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Figure C.2: Comparison of radiusD(a) and radiusR3(a) (left). Here it is im-
possible for a tether to reach a circle in a horizontal plane of the appropriate
radius radiusR3(a). The heavy tether segment T of length radiusD(a) extends
from the origin and is straining to reach the circle but is too short.

In this case, however, one cannot easily determine a family of tether curves
with constant length radiusD(a) connecting the origin to such a curve Γ. If
one is to obtain identification with an embedded surface in R3 even locally,
something more complicated must be done. Something is essentially different
about these Riemann surfaces.

Exercise C.2. Show the saddle shaped surface

{

(x1, x2, x
2
1 − x22) : (x1, x2) ∈ R

2
}

can be used to locally induce a matrix assignment on an open disk Bǫ(0)
giving a one-to-one correspondence of lengths of paths on the surface with the
Riemannian lengths of the corresponding paths in the disk calculated using
the induced matrix assignment. Show, however, that this matrix assignment
is not axially symmetric in the disk.

C.5 Ruijia’s question

In some cases asking a good question can be better than giving an answer.
Often a question is not entirely well-posed. Such an ill-posed question can
often play a key role in gaining understanding through the process of con-
sidering very carefully what the question is really about and asking auxil-
iary questions concerning what is required to obtain a well-posed question.
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Ruijia asked a question which (I believe) is not entirely well-posed but offers
some opportunity for learning through the process I’ve attempted to describe
above.

Ruijia’s original question was something like this:

How is it possible to put a smooth structure on the surface of a
cube?

I think this is a great question, if not entirely well-posed. Let me start first
with an auxiliary question which is perhaps not of direct interest, but which
I think is a reasonable one. How would you specifiy the surface of a cube
precisely in Euclidean coordinates? There is a choice of coordinates here,
and I think I’m safe in assuming “ambient” coordinates of dimension three.
That is to say, the surface of a cube in mind here is a subset of R3. One
example would be

∂C1(0) = {x = (x1, x2, x3) ∈ R
3 : max{|x1|, |x2|, |x3|} = 1}. (C.2)

The quantity
‖x‖∞ = max{|x1|, |x2|, |x3|}

is sometimes called the ℓ∞ norm on R3. The general notion of a norm (and a
normed space) to go along with it are going to be important concepts for us,
and they should be covered in the chapter on spaces where you can now read
about topological spaces. Because the quantity appearing in the definition
of ∂C1(0) above is a norm (the ℓ∞ norm on R3) the set ∂C1(0) is sometimes
called the surface of the ℓ∞ unit cube or the ℓ∞ unit sphere.4 Notice one
obtains the definition of

S
2 = ∂B1(0) = {x = (x1, x2, x3) ∈ R

3 : |x| = 1}

if the ℓ∞ norm is repleced in (C.2) with the Euclidean norm

|x| =

√

√

√

√

3
∑

j=1

x2j

which can also be denoted by | · | = ‖ · ‖2 and is the ℓ2 norm on R3. You
may recall that we have called S2 the unit sphere, but what one means by

4The symbols ‖x‖∞ should be read “the ell-infinity norm of x.”
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that is the unit sphere with respect to the Euclidean (or ℓ2) norm. Perhaps
a little terminology is in order if we want to discuss the surface of a cube and
the unit cube in particular. The subset

{x = (x1, x2, x3) ∈ ∂C1(0) : x1 = −1}

is a face or closed face of the unit cube. This face is illustrated in Figure C.3.
The surface of the cube has five more faces

Figure C.3: The unit cube in R3 and its back face.

{x = (x1, x2, x3) ∈ ∂C1(0) : x1 = 1}

{x = (x1, x2, x3) ∈ ∂C1(0) : x2 = −1}

{x = (x1, x2, x3) ∈ ∂C1(0) : x2 = 1}

{x = (x1, x2, x3) ∈ ∂C1(0) : x3 = −1}

{x = (x1, x2, x3) ∈ ∂C1(0) : x3 = 1}

which may be referred to as the front, left, right, bottom, and top faces
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respectively. We can also consider the open faces

