COUNTEREXAMPLES FOR LOCAL ISOMETRIC EMBEDDING

NIKOLAI NADIRASHVILI AND YU YUAN

1. Introduction

In this paper, we construct metrics on 2-manifold which cannot be even locally isometrically embedded in the Euclidean space \mathbb{R}^{3}. By isometric embedding of $\left(M^{2}, g\right)$ with $g=\sum_{i, j=1}^{2} g_{i j} d x_{i} d x_{j}$ in \mathbb{R}^{3}, we mean there exists a surface in \mathbb{R}^{3} with the induced metric equaling g, namely, the three coordinate functions ($\left.X\left(x_{1}, x_{2}\right), Y\left(x_{1}, x_{2}\right), Z\left(x_{1}, x_{2}\right)\right)$ defined on M^{2} satisfy

$$
d X^{2}+d Y^{2}+d Z^{2}=\sum_{i, j=1}^{2} g_{i j} d x_{i} d x_{j} .
$$

To be precise, we state the results in the following
Theorem 1.1. There exists a smooth metric g in $B_{1} \subset \mathbb{R}^{2}$ with Gaussian curvature $K_{g} \leq 0$ such that there is no C^{3} isometric embedding of $\left(B_{r}(0), g\right)$ in \mathbb{R}^{3} for any $r>0$.

Theorem 1.2. There exists a smooth metric g in $B_{1} \subset \mathbb{R}^{2}$ with Gaussian curvature $K_{g}(0)=0$ and $K_{g}(x)<0$ for $x \neq 0$ such that there is no $C^{3, \alpha}$ isometric embedding of $\left(B_{r}(0), g\right)$ in \mathbb{R}^{3} for any $r>0$ and $\alpha>0$.

Pogorelov [P2] constructed a simple $C^{2,1}$ metric g in $B_{1} \subset \mathbb{R}^{2}$ with signchanging Gaussian curvature such that $\left(B_{r}, g\right)$ cannot be realized as a C^{2} surface in \mathbb{R}^{3} for any $r>0$. Recently the first author $[\mathrm{N}]$ gave a C^{∞} metric g on B_{1} with no smooth isometric embedding of $\left(B_{r}, g\right)$ in \mathbb{R}^{3} for any $r>0$. The sign of the Gaussian curvature K_{g} also changes.

On the positive side, when the sign of K_{g} for any smooth metric g does not change, the local smooth isometric embedding was settled by Pogorelov [P1], Nirenberg [Ni], and Hartman and Winter [HW2]. When $K_{g} \geq 0$ for the C^{k} metric with $k \geq 10$, there is a C^{k-6} isometric embedding of $\left(B_{r_{k}}, g\right)$ in \mathbb{R}^{3}, this was done by Lin [L1]. When K_{g} changes sign cleanly, namely, $K_{g}(0)=0, \nabla g(0) \neq 0$ for a C^{k} metric g, Lin [L2] showed that there exists a C^{k-3} isometric embedding in \mathbb{R}^{3} for $\left(B_{r_{k}}, g\right)$ with $k \geq 6$. When $K_{g} \leq 0$ and $\nabla^{2} K_{g}(0) \neq 0$ for the smooth metric g, there is a local smooth isometric

[^0]embedding of g in \mathbb{R}^{3}, see Iwasaki $[\mathrm{I}]$. When $K_{g}=-x_{1}^{2 m} \widetilde{K}(x)$ with $\widetilde{K}(0)>0$ for the smooth metric g, the same local isometric embedding also holds, see Hong [H]. Recently, Han, Hong, and Lin [HHL] showed that the local isometric embedding exists under the assumption $K_{g} \leq 0$ with a certain non-degeneracy of the gradient of K_{g}, or $K_{g} \leq 0$ with finite order vanishing.

If one allows higher dimensional ambient space, say \mathbb{R}^{4}, Poznyak [Po1] proved that any smooth metric g on M^{2} can be locally smoothly isometrically embedded in \mathbb{R}^{4}. In fact, any C^{k} metric on n-manifold M^{n} has a C^{k} global isometric embedding in $\mathbb{R}^{N_{n}}$ with N_{n} large for $3 \leq k \leq \infty$. This is the work by Nash [Na 2].

If we start with an analytic metric g on M^{n}, one always has a local analytic isometric embedding of $\left(M^{n}, g\right)$ in $\mathbb{R}^{n(n+1) / 2}$. This was proved by Janet [J], Cartan [C] very earlier on, and initiated by Schlaefli in 1873 !

Lastly, any C^{0} metric g on a compact n-manifold M^{n} which can be differentially embedded in \mathbb{R}^{n+1} has a C^{1} isometric embedding in \mathbb{R}^{n+1}, see Nash [Na 1$]$ and Kuiper [K].

For general description and further results on isometric embedding problem, we refer to $[\mathrm{GR}],[\mathrm{P} 2]$ and $[\mathrm{Y}]$.

The heuristic idea of the construction is to arrange the metric g in B_{1} so that the second fundamental form of any isometric embedded surface in \mathbb{R}^{3}, IIoi vanishes at one point, where $i:\left(B_{1}, g\right) \rightarrow \mathbb{R}^{3}$ is the isometric embedding which is supposed to exist. Further we force IIoi to vanish along the boundary of a small domain Ω near the center of B_{1}, where the Gaussian curvature $K_{g}<0$ (in Ω). By the maximal principle, one cannot have a saddle surface with vanishing second fundamental form along the boundary. So (Ω, g) cannot be realized in \mathbb{R}^{3}. We repeat the construction near the center of B_{1} at every scale so that $\left(B_{1}, g\right)$ is not isometrically embeddable in \mathbb{R}^{3} near the center.

