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COUNTEREXAMPLES FOR LOCAL ISOMETRIC

EMBEDDING

NIKOLAI NADIRASHVILI AND YU YUAN

1. Introduction

In this paper, we construct metrics on 2-manifold which cannot be even
locally isometrically embedded in the Euclidean space R3. By isometric em-
bedding of

(
M2, g

)
with g =

∑2
i,j=1 gijdxidxj in R3, we mean there exists a

surface in R3 with the induced metric equaling g, namely, the three coordi-
nate functions (X (x1, x2) , Y (x1, x2) , Z (x1, x2)) defined on M2 satisfy

dX2 + dY 2 + dZ2 =

2∑

i,j=1

gijdxidxj.

To be precise, we state the results in the following

Theorem 1.1. There exists a smooth metric g in B1 ⊂ R2 with Gaussian

curvature Kg ≤ 0 such that there is no C3 isometric embedding of (Br (0) , g)
in R3 for any r > 0.

Theorem 1.2. There exists a smooth metric g in B1 ⊂ R2 with Gaussian

curvature Kg(0) = 0 and Kg (x) < 0 for x 6= 0 such that there is no C3,α

isometric embedding of (Br (0) , g) in R3 for any r > 0 and α > 0.

Pogorelov [P2] constructed a simple C2,1 metric g in B1 ⊂ R2 with sign-
changing Gaussian curvature such that (Br, g) cannot be realized as a C2

surface in R3 for any r > 0. Recently the first author [N] gave a C∞ metric
g on B1 with no smooth isometric embedding of (Br, g) in R3 for any r > 0.
The sign of the Gaussian curvature Kg also changes.

On the positive side, when the sign of Kg for any smooth metric g does
not change, the local smooth isometric embedding was settled by Pogorelov
[P1], Nirenberg [Ni], and Hartman and Winter [HW2]. When Kg ≥ 0 for

the Ck metric with k ≥ 10, there is a Ck−6 isometric embedding of (Brk , g)
in R3, this was done by Lin [L1]. When Kg changes sign cleanly, namely,

Kg (0) = 0,∇g (0) 6= 0 for a Ck metric g, Lin [L2] showed that there exists

a Ck−3 isometric embedding in R3 for (Brk , g) with k ≥ 6. When Kg ≤ 0
and ∇2Kg (0) 6= 0 for the smooth metric g, there is a local smooth isometric
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embedding of g in R3, see Iwasaki [I]. When Kg = −x2m1 K̃(x) with K̃(0) > 0
for the smooth metric g, the same local isometric embedding also holds,
see Hong [H]. Recently, Han, Hong, and Lin [HHL] showed that the local
isometric embedding exists under the assumption Kg ≤ 0 with a certain
non-degeneracy of the gradient of Kg, or Kg ≤ 0 with finite order vanishing.

If one allows higher dimensional ambient space, say R4, Poznyak [Po1]
proved that any smooth metric g on M2 can be locally smoothly isometri-
cally embedded in R4. In fact, any Ck metric on n-manifold Mn has a Ck

global isometric embedding in RNn with Nn large for 3 ≤ k ≤ ∞. This is
the work by Nash [Na2].

If we start with an analytic metric g on Mn, one always has a local
analytic isometric embedding of (Mn, g) in Rn(n+1)/2. This was proved by
Janet [J], Cartan [C] very earlier on, and initiated by Schlaefli in 1873!

Lastly, any C0 metric g on a compact n-manifoldMn which can be differ-
entially embedded in Rn+1 has a C1 isometric embedding in Rn+1, see Nash
[Na1] and Kuiper [K].

For general description and further results on isometric embedding prob-
lem, we refer to [GR], [P2] and [Y].

The heuristic idea of the construction is to arrange the metric g in B1

so that the second fundamental form of any isometric embedded surface
in R3, II◦i vanishes at one point, where i : (B1, g) → R3 is the isometric
embedding which is supposed to exist. Further we force II◦i to vanish along
the boundary of a small domain Ω near the center of B1, where the Gaussian
curvature Kg < 0 (in Ω). By the maximal principle, one cannot have a
saddle surface with vanishing second fundamental form along the boundary.
So (Ω, g) cannot be realized in R3. We repeat the construction near the
center of B1 at every scale so that (B1, g) is not isometrically embeddable
in R3 near the center.