{x = (x1, x2, x3) ∈ ∂C1(0) : x1 = −1, ‖(x2, x3)‖∞ < 1}

{x = (x1, x2, x3) ∈ ∂C1(0) : x1 = 1, ‖(x2, x3)‖∞ < 1}

{x = (x1, x2, x3) ∈ ∂C1(0) : x2 = −1, ‖(x1, x3)‖∞ < 1}

{x = (x1, x2, x3) ∈ ∂C1(0) : x2 = 1, ‖(x1, x3)‖∞ < 1}

{x = (x1, x2, x3) ∈ ∂C1(0) : x3 = −1, ‖(x1, x2)‖∞ < 1}

{x = (x1, x2, x3) ∈ ∂C1(0) : x3 = 1, ‖(x1, x2)‖∞ < 1}

which have nothing to do with sandwiches really.5

The complement of an open face with respect to the corresponding closed
face consists of four edges. For example, the edges of the back face are

{x = (x1, x2, x3) ∈ ∂C1(0) : x1 = x2 = −1}
⋃

{x = (x1, x2, x3) ∈ ∂C1(0) : x1 = x3 = −1}
⋃

{x = (x1, x2, x3) ∈ ∂C1(0) : x1 = −x2 = −1}
⋃

{x = (x1, x2, x3) ∈ ∂C1(0) : x1 = −x3 = −1}.

Alternatively, those closed faces with a nonempty intersection may be called
adjacent faces and each pair of adjacent faces intersects is a (closed) edge.
Thus, the back-right edge is

{x = (x1, x2, x3) ∈ ∂C1(0) : x1 = −x2 = −1}.

opposite faces have empty intersection, and there are three pairs of those:
front-and-back, left-and-right, and bottom-and-top.

The intersection terminology as well as the dimensionally relative open-
closed terminology can be extended to the edges.

Exercise C.3. How would you specify (write explicitly as a set) the open
back-bottom edge?

Exercise C.4. How would you express the condition that the open back-
bottom edge is actually an open set topologically? Hint: First consider how
an open face can properly be considered (topologically) as an open set.

5On a more serious note, you can see that I’ve used the ℓ∞ norm on R2 to specify these

open faces.
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Finally, adjacent (closed) edges intersect in vertices, and there are of
course eight of those.

Exercise C.5. What are the relations between edges and topological bound-
aries (as we have defined edges for a cube above)?

Now that we have one cube and the burden of a significant amount of
terminology to go along with it, I’d like to consider other cubes. One way to
obtain other cubes (and the surfaces determined by them) is by translation.
For example, a unit cube in the first octant is given by

{x+ (1, 1, 1) : x ∈ C1(0)}.

This one might naturally be referred to as a cube of side (or edge) length
two since for example {(t, 0, 0) : 0 ≤ t ≤ 2} is in the surface of this cube.
Another possibility is scaling. Two cubes of side length one are given by

{x/2 : x ∈ C1(0)} and {x/2 : x ∈ C1(p)}

where C1(p) = {x + p : x ∈ C1(0)}. Finally, there is the possibility of
rotation. The group of rotations of R3 is in one-to-one correspondence with
the collection SL3(R) of 3×3 matrices with real entries and determinant one.
In particular, there is a two-parameter family of these rotations—they make a
two-dimensional Lie group if you like—and they can be nicely parameterized
on the two dimensional torus T2 = S1×S1 ⊂ R4. I won’t get into the details
of this at the moment except to say that sometimes the symbol T2 and the
terminology “the two (dimensional) torus” are used to refer to the surface

{(2 + cos t)(cos s, sin s, 0) + sin t(0, 0, 1) : (s, t) ∈ [0, 2π]× [0, 2π]} ⊂ R
3.

rather than to the surface

T
2 = S

2 × S
2

= {x = (x1, x2, x3, x4) ∈ R
4 : |(x2, x2)| = |(x3, x4)| = 1} (C.3)

⊂ R
4.

Exercise C.6. Find bijections between T2 given in (C.3) and the sets

S = {(2 + cos t)(cos s, sin s, 0) + sin t(0, 0, 1) : (s, t) ∈ R
2} ⊂ R

3

and
Z = {(z1, z2) ∈ C

2 : |z1| = |z2| = 1}.

All three of these sets are referred to as the two-dimensional torus and de-
noted by T2 in [2].
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Given a specific rotation ψ : R3 → R3 we can consider the cube

{ψ(x) : x ∈ C1(0)}

where C1(0) = {x ∈ R3 : ‖x‖∞ < 1} and its boundary surface. Combining
scaling, rotation, and translation, we can express any cube in R3 as

{ψ(αx) + p : x ∈ C1(0)}

where ψ is a rotation, α > 0, and p ∈ R3, and then we can discuss the
boundary surface, faces, edges, and vertices of such a cube.