The way to force IIoi to vanish at one point, say o, is the following. We modify the flat metric $g_{0}=d x^{2}$ in \mathbb{R}^{2} only over certain region Λ slightly away from the center o to a new one g so that, for a segment $A_{1} A_{2}$ with A_{1}, $A_{2} \in \partial \Lambda$, the length of $A_{1} A_{2}$ under g is shorter than the one of the geodesic $A_{1} A_{2}$ under the flat g_{0}, and $K_{g} \leq 0$ in a subregion Λ_{s} containing $A_{1} A_{2}$. Because of $\operatorname{detII}(i(0))=0$, we only need to deal with the other principle curvature. Suppose the second one $\kappa_{2} \neq 0$, say $\kappa_{2}<0$. We show that there is a flat concave cylinder Σ near $i\left(B_{1}\right)$, which is isometric to (B_{1}, g_{0}) provided the embedding i is C^{3} (This assertion for C^{2} embedding case remains unclear to us). Now $i\left(A_{1} A_{2}\right)$ supported on the saddle surface $i\left(\Lambda_{s}\right)$ can only stay above the concave cylinder Σ. Then the length of $i\left(A_{1} A_{2}\right)$ is longer than the one of the projection of $i\left(A_{1} A_{2}\right)$ down to the flat Σ, call it $P \circ i\left(A_{1} A_{2}\right)$. We know the length of $P \circ i\left(A_{1} A_{2}\right)$ under g_{0} is equal to or longer than that of the geodesic $A_{1} A_{2}$ under g_{0}. But we start from $A_{1} A_{2}$ with shorter length under g than under g_{0}. This contradiction shows that IIoi (0) vanishes.

Inevitably, K_{g} is positive somewhere in Λ if Λ is surrounded by flat region with metric $d x^{2}$. We add "tails" extending to the boundary ∂B_{1} for the
modifying regions Λ, modify the metric on the tails, then we have the g with $K_{g} \leq 0$ in B_{1}. It turns out that we cannot work with a segment in the construction, we go with a minimal tree connecting three points on $\partial \Lambda$ for each Λ, see section 2 for details.

Now that we have a non-isometrically embeddable metric (with nonpositive Gaussian curvature), the nearby metrics are almost non-isometrically embeddable. Based on this observation, we construct a non-isometrically embeddable metric with negative Gaussian curvature except for one point in section 3.

2. Metric with nonpositive curvature

Recall any three segments in \mathbb{R}^{2} with equal angles $\frac{2}{3} \pi$ at the common vertex form a minimal tree T, namely, the length of T is less than that of any arcs connecting the other three vertices.
Lemma 2.1. Let $u=-\operatorname{Im} e^{\log ^{2} z}=-e^{\log ^{2} r-\theta^{2}} \sin (2 \theta \log r), 0<\theta<2 \pi$. Then there exists a large integer K such that

$$
\int_{T} u d s<0
$$

where the minimal tree $T=A A_{1} \cup A A_{2} \cup A A_{3}$ with $A=\left(-e^{-K}, 0\right), A_{2}=$ $(-1,0), A_{1}, A_{2} \in \partial B_{1}, \angle A_{1} A A_{2}=\angle A_{2} A A_{3}=\frac{2}{3} \pi$. Moreover, $u_{r}<0$ for $r=1$.

Proof. Set $\Omega_{u}=B_{1} \cap$ Sector $A_{1} A A_{2}, \Omega_{l}=B_{1} \cap \operatorname{Sector} A_{2} A A_{3}, \widehat{A_{1} A_{2}}=\partial \Omega_{u} \cap$ $\partial B_{1}, \widehat{A_{2} A_{3}}=\partial \Omega_{l} \cap \partial B_{1}$. Let the angle from $A_{1} A$ to x be φ, or $\varphi(x)=$ $\angle A_{1} A x$, then $0 \leq \varphi(x) \leq \frac{4}{3} \pi$ for $x \in \Omega_{u} \cup \Omega_{l}$.

We apply Green formula to harmonic functions u and φ in Ω_{u} and Ω_{l},

$$
\begin{aligned}
\int_{\partial \Omega_{u}} u \varphi_{\gamma} d s & =\int_{\partial \Omega_{u}} \varphi u_{\gamma} d s \\
\int_{\partial \Omega_{l}} u\left(\varphi-\frac{4}{3} \pi\right)_{\gamma} d s & =\int_{\partial \Omega_{l}}\left(\varphi-\frac{4}{3} \pi\right) u_{\gamma} d s
\end{aligned}
$$

where γ is the outward unit normal of the integral domain. We then have

$$
\begin{aligned}
\int_{A A_{1}}-u d s+\int_{A A_{2}} u d s & =\int_{\widehat{A_{1} A_{2}}} \varphi u_{r} d s+\int_{A A_{2}} \frac{2}{3} \pi u_{\theta} d s \\
\int_{A A_{2}}-u d s+\int_{A A_{3}} u d s & =\int_{\widehat{A_{2} A_{3}}}\left(\varphi-\frac{4}{3} \pi\right) u_{r} d s+\int_{A A_{2}} \frac{2}{3} \pi u_{\theta} d s
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\int_{A A_{1} \cup A A_{3}} u d s & =2 \int_{A A_{2}} u d s+\int_{\widehat{A_{1} A_{2}}}-\varphi u_{r} d s+\int_{\widehat{A_{2} A_{3}}}\left(\varphi-\frac{4}{3} \pi\right) u_{r} d s \\
& =2 \int_{A A_{2}} u d s+\int_{\widehat{A_{1} A_{2}}} \varphi e^{-\theta^{2}} 2 \theta d s+\int_{\widehat{A_{2} A_{3}}}\left(\frac{4}{3} \pi-\varphi\right) e^{-\theta^{2}} 2 \theta d s
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\int_{A A_{2}} u d s & =\int_{e^{-K}}^{e^{0}}-e^{\left(\log ^{2} r-\pi^{2}\right)} \sin (2 \pi \log r) d r \\
& =\frac{1}{2 \pi e^{\pi^{2}}} \int_{-2 \pi K}^{0}-e^{\left(\frac{t^{2}}{4 \pi^{2}}+\frac{t}{2 \pi}\right)} \sin t d t .
\end{aligned}
$$

We choose large enough integer K so that $\int_{A A_{2}} u d s<0$ and

$$
2 \int_{A A_{2}} u d s+\int_{\widehat{A_{1} A_{2}}} \varphi e^{-\theta^{2}} 2 \theta d s+\int_{\widehat{A_{2} A_{3}}}\left(\frac{4}{3} \pi-\varphi\right) e^{-\theta^{2}} 2 \theta d s<0 .
$$

Therefore

$$
\int_{T} u d s<0 .
$$

Remark. By applying Green formula to the above harmonic function u and linear functions, one sees that $\int_{\Gamma} u d s>0$ for any segment $\Gamma \subset \Omega_{u} \cup \Omega_{l}$, connecting two boundary points on ∂B_{1}.

