈A∞

∗

[Sym+
n (R)]

V

with
µ(U,p) ∈ [Sym+

n (R)]
U .

Hopefully, it is clear why this is a less “clean” definition. Hopefully it is also
more or less clear why it is an equivalent definition.

16.2 Length in M and intrinsic derivatives

Given a C∞ Riemannian manifold, i.e., a C∞ manifold M equipped with a
Riemannian metric tensor µ as described above, we can define the length of
paths. Specifically, given α ∈ cP∞(M) with α : [a, b] → M with a, b ∈ R,
it is possible to find a partition t0 = a < t1 < t2 < · · · < tk = b for
which there exist charts Uℓ from chart/chart function pairs (Uℓ,pℓ) ∈ A∞

∗

for ℓ = 0, 1, 2, . . . , k − 1 such that

α([tℓ, tℓ+1]) ⊂ Uℓ for ℓ = 0, 1, 2, . . . , k − 1.

We then define

length
M

[α] =

k−1
∑

ℓ=0

∫ tℓ+1

tℓ

[µ(d(pℓ)ξ◦α(t)((ξℓ ◦ α)
′(t)), d(pℓ)ξ◦α(t)((ξℓ ◦ α)

′(t)))]1/2 dt

=

k−1
∑

ℓ=0

∫ tℓ+1

tℓ

〈(gij)(ξℓ ◦ α)
′(t), (ξℓ ◦ α)

′(t)〉1/2 dt

where again we have lapsed into the convenient convention for matrix mul-
tiplication in which (gij)(ξℓ ◦ α)

′(t) denotes

[(gij)(ξℓ ◦ α)
′(t)T ]T .

It should be shown that this definition is independent of the partition and
the particular charts used.

Near a single point only one chart is required, and this leads to the next
“big” question:
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What is the intrinsic derivative of a function f ∈ cC∞(M)?

In order to answer this question, one must return to elementary calculus.
In answering this question, one is taking the first step toward adapting the
concepts of elementary calculus to the Riemannian manifold M .

You may wish to consider the special case when the dimension of n is
n = 1. Then we/you should be interested in the value of f ′(P ) for f :M → R

with f ∈ cC∞(M). You can certainly take a chart/chart function pair (U,p),
and in this case U can be taken as an open interval (a, b) with some t ∈ (a, b)
for which p(t) = P . The “coordinate expression” for f is then f ◦p, and you
can certainly consider the value

(f ◦ p)′(t).

This is not a good value for the intrinsic derivative of f ′(P ) for f : M →
R however. For one thing notice that (f ◦ p)′(t) will depend on which
chart/chart function you have chosen. The value of the intrinsic deriva-
tive f ′(P ) should depend, furthermore, on the metric (and (f ◦ p)′(t) while
it depends on the chart does not depend on the metric).

16.3 Orthodoxy

The more orthodox way to introduce T 2(M) is in terms of the module X (M)
of (smooth) filament fields on M . You may recall that X (M) is a module
over cC∞(M), and therefore, one can consider bilinear forms (or perhaps
more properly bimodular forms)

B : X (M)× X (M) → cC∞(M).

Usually T 2(M) denotes the functions B for which

B(fv + gw, z) = fB(v, z) + gB(w, z) and

B(z, fv + gw) = fB(z, v) + gB(z, w)

where f, g ∈ cC∞(M) and v, w, z ∈ X (M). In this case, one can say B is a
smooth tensor field if the function f :M → R given by

f(P ) = B(v, w)P

satisfies f ∈ cC∞(M) for every pair of smooth filament fields (v, w) ∈
X (M) × X (M). There is of course some checking to be done to show
this is an equivalent formulation for T 2(M).
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Exercise 16.7. Using the alternative formulation for bimodular tensor fields
T 2(M), define what is meant by a two tensor at a point determined by
B ∈ T 2(M).


