Chapter 3

Starting with examples

[ am now going to introduce several examples of Riemannian manifolds and
attempt to give (or at least discuss) most of the details of a formal definition.
I will assume here that the the real numbers R and the Euclidean spaces R™
for n € N = {1,2,...} consisting of points x = (x1,zs,...,z,) with each
entry x; a real number for j = 1,2,...,n are familiar. If you are perceptive
enough to know these are actually very mysterious spaces in some ways, do
not worry about that.

3.1 Preliminary calculations
My first example(s) involve the case n = 2 and the particular set
B1(0) = {x = (11,75) € R? : 2] + 15 < 1}

which is the unit ball in R2. So first of all, this set has its usual identity"
as a (coordinatized Euclidean) subset of R? and we're assuming here you
know everything (or at least many things) about that set. We will feel free
to use any aspects of the Euclidean structure on this set B;(0) up to and
including the calculus of functions with domain the unit ball, though this
topic in particular is addressed in some detail elsewhere in these notes. I will
simply pause to say that this Euclidean structure we are essentially taking
for granted is very crucial to the concept of a Riemannian manifold.

'T'm using the term “identity” here in an informal sense, like Superman has his identity
as Clark Kent, rather than in any technical sense from algebra.
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The idea of our first real example of a Riemannian manifold is that it
is, as a set, the same as B;(0). I will, however, call that set by a different
name, and my suggestion is that the new set or structure I introduce bears
an identity quite distinct from that of the Euclidean ball. The new name is
B. Perhaps I could pick a more distinctive name like M or M?, but I think
B will do.

B1(0) B

Figure 3.1: The Euclidean unit disk (left) and a Riemann surface B (right)

In what follows, making the distinction between B and the Euclidean
ball B;(0) is both crucial and difficult. Before I attempt that crucial and
difficult task, I am simply going to suggest some calculations without any
notational or conceptual distinction. Then I will try to tease out the identity
of B in stages from there. Each of the calculations involves the assignment
of a certain 2 X 2 matrix to each x € B;(0), namely

LH 0
@) Y . (3.1)
0 @ry

I will first describe the suggested calculations in general terms and then give
some exercises suggesting specific instances. For the general description, let
a,b € R be given with a < b. Given a path? a € C'([a,b] — B;(0)), recall

2Paths are discussed in more detail elsewhere in these notes, but we are assuming some
familiarity here. In particular, a path o € C'([a,b] — Bi1(0)) as considered here has
associated with it two real valued functions a = (a1, az) with o; € Cta,b], j = 1,2



3.1. PRELIMINARY CALCULATIONS 49

that the (Euclidean) length is given by

length|[o / |/ (t)] dt

=/\Awmw@MMt
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Both here and in (3.1) the Euclidean norm and innner product (or dot prod-
uct) are used so that

|X\2 (X, X)gz = ZL’l + x2

For the same path one can calculate the Riemannian length. As mentioned
above the calculation involves the matrix assignment given in (3.1). For
convenience, denote the entries in the matrix by g;; = ¢;;(x) for ¢,7 = 1,2 so
we can also write the matrix as

o= ) w0 1) 62

Then the Riemannian length is given by

lengthgla / \/ (g (0(8))) &/ (1), o/(t) Vs dt.

Here the usual conventions for matrix multiplication and the Euclidean inner
product in R? are used so that

st o) = (42 ) (o)

_( 9u0h + gnay
G1204 + g0ty

(¥, X)r2 = Y121 + Y22.

and

Exercise 3.1.1 Find the Euclidean length length[a] and Riemannian length
lengthg[a] of the path « : [0,a] — B1(0) by a(t) = t(cosf,sin @) where § € R
and a > 0.
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Exercise 3.1.2 Find the Euclidean length length[a] and Riemannian length
lengthg[a] of the path « : [0,0] — B1(0) by a(t) = a(cost,sint) where § € R
and a > 0.

Exercise 3.1.3 For each x, ap and 0y with x < 0 < ag < 1and 0 < 6y < 7/2
find the Euclidean length length[o] and Riemannian length lengthyz|a] of the
path « : [0,0] — B1(0) by a(t) = (x,0) + a(cost, sint) where

a= \/(ao cos By — x)% + a2 sin” b,

0 — tan_l ( Qg sin 90 )

apcosty — x

and

as illustrated in Figure 3.2.

B1(0) B

Figure 3.2: The Euclidean unit disk (left) and a Riemann surface B (right)

Exercise 3.1.4 It is not clear that the notion of the radius of a Riemannian
manifold makes sense in general, but I'm pretty sure it makes sense to talk
about the radius of the Riemannian manifold B. What is the radius of B?
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For the second calculation, one is given two paths
(NS C’l([al, bl] — Bl(O)) and ﬁ € Cl([a,g, bg] — Bl(O))

satisfying a(t1) = S(t2) for some ¢; with a; < t; < b; for j = 1,2. In this
case, the paths are said to meet at the (Euclidean) angle 6 € [0, 7] if

cosf = (o (t1), B'(t2) )re
/()] |8 ()]

Of course, this does not quite always serve as a definition for the angle at
which the paths meet because the value on the right in (3.3) may not be a
well-defined real number. Specifically, if o/(t;) = 0 or '(t3) = 0, then there
is a problem. If we rule out these possibilities by requiring |a/(¢1)| |5’ (t2)] > 0,
then there is no problem.