Lemma 2.2. There exists a function $v \in C_{0}^{\infty}\left(B_{1.1}\right)$ satisfying

$$
\begin{aligned}
v & =0 \quad \text { in } \quad\left\{\left(x_{1}, x_{2}\right) \mid x_{1}<0.9\right\} \backslash B_{1} \\
\triangle v & \geq 0 \quad \text { in } \quad B_{1} \\
\int_{T} v d s & <0
\end{aligned}
$$

where the minimal tree $T=C C_{1} \cup C A_{2} \cup C C_{3}$ with $A_{2}=(-1,0), C=$ $\left(-\frac{1}{10} e^{-K}-0.8,0\right), C_{1}, C_{3} \in \partial B_{1}$ and $\angle C_{1} C A_{2}=\angle A_{2} C C_{3}=\frac{2}{3} \pi$. Moreover $T \subset\left\{\left(x_{1}, x_{2}\right) \mid x_{1}<-0.1\right\}$.

Proof. Set $D=\left(-e^{-2 K}, 0\right), D_{1}, D_{2} \in \partial B_{1}$ with $\angle D_{1} D A_{2}=\angle A_{2} D D_{3}=$ $\frac{2}{3} \pi$, and $D_{4}=\left(20, x_{2}\left(D_{3}\right)\right), D_{5}=\left(20, x_{2}\left(D_{1}\right)\right)$. Set $\Omega_{p}=$ Pentagon $D_{1} D D_{3} D_{4} D_{5}$. Let w satisfy

$$
\begin{aligned}
\triangle w & =0 \quad \text { in } \quad \Omega_{p} \\
w & =u \quad \text { on } \quad D_{1} D \cup D_{3} D \\
w & =0 \quad \text { on } \quad D_{1} D_{5} \cup D_{3} D_{4} \\
w & =N \quad \text { on } \quad D_{4} D_{5} \\
w & =u \quad \text { in } \quad B_{1} \backslash \text { Sector } D_{1} D D_{3},
\end{aligned}
$$

where u is the one in Lemma 2.1.
We choose large enough N so that $w_{\gamma}>u_{\gamma}$ on $D_{1} D \cup D_{3} D$ and $w_{\gamma}>0$ on $D_{1} D_{5} \cup D_{3} D_{4}$, where γ is the inward unit normal of $\partial \Omega_{p}$ this time. (If one insists, we can smooth off $\partial \Omega_{p}$.)

Figure 1. Minimal tree inside the half ball.
Next we mollify w by the usual (radially symmetric) mollifier $\rho_{\delta} \in C_{0}^{\infty}\left(B_{\delta}\right)$ with $0<\delta<e^{-2 K}$ to be determined later. We see that the smooth function $w * \rho_{\delta}$ satisfies

$$
\begin{array}{rll}
\triangle w * \rho_{\delta}(x) \geq 0 & \text { for } & x_{1} \leq 19.9 \\
w * \rho_{\delta}(x)=u & \text { for } & x \text { inside } \Omega_{i}=B_{1} \backslash \text { Sector } D_{1} D D_{3} \text { and } \delta \text { away from } \partial \Omega_{i} \\
w * \rho_{\delta}(x)=0 & \text { for } & x \text { outside } \Omega_{o}=\left(B_{1} \backslash \operatorname{Sector} D_{1} D D_{3}\right) \cup \Omega_{p} \text { and } \delta \text { away from } \partial \Omega_{o} .
\end{array}
$$

Finally, set $C_{0}=(-0.8,0)$ and

$$
v(x)=w * \rho_{\delta}\left(10\left(x-C_{0}\right)\right) .
$$

By making δ even smaller yet positive if necessary so that $\int_{T} v d s<0$, we obtain the desired function v in the above lemma.

Corollary 2.1. Let v be the function in Lemma 2.8. There exists a family of smooth metrics in \mathbb{R}^{2}

$$
g_{\delta}=e^{2 \delta v} d x^{2} \quad \text { for } 0<\delta<\delta_{0}
$$

such that

$$
\begin{aligned}
g_{\delta} & =d x^{2} \quad \text { in } \quad\left\{\left(x_{1}, x_{2}\right)\left|x_{1}<0.9\right|\right\} \backslash B_{1} \\
K_{g_{\delta}} & \leq 0 \quad \text { in } \quad B_{1} \\
L\left(T, g_{\delta}\right) & <L\left(T, d x^{2}\right),
\end{aligned}
$$

where $L(T, g)$ is the length of the minimal tree T from Lemma $2 . .7$ in metric g.

Proof. We only prove the last two inequalities. One has

$$
K_{g_{\delta}}=-e^{-2 \delta v} \triangle(\delta v) \leq 0 \quad \text { in } \quad B_{1} .
$$

Also

$$
\begin{aligned}
L\left(T, g_{\delta}\right) & =\int_{T} e^{\delta v} d s \\
\left.\frac{d L}{d \delta}\right|_{\delta=0} & =\int_{T} v d s<0 .
\end{aligned}
$$

Thus there exists δ_{0} such that $L\left(T, g_{\delta}\right)<L\left(T, d x^{2}\right)$ for $0<\delta<\delta_{0}$.
Let $\psi \in C^{1}([-1,1])$ satisfy $0 \leq \psi \leq 1$ and $\psi(\pm 1)=0$. Set $\gamma=\left\{\left(x_{1}, x_{2}\right)\left|x_{1}=\psi\left(x_{2}\right),\left|x_{2}\right| \leq 1\right\}, Q=\left\{\left(x_{1}, x_{2}\right)\left|0<x_{1}<\psi\left(x_{2}\right),\left|x_{2}\right| \leq 1\right\}\right.\right.$ $\Pi=[0,2] \times[-2,2] \subset R^{2}, \quad F=\Pi \backslash Q$.