I’d like to turn my attention now to parameterization of the surface of
a cube. This again may be viewed as something of a tangent to the main
content of Ruijia’s question, but if I’m correct, his question is not quite
well-posed so this sort of meandering around is to be expected.6

The portions of ∂C1(0) within an open face can be easily parameterized
on an open subset of R2. For example, p : B1(0) → ∂C1(0) by

p(x) = (x1, x2,−1)

parameterizes a portion of the bottom face of ∂C1(0). See Figure C.4 (left).
If you think about it, it should become intuitively clear that the entire surface
of the cube cannot be parameterized by a single chart function (homeomor-
phism) defined on a open chart U in R2. One explanation for why this is
true is the following: If we assume p : U → ∂C1(0) is a global chart function
defined on an open set U ⊂ R2, then the open set U\{x} obtained by remov-
ing a single point from U is not simply connected. On the other hand, the
supposed image p(B1(0)\{x}) = ∂C1(0)\{p(x)} is simply connected. Since
the property of being simply connected is preserved under homeomorphism,
this is a contradiction.

Being forced to have more than one chart to parameterize the surface of
a cube (or any surface) is a kind of technical complication in this context.
In particular, I don’t think we need to consider the complication of having
more than one chart to address Ruijia’s question about the smoothness (or
a smooth structure) on the surface of a cube. With this in mind I’m going
to now focus on the particular surface

{x/2 + (1/2, 1/2, 1/2) : x ∈ ∂C1(0)}

6If you want a precise answer, then ask a precise question.
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Figure C.4: Continuous chart functions from a unit disk into the surface of
a cube. The trihedral corner surface (right)

and specifically the portion of it illustrated on the right in Figure C.4. This
surface is the image of the chart function p : B1(0) → R3 given by

p(x) =



























(0, 0, 0), x = 0 ∈ R2

|x|
(

cos
(

3
4
cos−1 x1

|x|

)

, sin
(

3
4
cos−1 x1

|x|
, 0
)

, 0
)

x ∈ A,

|x|
(

0, cos
(

3
4
sin−1 x1

|x|

)

, sin
(

3
4
sin−1 x1

|x|

))

, x ∈ B,

|x|
(

sin 3
4

(

π − cos−1 x1

|x|

)

, 0, cos 3
4

(

π − cos−1 x1

|x|

))

, x ∈ C



238 APPENDIX C. THOUGHTS ON B

where

A =

{

x = (x1, x2) ∈ B1(0) : 0 ≤ x2, 0 < x1 + x2, −
|x|

2
≤ x1

}

B =

{

x = (x1, x2) ∈ B1(0) : x1 ≤ −
|x|

2

}

C =

{

x = (x1, x2) ∈ B1(0) : x2 <, −
|x|

2
≤ x1

}

.

Figure C.5 may be helpful in understanding the (inverse) trigonometric func-
tions used to write down the formulas for the parameterization/chart function
p. Let us call this surface C′.

Figure C.5: Plots of cosine and sine and their various pieces used in the
construction of the piecewise definition of the chart function p of the trihedral
corner C′.

I suspect Ruijia is worried about the singularities in the surface of the
cube along the edges and also at the vertices. It will be noted that the
surface C′ also has the same kind of singularities along the edges of the
cube and at the trihedral corner. What is true is that it is not possible
to (and note this terminology carefully) parameterize C′ with a regular C1

parameterization or of course a regular smooth parameterization. Indeed,
the parameterization p is not even C1. We can only say p ∈ C0(B1(0) →
R3). It is possible to obtain a C1 parameterization of C′ or even a C∞

parameterization of C′, that is a bijective function q ∈ C∞(B1(0) → R3)
with q(B1(0)) = C′. I have not written one down, but you can ponder how
that might be done.

Exercise C.7. Find a smooth parameterization q of C′ as described above.
Hint: Make sure all the derivatives of q vanish at 0 ∈ B1(0) and all the
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angular derivatives of q vanish along the boundaries of the regions A, B, and
C illustrated on the bottom right in Figure C.4.

A regular parameterization, however, is something different, and that
rules out corners. Here is a definition which is a little technical, but I’ll
highlight the key part relevant to the discussion above.