The way to force II◦i to vanish at one point, say o, is the following. We
modify the flat metric g0 = dx2 in R2 only over certain region Λ slightly
away from the center o to a new one g so that, for a segment A1A2 with A1,
A2 ∈ ∂Λ, the length of A1A2 under g is shorter than the one of the geodesic
A1A2 under the flat g0, and Kg ≤ 0 in a subregion Λs containing A1A2.
Because of detII(i (0)) = 0, we only need to deal with the other principle
curvature. Suppose the second one κ2 6= 0, say κ2 < 0.We show that there is
a flat concave cylinder Σ near i (B1) , which is isometric to (B1, g0) provided
the embedding i is C3 (This assertion for C2 embedding case remains unclear
to us). Now i (A1A2) supported on the saddle surface i (Λs) can only stay
above the concave cylinder Σ. Then the length of i (A1A2) is longer than
the one of the projection of i (A1A2) down to the flat Σ, call it P ◦ i (A1A2) .
We know the length of P ◦ i (A1A2) under g0 is equal to or longer than that
of the geodesic A1A2 under g0. But we start from A1A2 with shorter length
under g than under g0. This contradiction shows that II◦i (0) vanishes.

Inevitably, Kg is positive somewhere in Λ if Λ is surrounded by flat region
with metric dx2. We add “tails” extending to the boundary ∂B1 for the
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modifying regions Λ, modify the metric on the tails, then we have the g
with Kg ≤ 0 in B1. It turns out that we cannot work with a segment in the
construction, we go with a minimal tree connecting three points on ∂Λ for
each Λ, see section 2 for details.

Now that we have a non-isometrically embeddable metric (with nonpos-
itive Gaussian curvature), the nearby metrics are almost non-isometrically
embeddable. Based on this observation, we construct a non-isometrically
embeddable metric with negative Gaussian curvature except for one point
in section 3.

2. Metric with nonpositive curvature

Recall any three segments in R2 with equal angles 2
3π at the common

vertex form a minimal tree T, namely, the length of T is less than that of
any arcs connecting the other three vertices.

Lemma 2.1. Let u = − Im elog
2 z = −elog

2 r−θ2 sin (2θ log r) , 0 < θ < 2π.
Then there exists a large integer K such that

∫

T
uds < 0,

where the minimal tree T = AA1 ∪ AA2 ∪ AA3 with A =
(
−e−K , 0

)
, A2 =

(−1, 0) , A1, A2 ∈ ∂B1, ∠A1AA2 = ∠A2AA3 = 2
3π. Moreover, ur < 0 for

r = 1.

Proof. Set Ωu = B1∩SectorA1AA2, Ωl = B1∩SectorA2AA3, Â1A2 = ∂Ωu ∩

∂B1, Â2A3 = ∂Ωl ∩ ∂B1. Let the angle from A1A to x be ϕ, or ϕ (x) =
∠A1Ax, then 0 ≤ ϕ (x) ≤ 4

3π for x ∈ Ωu ∪ Ωl.
We apply Green formula to harmonic functions u and ϕ in Ωu and Ωl,∫

∂Ωu

uϕγds =

∫

∂Ωu

ϕuγds

∫

∂Ωl

u

(
ϕ−

4

3
π

)

γ

ds =

∫

∂Ωl

(
ϕ−

4

3
π

)
uγds,

where γ is the outward unit normal of the integral domain. We then have
∫

AA1

−uds+

∫

AA2

uds =

∫

Â1A2

ϕurds +

∫

AA2

2

3
πuθds

∫

AA2

−uds+

∫

AA3

uds =

∫

Â2A3

(
ϕ−

4

3
π

)
urds+

∫

AA2

2

3
πuθds.

It follows that
∫

AA1∪AA3

uds = 2

∫

AA2

uds+

∫

Â1A2

−ϕurds+

∫

Â2A3

(
ϕ−

4

3
π

)
urds

= 2

∫

AA2

uds+

∫

Â1A2

ϕe−θ22θds+

∫

Â2A3

(
4

3
π − ϕ

)
e−θ22θds.