Lemma 2.3. Let $f \in C^{3}(F)$. Assume the graph Σ of f is flat or $\operatorname{det} D^{2} f$ $=0$ and $D^{2} f \neq 0$ in F. Also assume a unit C^{1} continuous eigenvector V_{0} for the zero eigenvalue of $D^{2} f$ is transversal to γ. For any $0<\tau<1$, there exists $\varepsilon>0$ so that if $\left\|D^{2} f-\left[\begin{array}{cc}0 & 0 \\ 0 & -\tau\end{array}\right]\right\| \leq \varepsilon \tau$, one can extend f to Π with the graph of the extension being flat and concave.
Proof. We take the C^{2} Legendre coordinate system on $F \subset \Pi$ (cf. [HW1]).

$$
\left\{\begin{array}{l}
t=x_{1} \\
s=f_{2}\left(x_{1}, x_{2}\right)
\end{array}\right.
$$

Notice that the graph of f, Σ is flat, or $\operatorname{det} D^{2} f=0$, it follows that $\left\{\left(x_{1}, x_{2}\right) \mid f_{2}\left(x_{1}, x_{2}\right)=s=\right.$ const $\}$ is a straight segment in \mathbb{R}^{2} and $x_{t}(t, s)$ $\left(\| V_{0}\right)$ is independent of t. Also $\frac{\partial f}{\partial t}(x(t, s))$ is independent of t. Hence we can represent a portion Σ^{p} of the graph Σ in the ruling form

$$
\left(x_{1}, x_{2}, x_{3}\right)(t, s)=h(t, s)=c(s)+t \delta(s)=\left(t, x_{2}(t, s), f\left(t, x_{2}(t, s)\right)\right),
$$

where $c(s), \delta(s) \in C^{2}$ and $s \in S=\left[f_{2}(2,2), f_{2}(2,-2)\right], t \leq 2$.
We may assume $\nabla f(2,0)=0$. If ε is chosen small enough, then $\delta(s)\left(\| V_{0}\right)$ is close to $(1,0,0)$ in C^{1} norm. Take ε small, then

$$
\left\{\left(x_{1}, x_{2}, f\left(x_{1}, x_{2}\right)\right) \mid\left(\left(x_{1}, x_{2}\right) \in \gamma\right)\right\} \subset \partial \Sigma^{p}
$$

Set $U=\{(t, s) \mid-1 \leq t \leq 2, s \in S\}$. Take ε small so that $\|\delta(s)-(1,0,0)\|_{C^{1}}$ small, then $(t, s) \in U$ is a C^{2} coordinate system for Π.

Now $\Sigma^{e}=h(U)$ is a C^{2}, flat, concave graph over a domain Ω in \mathbb{R}^{2} with $\Pi \subset \Omega$. Indeed, the normal of Σ^{e} is

$$
N=\frac{h_{t} \times h_{s}}{\left\|h_{t} \times h_{s}\right\|} .
$$

We know

$$
\begin{aligned}
& h_{t}=\left(1, \frac{-f_{21}}{f_{22}}, f_{1}+f_{2} \frac{-f_{21}}{f_{22}}\right) \xrightarrow{\varepsilon \rightarrow 0}(1,0,0) \\
& h_{s}=\left(0, \frac{1}{f_{22}}, \frac{f_{2}}{f_{22}}\right) \xrightarrow{\varepsilon \rightarrow 0}\left(0, \frac{-1}{\tau}, \frac{-s}{\tau}\right),
\end{aligned}
$$

then $h_{t} \times h_{s} \xrightarrow{\varepsilon \rightarrow 0}\left(0, \frac{s}{\tau}, \frac{-1}{\tau}\right)$. So Σ^{e} is a C^{2} graph if we choose ε small enough.
Next, the second fundamental form of Σ^{e} is

$$
\begin{aligned}
I I & =\left[\begin{array}{cc}
\left\langle h_{t t}, N\right\rangle & \left\langle h_{t s}, N\right\rangle \\
\left\langle h_{s t}, N\right\rangle & \left\langle h_{s s}, N\right\rangle
\end{array}\right] \\
& =\frac{1}{\left\|h_{t} \times h_{s}\right\|}\left[\begin{array}{lc}
0 & 0 \\
0 & \left\langle c^{\prime \prime}+t \delta^{\prime \prime}, \delta \times\left(c^{\prime}+t \delta^{\prime}\right)\right\rangle
\end{array}\right]
\end{aligned}
$$

and the Gaussian curvature

$$
K_{g}=0 .
$$

Finally, the nonzero principle curvature of Σ^{e}

$$
\kappa=\left[\frac{\tau^{3}}{\left(1+s^{2}\right)^{3 / 2}}+o(\varepsilon)\right]\left\langle c^{\prime \prime}+t \delta^{\prime \prime}, \delta \times\left(c^{\prime}+t \delta^{\prime}\right)\right\rangle
$$

On the other hand, from the graph representation of $\Sigma^{p}, \kappa \xrightarrow{\varepsilon \rightarrow 0}-\tau /\left(1+s^{2}\right)^{3 / 2}$. So for t in a certain range close to 2 , say $t \in[1,2]$, the quadratic function in terms of t,

$$
\left\langle c^{\prime \prime}+t \delta^{\prime \prime}, \delta \times\left(c^{\prime}+t \delta^{\prime}\right)\right\rangle=a_{0}+a_{1} t+a_{2} t^{2}
$$

is close to $-1 / \tau^{2}$ as $\varepsilon \rightarrow 0$. It follows that $a_{0}+a_{1} t+a_{2} t^{2}$ is still close to $-1 / \tau^{2}$ for $t \in[-1,2]$, if we choose ε small enough. So Σ^{e} is concave.