Definition 23. (embedded regular surface in R3) Let q ∈ C1(V → S) be
a diffeomorphism which is a global parameterization of a surface S ⊂ R3

defined on an open set V ⊂ R2. By this we mean q : V → S ⊂ R3 is a
bijective function with coordinate functions q = (q1, q2, q3) for which all the
partial derivatives

∂qi

∂xj
for i = 1, 2, 3 and j = 1, 2

satisfy
∂qi

∂xj
∈ C0(V )

and for which given each point P ∈ S there are open sets U ⊂ V and
W,Q ⊂ R3 with P ∈ W and a homeomorphism ψ : W → Q satisfying the
following:

(i) The coordinate functions ψ = (ψ1, ψ2, ψ3) satisfy

∂ψi

∂xj
∈ C0(W ). for i = 1, 2, 3 and j = 1, 2, 3,

(ii) The coordinate functions φ = ψ−1 = (φ1, φ2, φ3) of the inverse φ : Q →
W satisfy

∂φi

∂xj
∈ C0(Q). for i = 1, 2, 3 and j = 1, 2, 3,

(iii) U0 = {(x, 0) ∈ R3 : x ∈ U} ⊂ Q ⊂ {(x, z) ∈ R3 : x ∈ U},

(iv) φ(U0) ≡ W ∩ S, and

(v) The restriction

φ∣
∣

U0

: U0 → S ∩W satisfies φ∣
∣

U0

(x, 0) ≡ q(x) for x ∈ U0.
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With all of the above given, we say q is regular if the vectors

∂q

∂x1
(x) =

(

∂q1

∂x1
(x),

∂q2

∂x1
(x),

∂q3

∂x1
(x)

)

and
∂q

∂x2
(x) =

(

∂q1

∂x2
(x),

∂q2

∂x2
(x),

∂q3

∂x2
(x)

)

are linearly independent in R3 for each x ∈ V . This is the crucial condition
making a parameterization regular, and this is what you cannot get for the
trihedral corner.

Most of the conditions described in Definition 23 are illustrated in Fig-
ure C.6.

Figure C.6: A nice chart function q for a regular embedded surface S ⊂ R3.

Note: The conditions on the chart function q, and the complicated condi-
tions (i)-(v) in particular in Definition 23 can be simplified substantially,
but these more complicated conditions still follow for some restriction of a
chart function as long as the crucial “regularity” condition concerning linear
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independence is retained. I have stated the definition including a chart func-
tion with these additional properties because they illustrate in more detail
some of the properties of a regular embedded surface and I think they are
worth keeping in mind. Specifically, it may simply be assumed that q is a
differentiable homeomorphism for which the two partial derivatives qx1

and
qx2

are linearly independent at each point.

The definition above can also be generalized somewhat if, rather than
assuming a global chart function q, one assumes the existence of a local
chart function q associated with each point P ∈ S. For comparison on all
these points see Definition 1 in Chapter 2 (page 52) and the following section
of [1].

Exercise C.8. Explain why the trihedral corner surface C′ is not a regular
surface according to Definition 23. Hint: If qx1

and qx2
are linearly indep-

dendent, there should be a well-defined tangent plane at each point P ∈ S.

I’ve been calling the trihedral corner surface a “surface,” and I’ve got a
definition of an embedded regular surface, but the trihedral corner is not one
of those. Perhaps I should offer a definition of some kind of surface that
actually applies to the trihedral corner surface C′. The usual approach is to
designate a set like C′ a piecewise affine surface. Such surfaces might also
be referred to as “piecewise linear” or “PL” surfaces. The definition can be a
little delicate. In particular, it is apparently somewhat difficult to formulate
a reasonably flexible definition in keeping with our convenient restriction of
having single global chart function.

***The following definition is a work in progress***

I will remark the following: A piecewise affine surface embedded
in R3 should be a more general object than a polyhedral surface
or the surface of a polyhedron. Concerning these latter there is a
nice quote of Branko Grünbaum [3]:

The Original Sin in the theory of polyhedra goes back
to Euclid, and through Kepler, Poinsot, Cauchy and
many others continues to afflict all the work on this
topic (including that of the present author). It arises
from the fact that the traditional usage of the term
“regular polyhedra” was, and is, contrary to syntax
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and to logic: the words seem to imply that we are deal-
ing, among the objects we call “polyhedra”, with those
special ones that deserve to be called “regular”. But
at each stage—Euclid, Kepler, Poinsot, Hess, Briick-
ner,. . .—the writers failed to define what are the “poly-
hedra” among which they are finding the “regular”
ones. True, we now know what are the convex poly-
hedra, which we think are the polyhedra Euclid had in
mind; hence there is no stigma attached to the use of
a term like “regular convex polyhedron”. But where
in the literature do we find acceptable definitions of
polyhedra that could be specialized to give the “regular
Kepler-Poinsot polyhedra”? For these, a better expres-
sion would be to say that they are “regularpolyhedra”—
a distinct kind of objects, constructed according to
more or less explicit procedures, and without any con-
nection to what the separate parts of that ungainly
word may mean.

