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Exercise 3.1.12 Find formulas for the Euclidean areas and Riemannian ar-
eas of some of the regions mentioned in (a), (b), and/or (c) of Exercise 3.1.11
above.

Exercise 3.1.13 If the Riemannian length of the radial segment indicated
in Figure 3.2 is b = π/4, what is the Euclidean length a of the corresponding
segment {t(cos θ, sin θ) ∈ B1(0) : 0 < t < a}?

Exercise 3.1.14 For some fixed a0 and θ0 in Problem 3.1.3, plot the value
of lengthB[α] as a function of x. Do you notice anything interesting?

3.2 Example C

As a point set B is identical to B1(0) ⊂ R2. I’ve suggested that in order to
think about and understand the identity of B as a Riemannian manifold, it
is useful to “leave all the structure of B1(0) ⊂ R2 behind.” After reflection
on this suggestion, it strikes me that B is such a nice point set that it may be
quite difficult to ignore the structure from B1(0) when contemplating B. In
anticipation of this problem, I’ve devised an alternative example designed to
illustrate (to some extent) just how bad a Riemannian manifold’s point set3

can be. The second example is called C, and C is a subset of R3. In order
to describe C, I’m going to use two familiar subsets of R and two familiar
“quantities” associated with points in R2. The relevant subsets of R are the
rational numbers

Q =

{

p

q
: q ∈ N = {1, 2, 3, . . . , } and p ∈ Z = {0,±1,±2,±3, . . .}

}

and the irrational numbers R\Q. The quantities associated with a point
x = (x1, x2) ∈ R2 are the polar radius

r =
√

x2

1
+ x2

2

3Keep in mind that the point set by itself is not the Riemannian manifold in its entirety,
but the Riemannian manifold is the point set along with the “structure” I am trying to
describe and hopefully you are trying to understand. In principle, however, the point set
has an obvious importance in the definition, and I view assertions like “. . . in the context of
the preceeding definitions, one cannot distinguish between two homeomorphic manifolds
nor between two diffeomorphic differentiable manifolds” which appears on page 3 in [1]
as somewhat counterproductive, at least for those who are trying to understand those
definitions. Hopefully, many differences between B and C are fairly obvious, though it is
equally clear one does not discern those differences by looking at the charts alone.
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and the argument θ ∈ [0, 2π) for which x = r(cos θ, sin θ). There is one
more (hopefully familiar) concept I need, namely that of a characteristic
function: Given any set S and any subset A ⊂ S, the characteristic
function with support on A is the function χA : S → R by

χA(p) =

{

1, p ∈ A
0, p ∈ S\A.

In terms of these quantities, I’m going to define a function h : R2 → R by

h(x1, x2) =







χR\Q(r)− χQ(r), θ/π ∈ Q

χQ(r)− χR\Q(r), θ/π ∈ R\Q.
(3.6)

Then

C =

{(

x1, x2, h(x1, x2)
√

x2

1
+ x2

2

)

: x = (x1, x2) ∈ B1(0)

}

. (3.7)

The important points are the following:

1. C is in one-to-one correspondence with B1(0).

2. Riemannian lengths (lengthC), Riemannian angles (θC), and Rieman-
nian areas (areaC) can be computed using the same formulas used to
find lengthB, θB, and areaB.

3. C is an example of a Riemannian manifold just as much as B.

Here are some exercises to walk you through some of the details of C. The
first question you might ask is: Is C well-defined?

Exercise 3.2.1 The quantity r =
√

x2

1
+ x2

2
, i.e., the polar radius, clearly

corresponds to a well-defined function r : R2 → R. (I’ve written down the
formula for this function.) The polar angle or argument θ is somewhat more
complicated.

(a) Find/write down a formula for the argument θ : R2 → R.

(b) Make an illustration of the graph

{(

x1, x2,
√

x2

1
+ x2

2

)

: x = (x1, x2) ∈ B1(0)

}

.
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(c) Make an illustration of the graph

{(x1, x2, θ(x1, x2)) : x = (x1, x2) ∈ B1(0)} .