Lemma 2.4. Let f be the extended function in Lemma 2.3, let $w \in C^{2}(\Pi)$ satisfy $w=f$ on F, $\operatorname{det} D^{2} w \leq 0$ in Π, and $\left\|D^{2} w-\left[\begin{array}{cc}0 & 0 \\ 0 & -\tau\end{array}\right]\right\| C^{1} \leq \varepsilon \tau$. Then

$$
f \leq w \text { in } \Pi
$$

Proof. Suppose there is a point $x^{\prime}=\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \in M$ such that $w\left(x^{\prime}\right)<f\left(x^{\prime}\right)$. We know $x_{2}^{\prime} \in(-1,1)$. For simplicity, we may assume

$$
f\left(x^{\prime}\right)-w\left(x^{\prime}\right)=\sup _{x_{2} \in[-1,1]}\left[f\left(x_{1}^{\prime}, x_{2}\right)-w\left(x_{1}^{\prime}, x_{2}\right)\right] .
$$

Then $f_{2}\left(x^{\prime}\right)=w_{2}\left(x^{\prime}\right)$. It follows that the two tangent lines l_{f}, l_{w} to f and w at x^{\prime} in the plane $\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1}=x_{1}^{\prime}\right\}$ are parallel. Since $w\left(x_{1}^{\prime}, \cdot\right)$ is concave, l_{w} is above w.

Let $T \subset \mathbb{R}^{3}$ be the tangent plane to the graph Σ_{f} of f at $\left(x^{\prime}, f\left(x^{\prime}\right)\right)$. Let $R=T \cap \Sigma_{f}$. Then R is a segment (ruling) transversal to l_{f}. Let $\left(x^{0}, z^{0}\right) \in R$ with $x^{0} \in F$, then $z^{0}=f\left(x^{0}\right)=w\left(x^{0}\right)$. Let $l_{0} \subset T$ through $\left(x^{0}, z^{0}\right)$ with $l_{0} \| l_{w}$. By the concavity of $f=w$ in F, l_{0} is above the graph Σ_{w} of w.

Let $m(x)$ be the linear function with graph as the plane E through l_{w} and l_{0}. Let $V=\left\{\left(x_{1}, x_{2}\right)\left|x_{1}^{\prime}<x_{1}<2,\left|x_{2}\right|<2\right\}\right.$. Because Σ_{w} is a ruling surface on F, then

$$
w(x) \leq m(x) \quad \text { on } \quad \partial V .
$$

Note that $\operatorname{det} D^{2} w \leq 0$, by the maximum principle,

$$
w(x) \leq m(x) \quad \text { in } \quad V .
$$

On the other hand, there is $\left(x^{*}, w\left(x^{*}\right)\right) \in R$ with $x^{*} \in V$ such that

$$
w\left(x^{*}\right)>m\left(x^{*}\right) .
$$

This contradiction completes the proof of the above lemma.
Let r be a rotation in \mathbb{R}^{2} through an angle 1°. Let v be the function in Lemma 2.2, set

$$
w(x)=\sum_{i=1}^{360} v\left(r^{i}(1000 x)-(360,0)\right) .
$$

Pick two sequences $z_{n} \in \mathbb{R}^{2}$ and $\rho_{n}>0$ such that

$$
\begin{gathered}
z_{n} \longrightarrow 0 \quad \text { as } \quad n \longrightarrow+\infty \\
B_{\rho_{n}}\left(z_{n}\right) \cap B_{\rho_{k}}\left(z_{k}\right)=\emptyset \text { for } n \neq k .
\end{gathered}
$$

Take another sequence $\delta_{n}>0$ going to 0 fast enough so that the smooth metric $g_{\text {II }}$ in \mathbb{R}^{2} satisfying

$$
\begin{array}{ll}
g_{\text {II }}=e^{2 \delta_{n} w\left(z_{n}+x / \rho_{n}\right)} d x^{2} \quad \text { in } \quad B_{\rho_{n}}\left(z_{n}\right) \\
g_{\text {II }}=d x^{2} & \text { otherwise } .
\end{array}
$$

Remark. Certainly our v is only smooth in $B_{1.1}(0)$, that leaves the function w nonsmooth, even undefined near the corresponding tails. At this stage, we do not need any information on the metric $g_{I I}$ near those tails (Figure 1 and 3). We can make a smooth extension of v to \mathbb{R}^{2} with $v \in C_{0}^{\infty}\left(B_{2}\right)$ if one insists. Then the Gaussian curvature of g would be positive near the transition region. In the proof of Theorem 1.1, we will extend the tails to the boundary, make v a smooth subharmonic function inside the unit ball. Then the Gaussian curvature would be nonpositive in the unit ball.

Proposition 2.1. Let i be a C^{3} isometric embedding

$$
i:\left(B_{r}(0), g_{I I}\right) \longrightarrow \mathbb{R}^{3}
$$

for some $r>0$. Then the second fundamental form of $i\left(B_{r}(0)\right)$ vanishes at $i(0)$, or $I I(i(0))=0$.
Proof. We may assume $i\left(B_{r}\right)$ is the graph Σ_{w} of a function $x_{3}=w\left(x_{1}, x_{2}\right)$ and $w(0)=0, \nabla w(0)=0$. Then $\mathrm{II}(i(0))=D^{2} w(0)$ and $\operatorname{det} D^{2} w(0)=0$. Suppose

$$
D^{2} w(0) \neq 0 .
$$

Let P_{3} be the projection from \mathbb{R}^{3} to $\mathrm{x}_{1} \mathrm{x}_{2}$ plane. Set $J(x)=P_{3}(i(x))$. We may assume DJ is the identity map on the tangent space \mathbb{R}^{2} at 0 , and

$$
D^{2} w(0,0)=\left[\begin{array}{cc}
0 & 0 \\
0 & -\tau
\end{array}\right] .
$$