Definition 24. (piecewise affine surface embedded in R3) Let V1, V2, . . . , Vk
be finitely many disjoint simply connected open sets in R2 with the following
properties:

F1 Vi ∩ Vj = φ for i 6= j,

F2 Each Vi for i = 1, 2, . . . , k has boundary

∂Vi =

ℓi
⋃

j=1

Γij

with Γij for j = 1, 2, . . . , ℓi a regularly parameterized curve parameter-
ized with a parameterization γij ∈ C1([aij , bij ] → Γij) with

F3 |γ′ij| = 1, (arclength parameterizations)

F4 γij(bij) = γi,j+1(ai,j+1) for j = 1, 2, . . . , ℓi − 1, (concatenation)

F5 The concatenation Γi1,Γi2, . . . ,Γiℓi is a simple closed curve with

γiℓi(biℓi) = γi1(ai1),

(concatenation is closed) and
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F6 For at least one x ∈ ∂Vi with γij(t) = x there holds

x− s[γ′ij(t)]
⊥ = x− s

(

−(γ′ij)
2(t), (γ′ij)

1(t)
)

/∈ Vi, for s ≥ 0

where γij = (γ1ij, γ
2
ij) and

γ′ij =
(

(γ1ij)
′, (γ2ij)

′
)

=
(

(γ′ij)
1, (γ′ij)

2
)

.

That is, ∂Vi is parameterized in the counterclockwise direction.

Let S ⊂ R3 and assume there are chart functions qi ∈ C∞(Vi → S) for
i = 1, 2, . . . , ℓi satisfying the following:

C1 qi is affine in the sense that

qi(x) = (Aix
T )T + bi (C.4)

where Ai is a 3× 2 matrix with rank two, i.e., the constant vectors

∂qi

∂x1
(x) =

(

∂qi1

∂x1
(x),

∂qi2

∂x1
(x),

∂qi3

∂x1
(x)

)

and
∂qi

∂x2
(x) =

(

∂qi1

∂x2
(x),

∂qi2

∂x2
(x),

∂qi3

∂x2
(x)

)

are linearly independent in R3, and bi ∈ R3 is a fixed affine shift
vector. (The use of the double transpose in (C.4) allows the mixing of
row vectors and standard matrix multiplication.)

C2 Note each chart function qi for i = 1, 2, . . . , k extends by the formula
(C.4) not only to the closure Vi but to all of R2. We let qi ∈ C∞(R2 →
R3) denote the extension as well. On the other hand, qi : R2 →
qi(R2) is a homeomorphism, and we denote by (qi)−1 the inverse of the
restriction to Vi so that

(qi)−1 =

(

qi
∣

∣

Vi

)−1

: qi(Vi) → Vi.

For i = 1, 2, . . . , k, let

Ii = {m ∈ {1, 2, . . . , k}\{i} : qi(Vi) ∩ qm(Vm) 6= φ}.
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For each m ∈ Ii, we require

qi(Vi) ∩ qm(Vm) = Γij = Γmn (C.5)

for some unique j ∈ {1, 2, . . . , ℓi} and some unique n ∈ {1, 2, . . . , ℓm}.

Furthermore, given the relation (C.5) for some (unique) j ∈ {1, 2, . . . , ℓi},
some m ∈ Ii, and some (unique) n ∈ {1, 2, . . . , ℓm}, we require m ∈ Ii

is unique as well.

C3 For each i = 1, 2, . . . , k, let

Ji = {j ∈ {1, 2, . . . , ℓi} : qi◦αij((aij, bij))∩q
m(Vm) = φ, m = 1, 2, . . . , ℓm},

Ei =
⋃

j∈Ji

qi(Γij)

and

E =
k
⋃

i=1

Ei.

We assume/require

S =

(

k
⋃

i=1

qi(Vi)

)

\E =
k
⋃

i=1

(

qi(Vi)\Ei

)

. (C.6)

C4 For each m ∈ Ii, i = 1, 2, . . . , k for which (C.5) holds we require

γij(s) = γij(aij) + s γ′ij(aij) for 0 ≤ s ≤ bij − aij . (C.7)

C5 As a consequence of (C.7) and the form of qi given in (C.4) there holds

qi ◦ αij(s) = (Ai(γij(aij))
T )T + bi + s (Ai(γ

′
ij(aij))

T )T .