Exercise 3.2.2 One consequence of the solution of Exercise 3.2.1 should
be that the function h defined in (3.6) and the point set C defined in (3.7)
are well-defined. In particular, there exists a well-defined chart function4

p : B1(0) → C given by

p(x1, x2) = (x1, x2, h(x1, x2) r(x1, x2)).

Find/write down a formula for the inverse ξ : C → B1(0) of p. This function
should have two coordinate functions ξ = (ξ1, ξ2) with ξj : C → R for j = 1, 2.
It’s probably easiest to write down formulas in the form ξj = ξj(x1, x2, x3)
for j = 1, 2 where (x1, x2, x3) ∈ C.

Exercise 3.2.3 Draw an illustration of the graph

C =

{(

x1, x2, h(x1, x2)
√

x2

1
+ x2

2

)

: x = (x1, x2) ∈ B1(0)

}

.

Terminology of charts

I think the idea Riemann (and Gauss) had in mind is best illustrated by
imagining you are looking at a paper map. The next chapter, Chapter 4,
is intended to help you put your mind in this mode of thinking. The entity
corresponding to the paper map in the discussion of this chapter so far is the
Euclidean disk B1(0). Generally, we can refer to the entity (or set) playing
this role as the chart. So a chart for us is an open subset of (coordinatized)
Euclidean space Rn, in this case B1(0) ⊂ R2. As you look at the paper
map/chart, you have in mind some kind of identification with some other
“world,” like the surface of the earth perhaps, and the functions

p : B1(0) → B and p : B1(0) → C

play this role. I wish to call functions like these chart functions.

4See below for further discussion of this terminology.
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Definition 2 (chart and chart function5) Given a Riemannian manifold M
(whatever that is—some point set with a “structure”) an open subset U of
Rn in which geometric calculation can be carried out in reference to M , i.e.,
in which geometry in M can be “done,” is called a chart. This set should be
compared to a paper map which is used to, for example, determine distances
in some “world” M in which the geometry may not be seen directly.

Associated with each chart, is a chart function p : U → M . If there is
only one chart and only one chart function,6 then for most practical purposes,
the roles played by both the chart function and the point setM are secondary.
The only property required of p : U → M is that p is a bijection.

Of course, the matrix assignment (gij) on U is of central importance. You
need to use (gij) in order to understand or “do” geometry in M . We will
discuss that more later.

Also, generally a chart function is not required to be a bijection, but a
chart function is always required to be a bijection onto the image

p(U) = {p(x) : x ∈ U} ⊂ M.

That is, p : U → M is always required to be an injection. In cases where p
is not surjective, i.e., when p(U) is a proper subset of M , then there must be
other charts and chart functions around in order to navigate to all points in
the world M . This almost goes without saying. The crucial consideration of
situations in which there is more than one chart may be found in Section 3.4
below. For now, we can make a distinction among these two different kinds
of charts and chart functions:

A chart U with a bijective chart function p : U → M is called a global
chart/global chart function pair. A chart U with a chart function p :
U → M for which p(U) 6= M is called a local chart/local chart function
pair.

5More properly, this should probably be called an “informal definition” or a “pre-
liminary definition,” because it starts with the prerequisite assumption of a Riemannian
manifold which we are in the process of trying to define. On the other hand, if one under-
stands the definition of a Riemannian manifold, then this is a perfectly fine definition. It
is perhaps just a little premature in a technical sense.

6Note carefully that this is the case in both example B and example C where U = B1(0)
and the single chart function p : B1(0) → M is a bijection for M = B or C.
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The set B or the set C, which we wish to think of as the manifold M , is
(when you are looking at the map/chart B1(0)) not seen directly. The set
M which “is” the manifold may be radically different as a point set from the
way it is represented on the chart as illustrated by the Riemannian manifold
C. In order to understand the manifold, you have primary recourse to the
chart itself, and both the manifold and the chart function play a secondary
role with respect to the Riemannian geometry, though this state of affairs
may be somewhat dependent on what you find when you actually “go out
into the world” and consider the manifold as a point set. It may be that
you find M resembles the information contained in the chart so closely, it is
difficult to tell M from U . This is the case with the Riemannian manifold B
and the chart B1(0). It may also be the case that the point set M is easy to
tell apart from the chart U as in the case of C and B1(0) or in the case of a
paper map of Atlanta and a drive from Skiles to Stone Mountain.

