
Chapter 7

Poincaré conjecture

Know the unknown. Hear the unheard. See the unseen.
—Yogi Tea (teabag tag/tab)

This chapter picks up, in a certain sense, from the discussion of topological
spaces in Chapter 13. Some minimal additional structure and an essentially
purely intrinsic viewpoint are required. We also use the discussion of paths
from section 3.3 in Chapter 3.

Note: It is apparently difficult to find a precise, reasonable, and correct
statement of the Poincaré conjecture. For example, in 2024 the web page

https://www.claymath.org/millennium/poincare-conjecture/

starts by saying:

In 1904 the French mathematician Henri Poincaré asked if the
three dimensional sphere is characterized as the unique simply
connected three manifold.

As far as I know, R3 is a simply connected three manifold that is decidedly
not the three-sphere. The web page

https://en.wikipedia.org/wiki/Poincare conjecture

says the “standard form of the conjecture” is the following:

Every simply connected, closed 3-manifold is homeomorphic to
the 3-sphere.
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110 CHAPTER 7. POINCARÉ CONJECTURE

It may be correct that this is the “standard form of the conjecture” and
this may also be a technically correct statement of the conjecture. Unfor-
tunately, the reason it is technically correct is because the word “closed” in
the statement does not mean closed in the topological sense of being a closed
set. Also, the actual intended meaning is not mentioned except by giving
a “link” to the word “closed.” Not to be too critical, this is just one more
instance in which I view the terminology to be somewhat poorly chosen.

My main objective in this section is to give a precise, reasonable, and
correct statement along with certain other details. Above all one may note1

from the webpage

https://en.wikipedia.org/wiki/Manifold

that

There are many different kinds of manifolds. In geometry and
topology, all manifolds are topological manifolds, possibly with
additional structure.

Thus, a real question of importance if one wants to know what the conjecture
is actually asserting is

“What kind of manifold is mentioned in the conjecture?”

We attempt to present one answer to this question in the following section.

1Something which actually is correct.
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7.1 Locally Euclidean manifolds

Recall that the open ball of radius r > 0 centered at the origin 0 in Rn is
denoted by

Br(0) = {x = (x1, x2, . . . , xn) ∈ R
n : |x| < r}.

Definition 5. (locally Euclidean) Given a point P in a topological space X ,
if there is some natural number n ∈ N and a pair (U, V ) of open sets in X
for which

(i) V is the codomain of a homeomorphisms p : B2(0) → V ,

(ii) P ∈ U ⊂ U ⊂ V , and

(iii) the restrictions

p∣
∣

B1(0)

: B1(0) → U and p∣
∣

B1(0)

: B1(0) → U

are both homeomorphisms,

then the topological space X is said to be locally Euclidean at P .

Definition 6. (Poincaré manifold) Given a fixed natural number n ∈ N, a
topological space X along with a specified collection

A = {pα}α∈Γ

of homomeomorphisms pα : B2(0) → Vα is said to be a Poincaré manifold
of dimension n if for each P ∈ X , there exists a pair (Uα, Vα) of open sets
in X such that

(i) Vα is the codomain of one of the homeomorphisms pα ∈ A,

(ii) P ∈ Uα ⊂ Uα ⊂ Vα, and

(iii) the restrictions

p∣
∣

B1(0)

: B1(0) → Uα and p∣
∣

B1(0)

: B1(0) → Uα

are both homeomorphisms.
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The collection A in Definition 6 is called the covering atlas of X , and
the set X alone is often referred as the Poincaré manifold (or PM manifold)
for reasons that should become clear below. Each homeomorphism

p : B2(0) → V

in the covering atlas A is called a chart function and the Euclidean ball
B2(0) in this context is referred to as a chart or coordinate chart. The
codomain V is called a patch or coordinate patch in X . The inverse
ξ = p−1 : V → B2(0) ⊂ R

n is called a coordinate function, and each
coordinate ξj : V → R in ξ = (ξ1, ξ2, . . . , ξn) naturally bears the same name.