For a sufficiently large $n, B_{\rho_{n}}\left(z_{n}\right) \subset B_{r}$ and

$$
g_{I I}=e^{2 \delta_{n} v\left(r^{180}\left(1000\left(z_{n}+x / \rho_{n}\right)\right)-(360,0)\right)} d x^{2}
$$

in the 179° to 181° section of the ball $B_{\rho_{n}}\left(z_{n}\right)$.
In order to simply the presentation, we work with the metric $g_{\delta_{n}}=$ $e^{2 \delta_{n} v(x)} d x^{2}$ as in the Corollary 2.1. Let Σ^{e} be the flat, concave extension of $i\left(B_{2}^{-} \backslash B_{1}^{-}\right)$by Lemma 2.3, where $B_{\rho}^{-}=\left\{\left(x_{1}, x_{2}\right) \mid x_{1}<0\right\} \cap B_{\rho}$. Note that we may consider the graph $x_{3}=w_{\varepsilon}(x)=w(\varepsilon x)$ for small ε, then

$$
\left\|D^{2} w_{\varepsilon}-\left[\begin{array}{cc}
0 & 0 \\
0 & -\varepsilon^{2} \tau
\end{array}\right]\right\|_{C^{1}} \leq \varepsilon^{3}
$$

make the extension, then scale back.
Since $i\left(B_{1}^{-}\right)$is negatively curved, or $\operatorname{det} D^{2} w \leq 0$ and concave, we apply Lemma 2.4 to conclude that $i\left(B_{1}^{-}\right)$is above Σ^{e}.

Let P be the normal projection of points p above Σ^{e} down to Σ^{e}, that is $[p-P(p)] \perp \Sigma^{e}$. By concavity of Σ^{e}, we have

$$
\operatorname{Length}\left(T, g_{\delta_{n}}\right)=\operatorname{Length}\left(i(T), g_{\Sigma_{w}}\right) \geq \operatorname{Length}\left(P(i(T)), g_{\Sigma^{e}}\right),
$$

Where $g_{\Sigma_{w}}$ and $g_{\Sigma^{e}}$ is the induced metrics on Σ_{w} and Σ^{e}.
Note that $P\left(i\left(C_{1}\right)\right)=i\left(C_{1}\right), P\left(i\left(C_{3}\right)\right)=i\left(C_{3}\right), P\left(i\left(A_{2}\right)\right)=i\left(A_{2}\right)$, there is an isometry $i_{0}: \Sigma^{e} \longrightarrow\left(\mathbb{R}^{2}, d x^{2}\right)$ such that $i_{0} \circ P \circ i\left(C_{1}\right)=C_{1}$, $i_{0} \circ P \circ i\left(C_{3}\right)=C_{3}, i_{0} \circ P \circ i\left(A_{2}\right)=A_{2}$. Apply Corollary 2.1, we have

$$
\operatorname{Length}\left(P(i(T)), g_{\Sigma^{e}}\right)=\operatorname{Length}\left(i_{0} \circ P \circ i(T), d x^{2}\right)>\operatorname{Length}\left(T, g_{\delta_{n}}\right) .
$$

Thus we arrive at

$$
\text { Length }\left(T, g_{\delta_{n}}\right)>\operatorname{Length}\left(T, g_{\delta_{n}}\right) .
$$

This contradiction finishes the proof of the above proposition.
Now we give the constructive proof of Theorem 1.1.
Proof. Step1. Let \widetilde{k} be a smooth function in \mathbb{R}^{2} satisfying

$$
\begin{aligned}
& \widetilde{k}<0 \quad \text { in } B^{n}=B_{2^{-2 n}}\left(2^{-n}, 0\right), \quad n=1,2,3, \cdots \\
& \widetilde{k}=0 \quad \text { otherwise. }
\end{aligned}
$$

Let u_{1} be a smooth solution of

$$
\Delta u_{1}=-\widetilde{k}
$$

Then the Gaussian curvature of the metric $g_{1}=e^{2 u_{1}} d x^{2}$ satisfies

$$
\begin{array}{ll}
K_{g_{1}}=-e^{-2 u_{1}} \triangle u_{1}<0 \text { in } B^{n} \\
K_{g_{1}}=0 & \text { otherwise } .
\end{array}
$$

Step2. Choose a sequence $z_{n, k}$ outside each B^{n} and $\left\{\left(x_{1}, x_{2}\right) \mid x_{2}=0\right\}$ such that

$$
\begin{gathered}
\lim _{k \rightarrow \infty} z_{n, k} \in \partial B^{n} \\
\partial B^{n} \subset \overline{\left\{z_{n, k}\right\}_{k=1}^{\infty}}
\end{gathered}
$$

For each $z_{n, k}$, choose a simply connected thin tail $T_{n, k}$ with $T_{n, k}$ connecting $z_{n, k}$ and the boundary ∂B_{1} such that

$$
\begin{aligned}
& z_{n, k} \in T_{n, k} \\
& \partial T_{n, k} \cap \partial B_{1}=\text { a piece of arc with positive length } \\
& T_{n, k} \subset \mathbb{R}_{+}^{2}=\left\{\left(x_{1}, x_{2}\right) \mid x_{2}>0\right\} \quad \text { for } \quad x_{2}\left(z_{n, k}\right)>0 \\
& T_{n, k} \subset \mathbb{R}_{-}^{2}=\left\{\left(x_{1}, x_{2}\right) \mid x_{2}<0\right\} \quad \text { for } \quad x_{2}\left(z_{n, k}\right)<0 \\
& T_{n, k} \cap T_{m, j}=\varnothing \quad \text { for }(n, k) \neq(m, j) .
\end{aligned}
$$

Figure 2. Tails extending to the boundary.

We modify the metric $g_{1}=e^{2 u_{1}} d x^{2}$ over each tail $T_{n, k}$. But we proceed with the tails in the upper and lower half planes separately.