(3.3)

Exercise 3.1.5 Let cos™ : [—1,1] — [0, 7] denote the principal arccosine

function. Plot cos™! and explain why this function may be applied to both
sides of (3.3).

Under the assumptions described above under which the Euclidean angle
between paths o and [ is well-defined, the Riemannian angle at which the
paths a and  meet is given by

1 ((gi5) &/ (t1), B'(t2))re
0p = cos . 3.4
° (\/<(9ij) o' (t1), o/ (t))re ((gi5) B'(t2), 5’(t2)>R2> o

Exercise 3.1.6 Assuming two paths

a € Cllar,b] = Bi(0))  and B € C'([az, bs] — Bi(0))

meet at the Euclidean angle 6 as described above, calculate the Riemannian
angle Az at which the two paths meet.

The exercise above should have been pretty anticlimactic. Comparison of
(3.4) and (3.3) in general might suggest some interesting questions.
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Exercise 3.1.7 A general inner product on a real vector space V is a
function (-, - )y : V x V — R satisfying the following conditions

(i) (v,w)y = (v,w)y for v,w € V.
(ii) (v,v)y >0 for all v € V' with equality if and only if v =0 € V.
(iii) (av + bw, 2)y = a(v, 2)y + b{w, )y for all a,b € R and v,w,z € V.
If a function ( - , - ) : R? x R? — R? is defined by

(v,w) = ((gi) v, W )2,

where (g;;) is a 2 x 2 matrix with real entries, then show ( -, - ) defines
an abstract inner product on R? if and only if the following conditions are
satisfied by the matrix (g;;):

(i) glj - gjl fOI' 7’7.] = 1727
(ii) g11,922 > 0, and
(iii) g11922 — g3, > 0.

Exercise 3.1.8 A general bilinear form on a real vector space V is a
function B : V x V — R satisfying the following

(i) B(av+bw,z) =aB(v,z) + bB(w, z) for all a,b € R and v,w,z € V.
(ii) B(z,av 4+ bw) = aB(z,v) + bB(z,w) for all a,b € R and v,w,z € V.

(a) Show every general bilinear form B : R” x R"” — R determines a unique
matrix (a;;) € R™" for which

B(v,w) = ((a;;) v, W)gn for all v,w € R". (3.5)
(b) Show conversely that given any real matrix (a;;) € R™*" the formula
(3.5) determines a unique general bilinear form B : R" x R" — R.
The matrix (a;;) is called the matrix of the bilinear form.

A general bilinear form B : V x V — R is said to be symmetric if
B(v,w) = B(w,v) for all v,w € V.

Exercise 3.1.9 A symmetric bilinear form B : V x V — R for which
B(v,w) =0 for all w € V implies v = 0 is said to be nondegenerate. Show
the matrix of a nondegenerate (symmetric) bilinear form B : R" x R" — R
is invertible.
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The third calculation is most easily described in terms of a cyclic path.
To get started we can assume a cyclic path is parameterized for some ¢ > 0
by a function o € C*([a — €,b + €] — B;(0)) satisfying the following:

a(ty) # a(ts) for a<ty <ty <b,
alt)=alb—a+t) for a—e<t<a,
alt) =ala+t—0) for b<t<b+e,
and |o/(t)| # 0. In such a case, the path itself is
I'={a(t) € B1(0) : t € [a,b]}.
If A C B;(0) is a region with 0A = I', then the (Euclidean) area of A is

defined to be
area(A) = / 1.
A

The meaning of this integral is assumed to be familiar here but is also dis-
cussed in some detail elsewhere in these notes. The Riemannian area of
the region A enclosed by I' is given by

areaB(A) = / \/ 911922 — 9%2-
A

Exercise 3.1.10 For each a > 0 calculate the Euclidean area area(A) and
the Riemannian area areag(A) of the region A enclosed by « : [0, 27] — B1(0)
by a(t) = a(cost,sint).

Exercise 3.1.11 Notice I only gave a definition for Riemannian area for
regions enclosed by C! (smooth) paths. Of course, it is not too much to ask
to consider the Euclidean and Riemannian areas of the following regions:

(a) R = {X = (1’1,1'2) Ta < < ag,bl < Ty < bg} C Bl(O)
(b) S={x=(z1,12) : 0 <1 < a,ze <muxy,2?+ 23 <r’} C B;(0).
(c) T={x=(21,29) : (x—x;-n;)p2<0,7=1,2,3} CB.

In these instances a; and b;, are appropriate real numbers for j = 1,2, the
numbers a, r and m are positive real numbers, and x; and n; are appropriate
elements of R? for j = 1,2,3. Give an appropriate definition of piecewise
C' cyclic paths in B;(0) which allows the regions above to be considered
as regions bounded by cyclic paths and regions of integration in particular.
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Exercise 3.1.12 Find formulas for the Euclidean areas and Riemannian ar-
eas of some of the regions mentioned in (a), (b), and/or (c) of Exercise 3.1.11
above.

Exercise 3.1.13 If the Riemannian length of the radial segment indicated
in Figure 3.2 is b = 7/4, what is the Euclidean length a of the corresponding
segment {t(cosf,sinf) € B1(0): 0 <t <a}?

Exercise 3.1.14 For some fixed ay and 6y in Problem 3.1.3, plot the value
of lengthz[a] as a function of . Do you notice anything interesting?