4 NIKOLAI NADIRASHVILI AND YU YUAN

On the other hand,

∫

AA2

uds =

∫ e0

e−K

−e(log
2 r−π2) sin (2π log r) dr

=
1

2πeπ
2

∫ 0

−2πK
−e

(
t2

4π2
+ t

2π

)

sin tdt.

We choose large enough integer K so that
∫
AA2

uds < 0 and

2

∫

AA2

uds +

∫

Â1A2

ϕe−θ22θds+

∫

Â2A3

(
4

3
π − ϕ

)
e−θ22θds < 0.

Therefore ∫

T
uds < 0.

Remark. By applying Green formula to the above harmonic function u
and linear functions, one sees that

∫
Γ uds > 0 for any segment Γ ⊂ Ωu ∪Ωl,

connecting two boundary points on ∂B1.

Lemma 2.2. There exists a function v ∈ C∞

0 (B1.1) satisfying

v = 0 in {(x1, x2) |x1 < 0.9} \B1

△v ≥ 0 in B1∫

T
vds < 0

where the minimal tree T = CC1 ∪ CA2 ∪ CC3 with A2 = (−1, 0) , C =(
− 1

10e
−K − 0.8, 0

)
, C1, C3 ∈ ∂B1 and ∠C1CA2 = ∠A2CC3 =

2
3π. Moreover

T ⊂ {(x1, x2) |x1 < −0.1} .

Proof. Set D =
(
−e−2K , 0

)
, D1, D2 ∈ ∂B1 with ∠D1DA2 = ∠A2DD3 =

2
3π, andD4 = (20, x2 (D3)) , D5 = (20, x2 (D1)) . Set Ωp =PentagonD1DD3D4D5.
Let w satisfy

△w = 0 in Ωp

w = u on D1D ∪D3D

w = 0 on D1D5 ∪D3D4

w = N on D4D5

w = u in B1\SectorD1DD3,

where u is the one in Lemma 2.1.
We choose large enough N so that wγ > uγ on D1D ∪D3D and wγ > 0

on D1D5 ∪D3D4, where γ is the inward unit normal of ∂Ωp this time. (If
one insists, we can smooth off ∂Ωp.)
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A

C

2 C

C1

3

x1

x2

Figure 1. Minimal tree inside the half ball.

Next we mollify w by the usual (radially symmetric) mollifier ρδ ∈ C∞

0 (Bδ)
with 0 < δ < e−2K to be determined later. We see that the smooth function
w ∗ ρδ satisfies

△w ∗ ρδ (x) ≥ 0 for x1 ≤ 19.9

w ∗ ρδ (x) = u for x inside Ωi = B1\SectorD1DD3 and δ away from ∂Ωi

w ∗ ρδ (x) = 0 for x outside Ωo = (B1\SectorD1DD3) ∪ Ωp and δ away from ∂Ωo.

Finally, set C0 = (−0.8, 0) and

v (x) = w ∗ ρδ (10 (x− C0)) .

By making δ even smaller yet positive if necessary so that
∫
T vds < 0, we

obtain the desired function v in the above lemma.

Corollary 2.1. Let v be the function in Lemma 2.2. There exists a family

of smooth metrics in R2

gδ = e2δvdx2 for 0 < δ < δ0

such that

gδ = dx2 in {(x1, x2) |x1 < 0.9|} \B1

Kgδ ≤ 0 in B1

L (T, gδ) < L
(
T, dx2

)
,

where L (T, g) is the length of the minimal tree T from Lemma 2.2 in metric

g.

Proof. We only prove the last two inequalities. One has

Kgδ = −e−2δv △ (δv) ≤ 0 in B1.
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Also

L (T, gδ) =

∫

T
eδvds

dL

dδ

∣∣∣∣
δ=0

=

∫

T
vds < 0.

Thus there exists δ0 such that L (T, gδ) < L
(
T, dx2

)
for 0 < δ < δ0.

Let ψ ∈ C1 ([−1, 1]) satisfy 0 ≤ ψ ≤ 1 and ψ (±1) = 0. Set

γ = {(x1, x2) |x1 = ψ (x2) , |x2| ≤ 1} , Q = {(x1, x2) |0 < x1 < ψ (x2) , |x2| ≤ 1}

Π = [0, 2] × [−2, 2] ⊂ R2, F = Π\Q.