Since $K_{g_{1}} \equiv 0$ in the simply connected domain $\mathbb{R}_{+}^{2} \backslash \cup_{n=1}^{\infty} B^{n}$. We represent $g_{1}=d y_{+}^{2}$ in $\mathbb{R}_{+}^{2} \backslash \cup_{n=1}^{\infty} B^{n}$ by a different coordinate system y_{+}. Over each $T_{n, k} \subset R_{+}^{2}$, we plant a metric

$$
g_{2}=e^{2 V_{n, k}} d y_{+}^{2} \quad \text { in } \quad x^{-1}\left(T_{n, k}\right)
$$

where $V_{n, k}$ is similar to the one in the construction before Proposition 2.1, but the 360 disjoint sub-tails extend to the boundary $x^{-1}\left(\partial B_{1}\right)$ within

Figure 3. "Details" of one tail.
$x^{-1}\left(T_{n, k}\right)$. We know $V_{n, k}=0$ in $x^{-1}\left(B_{1} \backslash T_{n, k}\right)$. With $V_{n . k}=N_{n, k}$ chosen large enough on $x^{-1}\left(\partial B_{1}\right)$ intersection with the x pre-image of the 360 sub-tails, we make

$$
\triangle V_{n, k} \geq 0 \quad \text { in } \quad x^{-1}\left(B_{1}\right) .
$$

We modify the metric $g_{1}=e^{2 u_{1}} d x^{2}$ over the tails in the lower half plane \mathbb{R}_{-}^{2} with different coordinate system in the same way.

So far, we obtain a new metric $g_{2}=e^{2 u_{2}} d x^{2}$ in B_{1} (which may not be smooth). We modify g_{2} over the tails one last time.

Let

$$
\begin{array}{lllll}
g_{3}=e^{2 \epsilon_{n, k} V_{n, k}} d y_{+}^{2} & \text { in } & x^{-1}\left(T_{n, k}\right) & \text { for } & T_{n, k} \subset \mathbb{R}_{+}^{2} \\
g_{3}=e^{2 \epsilon_{n, k} V_{n, k}} d y_{-}^{2} & \text { in } & x^{-1}\left(T_{n, k}\right) & \text { for } & T_{n, k} \subset \mathbb{R}_{-}^{2} .
\end{array}
$$

By choosing $\epsilon_{n, k}>0, \epsilon_{n, k} \longrightarrow 0$ sufficiently fast for $k \longrightarrow \infty$, we can assure $g_{3}=e^{2 u_{3}} d x^{2}$ is a smooth metric with $K_{g_{3}} \leq 0$ in B_{1}.

Step 3. Suppose there is an isometric embedding

$$
i:\left(B_{r}, g\right) \longrightarrow R^{3}
$$

for some $r>0$. Then there is n_{*} such that

$$
B^{n_{*}} \subset B_{r} .
$$

Applying Proposition 2.1, we have

$$
I I \circ i=0 \quad \text { on } \quad \partial B^{n_{*}} .
$$

We may assume $i\left(B_{r}\right)$ is represented as a graph $x_{3}=f\left(x_{1}, x_{2}\right)$ with $\nabla f(0,0)=$ 0 . Also we may assume the projection of $i\left(B^{n_{*}}\right)$ down to $\mathrm{x}_{1}-\mathrm{x}_{2}$ plane is a
domain Ω. Then

$$
\begin{aligned}
& \operatorname{det} D^{2} f=K_{g}\left(1+|\nabla f|^{2}\right)^{2}<0 \text { in } \Omega \\
& D^{2} f=0 \quad \text { on } \partial \Omega .
\end{aligned}
$$

From $D^{2} f=0$ on $\partial \Omega$, it follows that $\nabla f=$ const. on $\partial \Omega$ and f coincides with a linear function on $\partial \Omega$. After subtracting the linear function from f, we may further assume $f=0$ on $\partial \Omega$. We still have $\operatorname{det} D^{2} f<0$ in Ω. From the maximum principle, we see that $f \equiv 0$ in Ω. This contradiction finishes the proof of Theorem 1.1.

3. Metric with negative curvature except for one point

Relying on the metric constructed in Section 2, we construct a smooth metric g in B_{1} with negative Gaussian curvature except for one point, namely, $K_{g}(x)<0$ for $x \neq 0$, such that the surface $\left(B_{1}, g\right)$ is not $C^{3, \alpha}$ isometrically embeddable in \mathbb{R}^{3} even locally near 0 .

For any surface (Ω, g), we define the $C^{3, \alpha}$ isometric embedding norm by $\|(\Omega, g)\|_{E}=\inf \left\{\|I I(i(\Omega))\|_{C^{1, \alpha}} \mid C^{3, \alpha}\right.$ isometric embedding $\left.i:(\Omega, g) \longrightarrow R^{3}\right\}$. Now we give a constructive proof of Theorem 1.2.

Proof. Let the annulus $A^{n}=B_{1 / n} \backslash B_{1 /(n+1)} \subset R^{2}$. We construct a metric $g=e^{2 u_{0}} d x^{2}$ on B_{1} such that a non-isometrically embeddable metric g as in Theorem 1.1 is planted (not just cut and pasted) over each annulus A^{n}.

Figure 4. Non-embeddable metric in each annulus.

Set

$$
\widetilde{\varphi_{n}}(r)= \begin{cases}e^{-\frac{1}{r-1 / n}} & r=|x|>\frac{1}{n} \\ 0 & 0 \leq r \leq \frac{1}{n}\end{cases}
$$

We choose $\mu_{1}>0, \mu_{2}>0, \cdots, \mu_{n}>0, \cdots$ such that $\varphi_{n}=\mu_{n} \widetilde{\varphi_{n}}$ satisfies that $\sum_{n=1}^{\infty} \varphi_{n}$ is smooth and even $\sum_{n=1}^{\infty} \epsilon_{n} \varphi_{n}$ is smooth for $\left(\epsilon_{1}, \epsilon_{2}, \cdots\right) \in l^{\infty}$.

For $\epsilon=\left(\epsilon_{1}, \epsilon_{2}, \cdots\right) \in l_{+}^{\infty}$, that is $\epsilon_{1}>0, \epsilon_{2}>0, \cdots$ and $\|\epsilon\|_{\infty}=\max \epsilon_{m}<$ $+\infty$, set

$$
\begin{aligned}
& \Phi_{\epsilon}=\sum_{m=1}^{\infty} \epsilon_{m} \varphi_{m} \\
& g_{v}=e^{2\left(u_{0}+v\right)} d x^{2}
\end{aligned}
$$

By the construction, $\left(A^{n}, e^{2 u_{0}} d x^{2}\right)$ is not C^{3} isometrically embeddable in \mathbb{R}^{3} for any n, then we have the following.