Theorem 1. A Poincaré manifold is a Hausdorff space.

Proof: Let P,Q ∈ X where P 6= Q and X is a Poincaré manifold. Let
p : B2(0) → V and q : B2(0) → W be chart functions in the covering atlas
A with P ∈ Uα ⊂ Uα ⊂ V and Q ∈ Uβ ⊂ Uβ ⊂W as in the definition of the
chart functions. If Uα ∩ Uβ = φ, then the open sets Uα and Uβ separate the
points P and Q in X .

Consider the situation in which Uα ∩ Uβ 6= φ. If Q ∈ V \Uα, then the
open sets Uα and V \Uα separate P and Q.

Alternatively, Q ∈ Uα ⊂ V . In this case, x = p−1(P ) and y = p−1(Q)
are both well-defined distinct points in B2(0) = p−1(V ). There exist disjoint
open balls Ba(x) and Bb(y) in B2(0), and

p(Ba(x)) and p(Bb(y))

are disjoint open sets in X separating P and Q. �

Exercise 7.1. Show the following: If X is a Hausdorff topological space and

1. P ∈ X ,

2. V is an open set in X with P ∈ V , and

3. for some natural number n ∈ N, there is a homeomorphism p : Rn → V ,

then X is locally Euclidean at P .

Exercise 7.2. Under the assumptions of Exercise 7.1 show there exists a
homeomorphism q : B1(0) → V where B1(0) ⊂ Rn.
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Exercise 7.3. Given p ∈ B1(0) ⊂ Rn, show there exists a homeomorphism
ψ : B1(0) → B1(0) with ψ(p) = 0. In fact, show φ : B1(0) → B1(0) by

φ(x) =

{

p+
(

−p · x+
√

(p · x)2 + |x|2(1− |p|2)
) x

|x|
, x 6= 0

p, x = 0

is the continuous inverse of such a function.

Exercise 7.4. What can you say about the higher regularity of the function
ψ = φ−1 from Exercise 7.3?

Exercise 7.5. Given p ∈ B1(0) ⊂ R2, show there exists a function ψ ∈
C∞(B1(0) → R2) with ψ(p) = 0, the restrictions

ψ∣
∣

B1(0)

: B1(0) → B1(0) and ψ∣
∣

B1(0)

: B1(0) → B1(0)

both homeomorphisms, and

Dψ(x) = c(x)

(

cos θ(x) − sin θ(x)
sin θ(x) cos θ(x)

)

where c ∈ C∞(B1(0) → (0,∞)) is a positive smooth function and θ ∈
C∞(B1(0)) is a smooth real valued function. In this case, we can say A :
B1(0) → SL2(R) by

A(x) =

(

cos θ(x) − sin θ(x)
sin θ(x) cos θ(x)

)

satisfies A ∈ C∞(B1(0) → SL2(R)).

Exercise 7.6. A Poincaré manifold is a topological space which is locally
Euclidean at each point and for which the chart functions all have domains
of the same dimension. (True or false?)

Exercise 7.7. (change of coordinates) Let X be a topological manifold of
dimension n. Assume p : B1(0) → U and q : B1(0) → V are chart functions
that is, p and q are homeomorphisms onto their respective codomains U and
V which are open sets in X . Let ξ = p−1 : U → B1(0) and η = q−1 : V →
B1(0). If Z = U ∩ V 6= φ, show the changes of coordinates

ψ = η ◦ p∣
∣

ξ(Z)

: ξ(Z) → η(Z) and φ = ξ ◦ q∣
∣

η(Z)

: η(Z) → ξ(Z)

are homeomorphisms.
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Exercise 7.8. The changes of coordinates in Exercise 7.5 are examples of
conformal mappings, and those particular conformal mappings are some-
times called Möbius transformations of the unit disk. The function
c : B1(0) → (0,∞) is called the conformal factor. Extend the result of
Exercise 7.5 to higher dimensions: Given p ∈ B1(0) ⊂ Rn, show there exists
a function ψ ∈ C∞(B1(0) → Rn) with ψ(p) = 0, the restrictions

ψ∣
∣

B1(0)

: B1(0) → B1(0) and ψ∣
∣

B1(0)

: B1(0) → B1(0)

both homeomorphisms, and

Dψ(x) = c(x)A(x)

where c ∈ C∞(B1(0) → (0,∞)) is a positive smooth function and A :
B1(0) → SLn(R) satisfies A ∈ C∞(B1(0) → SLn(R)).