Lemma 2.3. Let f ∈ C3 (F ) . Assume the graph Σ of f is flat or detD2f
= 0 and D2f 6= 0 in F. Also assume a unit C1 continuous eigenvector V0
for the zero eigenvalue of D2f is transversal to γ. For any 0 < τ < 1, there

exists ε > 0 so that if

∥∥∥∥D2f −

[
0 0
0 −τ

]∥∥∥∥ ≤ ετ, one can extend f to Π with

the graph of the extension being flat and concave.

Proof. We take the C2 Legendre coordinate system on F ⊂ Π (cf. [HW1]).
{
t = x1
s = f2 (x1, x2) .

Notice that the graph of f , Σ is flat, or detD2f = 0, it follows that
{(x1, x2) |f2 (x1, x2) = s = const} is a straight segment in R2 and xt (t, s)

(‖V0) is independent of t. Also
∂f
∂t (x (t, s)) is independent of t. Hence we can

represent a portion Σp of the graph Σ in the ruling form

(x1, x2, x3) (t, s) = h (t, s) = c (s) + tδ (s) = (t, x2 (t, s) , f (t, x2 (t, s))) ,

where c (s) , δ (s) ∈ C2 and s ∈ S = [f2 (2, 2) , f2 (2,−2)] , t ≤ 2.
We may assume∇f (2, 0) = 0. If ε is chosen small enough, then δ (s) (‖V0)

is close to (1, 0, 0) in C1 norm. Take ε small, then

{(x1, x2, f (x1, x2)) | ((x1, x2) ∈ γ)} ⊂ ∂Σp.

Set U = {(t, s) | − 1 ≤ t ≤ 2, s ∈ S} . Take ε small so that ‖δ (s)− (1, 0, 0)‖C1

small, then (t, s) ∈ U is a C2 coordinate system for Π.
Now Σe = h (U) is a C2, flat, concave graph over a domain Ω in R2 with

Π ⊂ Ω. Indeed, the normal of Σe is

N =
ht × hs
‖ht × hs‖

.

We know

ht =

(
1,

−f21
f22

, f1 + f2
−f21
f22

)
ε→0
−→ (1, 0, 0)

hs =

(
0,

1

f22
,
f2
f22

)
ε→0
−→

(
0,

−1

τ
,
−s

τ

)
,
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then ht×hs
ε→0
−→

(
0, sτ ,

−1
τ

)
. So Σe is a C2 graph if we choose ε small enough.

Next, the second fundamental form of Σe is

II =

[
〈htt, N〉 〈hts, N〉
〈hst, N〉 〈hss, N〉

]

=
1

‖ht × hs‖

[
0 0
0 〈c′′ + tδ′′, δ × (c′ + tδ′)〉

]

and the Gaussian curvature

Kg = 0.

Finally, the nonzero principle curvature of Σe

κ =

[
τ3

(1 + s2)3/2
+ o (ε)

]
〈
c′′ + tδ′′, δ ×

(
c′ + tδ′

)〉
.

On the other hand, from the graph representation of Σp, κ
ε→0
−→ −τ/

(
1 + s2

)3/2
.

So for t in a certain range close to 2, say t ∈ [1, 2] , the quadratic function
in terms of t,

〈
c′′ + tδ′′, δ ×

(
c′ + tδ′

)〉
= a0 + a1t+ a2t

2

is close to −1/τ2 as ε → 0 . It follows that a0 + a1t + a2t
2 is still close to

−1/τ2 for t ∈ [−1, 2] , if we choose ε small enough. So Σe is concave.

Lemma 2.4. Let f be the extended function in Lemma 2.3, let w ∈ C2 (Π)

satisfy w = f on F, detD2w ≤ 0 in Π, and

∥∥∥∥D2w −

[
0 0
0 −τ

]∥∥∥∥ C1 ≤ ετ.

Then

f ≤ w in Π.