In summary, Riemannian geometry is not a “visible” geometry. Though
the angles are still “seen” in example B (and example C) above, the notions of
“length” (Riemannian length) and “area” (Riemannian area) are not directly
seen, and this is the point. Very specifically, the observed Euclidean distance
from the point P0 = p(0) ∈ B corresponding to the origin 0 = (0, 0) ∈ B1(0)
to the point x ∈ B1(0) is |x| =

√

x2

1
+ x2

2
, and this is in general different

from

lengthB[α] =

∫ |x|

0

4

4 + t2
dt

which is the Riemannian distance7 from P0 ∈ B to P = p(x) ∈ B. This is
a length which is not “seen” and reminds me of something Spengler wrote
about classical (western) mathematics:

7As Weierstrass might point out, it is also far from clear that this value is actually the
Riemannian length of the path of shortest Riemannian length from P0 to P .
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Every product of the waking consciousness of the Classical world,
then, is elevated to the rank of actuality by way of sculptural
definition. That which cannot be drawn is not “number.”

—Oswald Spengler

In contrast what one has in Riemannian geometry requires a strikingly dif-
ferent perspective:

Numbers are the images of the perfectly desensualized under-
standing, of pure thought, and contain their abstract validity
within themselves.

—Oswald Spengler

We have already given three examples, though you may not have noticed
the third: The Euclidean ball B1(0) is also a Riemannian manifold.

Exercise 3.2.4 What is the matrix assignment for each point in the Eu-
clidean unit ball B1(0) when considered as a Riemannian manifold? (If you
do not know immediately, guess the simplest thing you can think of.) Go
back and apply the definitions of Riemannian length, angle, and area to the
Riemannian manifold B1(0). Explain carefully what you get in each case.

Exercise 3.2.5 Obviously regularity is not of primary interest in my appli-
cation of the functions r and θ in constructing the example C. However, these
are interesting functions in general, and regularity is interetsting in general.

(a) Show the polar radius satisfies r ∈ C0(R2) ∩ C∞(R2\{0}).

(b) Show r /∈ C1(R2).

(c) Show r ∈ Lip(R2)

(d) Show θ ∈ C∞(U) where

U = B1(0)\{(x, 0) : 0 ≤ x ≤ 1}.

(e) Show θ has no continuous extension to

U = {x = (x1, x2) ∈ R2 : x2

1
+ x2

2
≤ 1}

where U is given in part (d) above.
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(f) Let ǫ > 0 and

V = {x = (x1, x2) ∈ B1(0)\(Bǫ(0) ∪ {s(cos t, sin t) : s ≥ 0, |t| ≤ ǫ}).

Draw an illustration of V ⊂ R2.

(g) Let V be the open set defined in part (f) above. Show θ ∈ C∞(V ) in
the sense that for each partial derivative Dβθ : V → R there is some
continuous function g ∈ C0(V ) for which

g∣
∣

V

= Dβθ.

(h) With V as in part (f) above, show θ ∈ C∞(V ) in the much stronger
sense that θ ∈ C∞(V ) and there is some open set W ⊂ R2 with V ⊂ W
and a function g ∈ C∞(W ) such that

g∣
∣

V

= θ.

(i) Challenge: With V as in parts (f), (g), and (h) above, show there exists
a function g ∈ C∞(R2) for which

g∣
∣

V

= θ.

Here is another exercise which is a follow-up to the consideration of gen-
eral bilinear forms as considered in Exercises 3.1.8 and 3.1.9. This is also a
little outside the most direct narrative leading to the definition of a Rieman-
nian manifold, but it may be interesting, and it will undoubtedly come up
in the discussion at some point.

Exercise 3.2.6 Given a general bilinear form B : V × V → R as in Exer-
cise 3.1.8, the associated quadratic form is the function Q : V → R by
Q(v) = B(v, v).

(a) Show B is symmetric if and only if the polarization identity

B(v, w) =
1

2
[Q(v + w)−Q(v)−Q(w)]

holds.

(b) Show that if the matrix of a symmetric bilinear form B : Rn × Rn → R

is invertible and B(v,w) = 0 for all w ∈ Rn, then v = 0.