Exercise 7.9. (atlas; overlap condition) Let A = {pα : B2(0) → Vα}α∈Γ
be any collection of chart functions as specified in the definition of a PM
manifold satisfying

X ⊂
⋃

α∈Γ

Vα.

Such a collection A is called an atlas for X , each open set Vα is called
a covering patch, and each homeomorphism pα ∈ A is called a chart
function.

The domain B2(0) associated with a specific homeomorphism p ∈ A is
called a chart. Verify the following patch overlap condition: If p : B2(0) →
V and q : B2(0) → W are chart functions in A for which Z = V ∩W 6= φ,
then the functions

p−1 ◦ q∣
∣

q−1(Z)

: q−1(Z) → p(Z) and q−1 ◦ p∣
∣

p−1(Z)

: p−1(Z) → q(Z)

are homeomorphisms.
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7.2 Connected and simply connected spaces

Recall (or consider) the following definitions:

Definition 7. (path connected) A topological space X is path connected
if given any two points x, y ∈ X there exists a path α ∈ C0([0, 1] → X) with
α(0) = x and α(1) = y.

Given a topological space X and numbers a, b ∈ R with a < b, a path
α ∈ C0([a, b] → X) is called a loop if α(a) = α(b).

Definition 8. (simply connected) A path connected topological space X
is simply connected if given any continuous path α : [0, 1] → X with
α(0) = α(1), there exists a function h ∈ C0([0, 1]× [0, 1] → X) satisfying

(i) h(0, s) = α(0) = h(1, s) for 0 ≤ s ≤ 1,

(ii) h(t, 0) ≡ α(t) for 0 ≤ t ≤ 1, and

(iii) h(t, 1) ≡ α(0) for 0 ≤ t ≤ 1.

The function h in the definition of simply connected is called a homotopy
or continuous deformation. The first argument of the deformation h is
called the parameter or parameterization variable. The second argument is
the deformation variable. It is sometimes convenient to have one or both of
these variables defined on an interval other than [0, 1].

Exercise 7.10. For this exercise, let X be a topological space and let
a, b, c, d ∈ R with a < b and c < d.

(a) Given a continuous path α ∈ C0([a, b] → X), use the change of variable

τ = (1− t)a+ tb

to find a path α0 ∈ C0([0, 1] → X) with

{α0(t) : t ∈ [0, 1]} = {α(τ) : τ ∈ [a, b]}.

(b) Given a loop α : [a, b] → X how there exists a homotopy h ∈ C0([a, b]×
[c, d] → X) satisfying

(i) h(a, s) = α(a) = h(b, s) for c ≤ s ≤ d,
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(ii) h(t, c) ≡ α(t) for a ≤ t ≤ b, and

(iii) h(t, d) ≡ α(a) for a ≤ t ≤ b.

if and only if there exists a homotopy h0 ∈ C0([0, 1] × [0, 1] → X)
satisfying

(i) h0(0, s) = α0(0) = h0(1, s) for 0 ≤ s ≤ 1,

(ii) h0(t, 0) ≡ α0(t) for 0 ≤ t ≤ 1, and

(iii) h0(t, 1) ≡ α0(0) for 0 ≤ t ≤ 1

where α0 is the path you found in part (a) above.

7.3 Compact manifolds

Recall (or consider) the following definition:

Definition 9. A topological space X is compact if every open cover of X ,
that is a collection {Uα}α∈Γ where Γ is some indexing set, the sets Uα are
open in X , and

X =
⋃

α∈Γ

Uα,

contains a finite subcover, that is for some k ∈ N there exist indices α1, α2, . . . , αk

for which

X =
k
⋃

j=1

Uαj
.