Proof. Suppose there is a point x′ = (x′1, x
′

2) ∈M such that w (x′) < f (x′).
We know x′2 ∈ (−1, 1) . For simplicity, we may assume

f
(
x′
)
− w

(
x′
)
= sup

x2∈[−1,1]

[
f
(
x′1, x2

)
− w

(
x′1, x2

)]
.

Then f2 (x
′) = w2 (x

′) . It follows that the two tangent lines lf , lw to f and
w at x′ in the plane {(x1, x2, x3) |x1 = x′1} are parallel. Since w (x′1, ·) is
concave, lw is above w.

Let T ⊂ R3 be the tangent plane to the graph Σf of f at (x′, f (x′)) . Let
R = T ∩Σf . Then R is a segment (ruling) transversal to lf . Let

(
x0, z0

)
∈ R

with x0 ∈ F, then z0 = f
(
x0

)
= w

(
x0

)
. Let l0 ⊂ T through

(
x0, z0

)
with

l0‖lw. By the concavity of f = w in F, l0 is above the graph Σw of w.
Let m (x) be the linear function with graph as the plane E through lw

and l0. Let V = {(x1, x2) |x
′

1 < x1 < 2, |x2| < 2} . Because Σw is a ruling
surface on F , then

w (x) ≤ m (x) on ∂V.
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Note that detD2w ≤ 0, by the maximum principle,

w (x) ≤ m (x) in V.

On the other hand, there is (x∗, w (x∗)) ∈ R with x∗ ∈ V such that

w (x∗) > m (x∗) .

This contradiction completes the proof of the above lemma.

Let r be a rotation in R2 through an angle 1◦. Let v be the function in
Lemma 2.2, set

w (x) =
360∑

i=1

v
(
r
i (1000x) − (360, 0)

)
.

Pick two sequences zn ∈ R2 and ρn > 0 such that

zn −→ 0 as n −→ +∞

Bρn (zn) ∩Bρk (zk) = ∅ for n 6= k.

Take another sequence δn > 0 going to 0 fast enough so that the smooth
metric gII in R2 satisfying

gII = e2δnw(zn+x/ρn)dx2 in Bρn (zn)

gII = dx2 otherwise.

Remark. Certainly our v is only smooth in B1.1 (0), that leaves the function
w nonsmooth, even undefined near the corresponding tails. At this stage,
we do not need any information on the metric gII near those tails (Figure
1 and 3). We can make a smooth extension of v to R2 with v ∈ C∞

0 (B2)
if one insists. Then the Gaussian curvature of g would be positive near the
transition region. In the proof of Theorem 1.1, we will extend the tails to
the boundary, make v a smooth subharmonic function inside the unit ball.
Then the Gaussian curvature would be nonpositive in the unit ball.

Proposition 2.1. Let i be a C3 isometric embedding

i : (Br (0) , gII) −→ R
3

for some r > 0. Then the second fundamental form of i (Br (0)) vanishes at

i (0) , or II(i (0)) = 0.

Proof. We may assume i (Br) is the graph Σw of a function x3 = w (x1, x2)
and w (0) = 0, ∇w (0) = 0. Then II(i (0)) = D2w (0) and detD2w (0) = 0.
Suppose

D2w (0) 6= 0.

Let P3 be the projection from R3 to x1 x2 plane. Set J (x) = P3 (i (x)). We
may assume DJ is the identity map on the tangent space R2 at 0, and

D2w (0, 0) =

[
0 0
0 −τ

]
.
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For a sufficiently large n, Bρn (zn) ⊂ Br and

gII = e2δnv(r
180(1000(zn+x/ρn))−(360,0))dx2

in the 179◦ to 181◦ section of the ball Bρn (zn) .
In order to simply the presentation, we work with the metric gδn =

e2δnv(x)dx2 as in the Corollary 2.1. Let Σe be the flat, concave extension of
i
(
B−

2 \B
−

1

)
by Lemma 2.3, where B−

ρ = {(x1, x2) |x1 < 0} ∩ Bρ. Note that
we may consider the graph x3 = wε (x) = w (εx) for small ε, then

∥∥∥∥D
2wε −

[
0 0
0 −ε2τ

]∥∥∥∥
C1

≤ ε3,

make the extension, then scale back.
Since i

(
B−

1

)
is negatively curved, or detD2w ≤ 0 and concave, we apply

Lemma 2.4 to conclude that i
(
B−

1

)
is above Σe.