There exists $0<\eta_{1}$ such that $\left\|\left(A^{1}, g_{\Phi_{\epsilon}}\right)\right\|_{E} \geq 1$ for $\epsilon \in l_{+}^{\infty}$ with $\|\epsilon\|_{\infty} \leq \eta_{1}$.
Next there exists $0<\eta_{2}<\eta_{1}$ such that $\left\|\left(A^{m}, g_{\Phi_{\epsilon}}\right)\right\|_{E} \geq m$ for $m=1,2$ and $\epsilon=\left(\eta_{1}, \epsilon_{2}, \epsilon_{3}, \cdots\right) \in l_{+}^{\infty}$ with $\left\|\left(0, \epsilon_{2}, \epsilon 3, \cdots\right)\right\|_{\infty} \leq \eta_{2}$.

Inductively there exists $0<\eta_{k}<\eta_{k-1}$ such that $\left\|\left(A^{m}, g_{\Phi \epsilon}\right)\right\|_{E} \geq m$ for $m=1,2, \cdots, k$ and with $\epsilon=\left(\eta_{1}, \eta_{2}, \cdots, \eta_{k}, \epsilon_{k+1}, \epsilon_{k+2}, \cdots\right) \in l_{+}^{\infty}$ with $\left\|\left(0, \cdots, 0, \epsilon_{k+1}, \epsilon_{k+2}, \cdots\right)\right\|_{\infty} \leq \eta_{k}$.
...
Finally let $\Psi=\sum_{m=1}^{\infty} \eta_{m} \varphi_{m}, g=g_{\Psi}$. We see that

$$
\begin{aligned}
& \left\|\left(A^{m}, g\right)\right\|_{E} \geq m \text { for } m=1,2,3, \cdots \\
& K_{g}(x)<0 \text { for } x \neq 0 \text { and } \\
& K_{g}(0)=0
\end{aligned}
$$

It follows that there is no $C^{3, \alpha}$ isometric embedding of $\left(B_{r}(0), g\right)$ in \mathbb{R}^{3} for any $r>0, \alpha>0$.

References

[C] Cartan, E., Sur la possibilité de plonger un espace riemannian donné dans un espace euclidien, Ann. Soc. Pol. Math., 5 (1927), 1-7.
[GR] Gromov, M. L. and Rokhlin, V. A., Embeddings and immersions in Riemannian geometry, Uspehi Mat. Nauk, 25 (1970) 3-62; English translation in Russian Math. Survey 25 (1970), 1-57.
[HHL] Han, Q., Hong, J. X., and Lin, C. S., to appear.
[HW1] Hartman, P. and Winter, P., On the asymptotic curves of a surface, Amer. J. Math., 73 (1951), 149-172.
[HW2] Hartman, P. and Winter, P., On hyperbolic partial differential equations, Amer. J. Math., 74 (1952), 834-864.
[I] Iwasaki, N., Applications of Nash-Moser theory to nonlinear Cauchy problems, Proc. Sympos. Pure Math., 45 (1986) Part 1, 525-528.
[H] Hong, J. X., Cauchy problems for degenerate hyperbolic Monge-Ampère equations and some applications, J. Partial Differential Equations 4 (1991), 1-18.
[J] Janet, M., Sur la possibilité de plonger un espace riemannian donné dans un espace euclidien, Ann. Soc. Pol. Math., 5 (1926), 38-43.
[K] Kuiper, N. H., On C^{1}-isometric embeddings, I, II, Indag. Math., 17 (1955), 545-556, 683-689.
[L1] Lin, C. S., The local isometric embedding in \mathbb{R}^{3} of 2-dimensional Riemannian manifolds with nonnegative curvature, J. Diff. Goem., 21 (1985), 213-230.
[L2] Lin, C. S., The local isometric embedding in \mathbb{R}^{3} of two-dimensional Riemannian manifolds with Gaussian Curvature changing sign cleanly, Comm. Pure Appl. Math., 39 (1986), 867-887.
[N] Nadirashvili, N., The local embedding problem for surfaces, preprint, 2002.
[Na1] Nash, J., C ${ }^{1}$ isometric imbeddings, Ann. of Math., 60 (1954), 383-396.
[Na2] Nash, J., The imbedding problem for Riemannian manifolds, Ann. of Math., 63 (1956), 20-63.
[Ni] Nirenberg, L., The Weyl and Minkowski problems in differential geometry in the large, Comm. Pure Appl. Math., 6 (1953), 337-394.
[P1] Pogorelov, A. V., Intrinsic estimates for the derivatives of the radius vector of a point on regular convex surface, Dokl. Akad. Nauk SSSR (N.S.), 66 (1949), 805-808.
[P2] Pogorelov, A. V., An example of a two-dimensional Riemannian metric that does not admit a local realization in E^{3}, Dokl. Akad. Nauk SSSR, 198 (1971) 42-43; English translation in Soviet Math. Dokl. 12 (1971), 729-730.
[Po] Poznyak, È. G., Isometric embeddings of two-dimensional Riemannian metrics in Euclidean space, Uspekhi Mat. Nauk, 28 (1973), 47-76; English translation in Russian Math. Survey, 28 (1973), 47-77.
[Y] Yau, S.-Y., Seminar on Differential Geometry, Annals of Math. Studies, 102, Princeton, 1982.

Department of Mathematics, University of Chicago, 5734 S. University Ave., Chicago, IL 60637

E-mail address: nicholas@math.uchicago.edu
Department of Mathematics, University of Chicago, 5734 S. University Ave., Chicago, IL 60637, and University of Washington, Seattle, WA 98195

E-mail address: yuan@math.uchicago.edu, yuan@math.washington.edu

[^0]: Date: July 3, 2002.
 Both authors are partially supported by NSF grants, and the second author also by a Sloan Research Fellowship.