7.4 Statement of the conjecture

Theorem 2. (Poincaré conjecture) A compact simply connected Poincaré
manifold of dimension 3 is homeomorphic to S3.

Here S
3 = {x = (x1, x2, x3, x4) ∈ R

4 : |x| = 1} is called the three-sphere.

Exercise 7.11. Show the three-sphere with the inherited topology from R4

is a compact, simply connected, Poincaré manifold of dimension 3.

A conjecture/theorem may be considered in every dimension n ≥ 2:
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Theorem 3. (Poincaré conjecture in dimension n ≥ 2) A compact simply
connected Poincaré manifold of dimension n with n ≥ 2 is homeomorphic to
Sn.

In one dimension, the circle S1 is not simply connected, so it doesn’t really
make sense to ask a question quite like the Poincaré conjecture.

Exercise 7.12. S1 is a compact connected Poincaré manifold but is not
simply connected.

Exercise 7.13. A compact connected Poincaré manifold X of dimension
n = 1 is homeomorphic to S1. In this case, the assumption that X is simply
connected is both unnecessary and not possible.

Exercise 7.14. A noncompact connected Poincaré manifold X of dimension
n = 1 is homeomorphic to R

1. In this case, the assumption that X is
noncompact and connected implies X is simply connected.

Exercise 7.15. A simply connected Poincaré manifold X of dimension n =
1 is homeomorphic to R1. In this case, the assumption that X is simply
connected implies X is noncompact.

The Poincaré conjecture for dimension n = 2 is closely related to the
famous Riemann mapping theorem and/or the uniformization theorem from
complex analysis, and is worth having an entire section devoted to it below.
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7.5 Topological manifolds

Definition 10. (potentially naughty manifolds) Given a fixed natural num-
ber n ∈ N, a PN topological manifold (of dimension n) is a topological
space X satisfying the following condition:

For each P ∈ X , there exist open sets V ⊂ X with P ∈ V and
U ⊂ Rn and a homeomorphism p : U → V .

The condition involving U , V and p in Definition 10, or some minor
variant of that condition, is often said to express that X is (topologically)
locally Euclidean at each point. We have take a somewhat different point
of view above, and thus we may wish to introduce alternative terminology for
this condition now. Let us say a topological space X is loco-ly Euclidean
at P ∈ X if there exist open sets V ⊂ X with P ∈ V and U ⊂ Rn and a
homeomorphism p : U → V .

In view of the common dimension n for the sets U in Definition 10, another
way to refer to a PN topological manifold is as a a loco-ly Euclidean
topological space with uniform dimension n.

Exercise 7.16. Show a loco-ly Euclidean topological space with uniform
dimension n has the following property:

For each P ∈ M , there exists an open set V ⊂ M with P ∈ V
and a homeomorphism p : B1(0) → V

where B1(0) = {x = (x1, x2, . . . , xn) ∈ Rn : |x| < 1} as usual.

Exercise 7.17. Show any open interval I = (a, b) with a, b ∈ R and a < b
is homeomorphic to R in several ways:

(a) tanh−1 : (−1, 1) → R and tan : (−π/2, π/2) → R are both C∞ homeo-
morphisms, so φ : (a, b) → R by

tanh−1

[

1

b− a
(2x− a− b)

]

and ψ : (a, b) → R by

tan

[

π

2(b− a)
(2x− b− a)

]

are both C∞ homeomorphisms.
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(b) Note that q1 : (−1, 1) → R by

q1(x) =
1

2

[

1

1− x
−

1

x− 1

]

=
x

1− x2

is a C∞ rational homeomorphism. Consider q : (a, b) → R by

q(x) =
1

b− x
−

1

x− a
.

Exercise 7.18. Show a loco-ly Euclidean topological space with uniform
dimension n has the following property:

For each P ∈ M , there exists an open set V ⊂ M with P ∈ V
and a homeomorphism p : Rn → V .