Let P be the normal projection of points p above Σe down to Σe, that is
[p− P (p)] ⊥ Σe. By concavity of Σe, we have

Length (T, gδn) = Length (i (T ) , gΣw) ≥ Length (P (i (T )) , gΣe) ,

Where gΣw and gΣe is the induced metrics on Σw and Σe.
Note that P (i (C1)) = i (C1) , P (i (C3)) = i (C3) , P (i (A2)) = i (A2) ,

there is an isometry i0 : Σe −→
(
R2, dx2

)
such that i0 ◦ P ◦ i (C1) = C1,

i0 ◦ P ◦ i (C3) = C3, i0 ◦ P ◦ i (A2) = A2. Apply Corollary 2.1, we have

Length (P (i (T )) , gΣe) = Length
(
i0 ◦ P ◦ i (T ) , dx2

)
> Length (T, gδn) .

Thus we arrive at

Length (T, gδn) > Length (T, gδn) .

This contradiction finishes the proof of the above proposition.

Now we give the constructive proof of Theorem 1.1.

Proof. Step1. Let k̃ be a smooth function in R2 satisfying

k̃ < 0 in Bn = B2−2n

(
2−n, 0

)
, n = 1, 2, 3, · · ·

k̃ = 0 otherwise.

Let u1 be a smooth solution of

△u1 = −k̃.

Then the Gaussian curvature of the metric g1 = e2u1dx2 satisfies

Kg1 = −e−2u1△u1 < 0 in Bn

Kg1 = 0 otherwise.
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Step2. Choose a sequence zn,k outside each Bn and {(x1, x2) |x2 = 0} such
that

lim
k→∞

zn,k ∈ ∂Bn

∂Bn ⊂ {zn,k}
∞

k=1 .

For each zn,k, choose a simply connected thin tail Tn,k with Tn,k connecting
zn,k and the boundary ∂B1 such that

zn,k ∈ Tn,k

∂Tn,k ∩ ∂B1 = a piece of arc with positive length

Tn,k ⊂ R
2
+ = {(x1, x2) |x2 > 0} for x2 (zn,k) > 0

Tn,k ⊂ R
2
− = {(x1, x2) |x2 < 0} for x2 (zn,k) < 0

Tn,k ∩ Tm,j = ∅ for (n, k) 6= (m, j) .

x2

x1

Figure 2. Tails extending to the boundary.

We modify the metric g1 = e2u1dx2 over each tail Tn,k. But we proceed
with the tails in the upper and lower half planes separately.

SinceKg1 ≡ 0 in the simply connected domain R2
+\∪

∞

n=1B
n. We represent

g1 = dy2+ in R2
+\ ∪∞

n=1 B
n by a different coordinate system y+. Over each

Tn,k ⊂ R2
+, we plant a metric

g2 = e2Vn,kdy2+ in x−1 (Tn,k) ,

where Vn,k is similar to the one in the construction before Proposition 2.1,
but the 360 disjoint sub-tails extend to the boundary x−1 (∂B1) within
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n,kV     =   Nn,k

Figure 3. “Details” of one tail.

x−1 (Tn,k) . We know Vn,k = 0 in x−1 (B1\Tn,k) . With Vn.k = Nn,k cho-
sen large enough on x−1 (∂B1) intersection with the x pre-image of the 360
sub-tails, we make

△Vn,k ≥ 0 in x−1 (B1) .

We modify the metric g1 = e2u1dx2 over the tails in the lower half plane
R2
−
with different coordinate system in the same way.

So far, we obtain a new metric g2 = e2u2dx2 in B1 (which may not be
smooth). We modify g2 over the tails one last time.

Let

g3 = e2ǫn,kVn.kdy2+ in x−1 (Tn,k) for Tn,k ⊂ R
2
+

g3 = e2ǫn,kVn.kdy2
−

in x−1 (Tn,k) for Tn,k ⊂ R
2
−
.

By choosing ǫn,k > 0, ǫn,k −→ 0 sufficiently fast for k −→ ∞, we can assure
g3 = e2u3 dx2 is a smooth metric with Kg3 ≤ 0 in B1.

Step 3. Suppose there is an isometric embedding

i : (Br, g) −→ R3

for some r > 0. Then there is n∗ such that

Bn∗ ⊂ Br.

Applying Proposition 2.1, we have

II ◦ i = 0 on ∂Bn∗ .

Wemay assume i (Br) is represented as a graph x3 = f (x1, x2) with∇f (0, 0) =
0. Also we may assume the projection of i (Bn∗) down to x1 x2 plane is a
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domain Ω. Then

detD2f = Kg

(
1 + |∇f |2

)2
< 0 in Ω

D2f = 0 on ∂Ω.

From D2f = 0 on ∂Ω, it follows that ∇f = const. on ∂Ω and f coincides
with a linear function on ∂Ω. After subtracting the linear function from f ,
we may further assume f = 0 on ∂Ω. We still have detD2f < 0 in Ω. From
the maximum principle, we see that f ≡ 0 in Ω. This contradiction finishes
the proof of Theorem 1.1.

3. Metric with negative curvature except for one point

Relying on the metric constructed in Section 2, we construct a smooth
metric g in B1 with negative Gaussian curvature except for one point,
namely, Kg (x) < 0 for x 6= 0, such that the surface (B1, g) is not C3,α

isometrically embeddable in R3 even locally near 0.
For any surface (Ω, g), we define the C3,α isometric embedding norm by

‖(Ω, g)‖E = inf
{
‖II (i (Ω))‖C1,α | C3,α isometric embedding i : (Ω, g) −→ R3

}
.

Now we give a constructive proof of Theorem 1.2.

Proof. Let the annulus An = B1/n\B1/(n+1) ⊂ R2. We construct a metric

g = e2u0dx2 on B1 such that a non-isometrically embeddable metric g as in
Theorem 1.1 is planted (not just cut and pasted) over each annulus An.

x1

x2

Figure 4. Non-embeddable metric in each annulus.
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Set

ϕ̃n (r) =

{
e
−

1

r−1/n r = |x| > 1
n

0 0 ≤ r ≤ 1
n

We choose µ1 > 0, µ2 > 0, · · · , µn > 0, · · · such that ϕn = µnϕ̃n satisfies
that

∑
∞

n=1 ϕn is smooth and even
∑

∞

n=1 ǫnϕn is smooth for (ǫ1, ǫ2, · · · ) ∈ l∞.
For ǫ = (ǫ1, ǫ2, · · · ) ∈ l∞+ , that is ǫ1 > 0, ǫ2 > 0, · · · and ‖ǫ‖

∞
= max ǫm <

+∞ , set

Φǫ =
∞∑

m=1

ǫmϕm

gv = e2(u0+v)dx2.

By the construction,
(
An, e2u0dx2

)
is not C3 isometrically embeddable in

R3 for any n, then we have the following.
There exists 0 < η1 such that

∥∥(A1, gΦǫ

)∥∥
E
≥ 1 for ǫ ∈ l∞+ with ‖ǫ‖

∞
≤ η1.

Next there exists 0 < η2 < η1 such that ‖(Am, gΦǫ)‖E ≥ m for m = 1, 2
and ǫ = (η1, ǫ2, ǫ3, · · · ) ∈ l∞+ with ‖(0, ǫ2, ǫ3, · · · )‖∞ ≤ η2.

Inductively there exists 0 < ηk < ηk−1 such that ‖(Am, gΦǫ)‖E ≥ m
for m = 1, 2, · · · , k and with ǫ = (η1, η2, · · · , ηk, ǫk+1, ǫk+2, · · · ) ∈ l∞+ with
‖(0, · · · , 0, ǫk+1, ǫk+2, · · · )‖∞ ≤ ηk.

· · ·
Finally let Ψ =

∑
∞

m=1 ηmϕm , g = gΨ. We see that

‖(Am, g)‖E ≥ m for m = 1, 2, 3, · · ·

Kg (x) < 0 for x 6= 0 and

Kg (0) = 0.

It follows that there is no C3,α isometric embedding of (Br (0) , g) in R3 for
any r > 0, α > 0.
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