Essentially all definitions of any kind of topological manifold contain some
kind of loco-ly Euclidean condition like the ones in the definiton of PN topo-
logical manifolds given above or in Exercises 7.16 or 7.18. Many references
use the one in Exercise 7.18.

The manifold(s) under consideration in the Poincaré conjectures are not
so potentially naughty. Aside from being locally Euclidean, they have the ad-
ditional features of being compact, connected, simply connected, and Haus-
dorff. The last condition follows, as we have seen in Theorem 1, from being
locally Euclidean at each point.

It is interesting to see a counterexample of sorts.2

Consider the class of compact and connected loco-ly Euclidean topological
spaces with uniform dimension n. These are still potentially naughty, and
indeed they can be. They do share a nice property with the open connected
subsets in Rn.

Exercise 7.19. Show a compact connected loco-ly Euclidean topological
space X with uniform dimension n is path connected. Hint: Lettig P0 be
fixed in X , show

{P ∈ X : there exists a path connecting P0 to P}

is both open and closed in X .
2This example might be of even more interest before the definition of Poincaré manifolds

is given as a motivation for that definition and the associated terminology. In particular,

this kind of example is precisely why the potentially naughty topological manifolds should

not be called locally Euclidean. One might even say that to do so would be loco.



120 CHAPTER 7. POINCARÉ CONJECTURE

Two sphere with an extra north pole

Recall that

S
2 = {x = (x1, x2, x3) ∈ R

3 : x2
1
+ x2

2
+ x2

3
= 1}

is a simply connected topological subspace of R3. Consider X = S2 ∪
{N∗} where the open sets in X include all the open sets U in S2 as a sub-
set/topological subspace of R3 along with the open sets of the following
forms:

V = (V1\{(0, 0, 1)}) ∪ {N∗} (7.1)

and
V = V1 ∪ {N∗} (7.2)

where V1 is an open subset of S2 satisfying (0, 0, 1) ∈ V1. This space is also
called the “bug-eyed sphere.”

Note that N∗ is not equal to any point in S
2. We have incorporated a

new point. However, given a homeomorphism p : U → V1 = p(U) ⊂ S2 with
V1 open in S2, the set U an open subset of R2, and (0, 0, 1) ∈ V = p(U), the
chart q : U → V by

q(x) =

{

p(x), x ∈ U\{p−1(0, 0, 1)}
N∗, x = p−1(0, 0, 1)

where V is given in (7.1) is a homeomorphism. Thus,M is a loco-ly Euclidean
topological space.

Exercise 7.20. Let X be the two sphere with an extra north pole as defined
above. Verify the following:

(a) X is a loco-ly Euclidean topological space of uniform dimension 2, i.e.,
a PN topological manifold.

(b) X is connected.

(c) X is compact.

According to Exercise 7.19 X is also path connected.

Exercise 7.21. Show the two sphere with an extra north pole X , as featured
in Exercise 7.20 above is simply connected.
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Exercise 7.22. Show the two sphere with an extra north pole X , as featured
in Exercise 7.20 above is not homeomorphic to S2. Hint: The property of
being a Hausdorff topological space is preserved under homeomorphism, i.e.,
the property of being a Hausdorff space is a topological invariant.

There is, of course, also a three sphere with two north poles (and an
n sphere with two north poles). These are all simply connected (pretty
naughty) topological manifolds that are not Hausdorff and are not homeo-
morphic to the standard sphere of the same dimension.

7.6 Topological surfaces

A Poincaré manifold of dimension n = 2 is a (topological) surface.

Exercise 7.23. Show

S
2 = {x = (x1, x2, x3) ∈ R

3 : x2
1
+ x2

2
+ x2

3
= 1}

as a topological subspace of R3 is a topological surface with an atlas A0

consisting of two charts.

Exercise 7.24. Show

S
2 = {x = (x1, x2, x3) ∈ R

3 : x2
1
+ x2

2
+ x2

3
= 1},

the topological surface featured in Exercise 7.23 is compact.