We require furthermore that for each m ∈ Ii, i = 1, 2, . . . , k for which
(C.5) holds, exactly one of the conditions

(Ai(γij(aij))
T )T + bi + s uij = (Am(γmn(amn))

T )T + bm + s umn

or

(Ai(γij(aij))
T )T + bi + s ui = (Am(γmn(amn))

T )T + bm − s um
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holds for 0 ≤ s ≤ cij where

uij =
(Ai[α

′
ij(aij)]

T )T
∣

∣(Ai[α
′
ij(aij)]

T )T
∣

∣

, umn =
(Am[α

′
mn(amn)]

T )T

|(Am[α′
mn(amn)]T )T |

,

and
cij =

∣

∣(Ai[α
′
ij(aij)]

T )T
∣

∣ = |(Am[α
′
mn(amn)]

T )T |. (C.8)

Note: Since Ai has full rank (2) we know

cij =
∣

∣(Ai[α
′
ij(aij)]

T )T
∣

∣ 6= 0.

Similarly,
cmn = |(Am[α

′
mn(amn)]

T )T | 6= 0.

The condition (C.8) requiring cij = cmn imposes an affine compatibility
between qi and qm when m ∈ Ii.

Given the face conditions F1-F6 and the chart conditions C1-C5 above
and noting carefully the convention introduced in C2 that

(qi)−1 =

(

qi
∣

∣

Vi

)−1

: qi(Vi) → Vi.

as well as condition(C.6), we consider the set

V0 =

k
⋃

i=1

(qi)−1(S).

If j0 ∈ {1, 2, . . . , ℓi}\Ji, then there is some unique m ∈ Ii for which according
to (C.5)

qi(Vi) ∩ qm(Vm) = Γij0 = Γmn.

By C4-C5 exactly one of the conditions

qi ◦ αij0(s) = qm ◦ αmn(s)

or
qi ◦ αij0(s) = qm ◦ αmn(bmn − amn − s)

holds for 0 ≤ s ≤ bmn − amn where bmn − amn = bij0 − aij0 .
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Note carefully here the requirement of C2: For each m ∈ Ii it is required
that a uniqe j exist satisfying (C.5). Given the relation (C.5), the index m
is required to be unique. See Exercise C.10 below.

We define an auxiliary chart-like domain Ṽ which is the topological quo-
tient space obtained from the partition of V0 constructed as follows:

(i) If x ∈ V0 ∩ Vi, then we take the singleton {x} to be in Ṽ .

(ii) If x ∈ V0 ∩ Γij and qi(x) = qm(y) for some m ∈ {1, 2, . . . , k}\{i} and
some y ∈ Vm, then we take the set

{y ∈ V0 : (q
m)−1(y) = qi(x) m ∈ {1, 2, . . . , k}\{i}}

to be in Ṽ .

Finally, we say S is a piecewise affine surface if the map q̃ : Ṽ → S
induced by the map q : V0 → S given by

q(x) = qi(x), x ∈ Vi for i = 1, 2, . . . , k

is a homeomorphism.

Exercise C.9. Show the trihedral corner C′ is a piecewise affine surface.
Hint: Figure C.7.

If the definitions of regular embedded surface and piecewise affine surface
above are formulated correctly, then these should be examples of Poincaré
manifolds.

Exercise C.10. Show that if we drop the additional condition concerning
the uniqueness of m in the chart condition C2 of Definition 24, then sets like
the singular triple junction

T =

{

t

(

cos
2jπ

3
, t sin

2jπ

3
, x3

)

: 0 ≤ t < 1,−1 < z < 1, j = 0, 1, 2

}

illustrated in Figure C.8 are allowed by/satisfy the resulting definition.

Let me finally return to Ruijia’s original question. Given the usual use
of the term “smooth structure,” it is easy to put a smooth structure on the
dihedral corner surface C′. We have already done it. The only thing that
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Figure C.7: Affine chart function q1 : V1 → C′ for a piecewise affine embedded
trihedral corner S = C′ ⊂ R3.

is required is a single bijection p : U → C′ where U is some open subset of
R2. Such a bijection is illustrated on the right in Figure C.4. We do not
even need continuity, so this assertion also is valid for the strange manifold
C mentioned in Chapter 3.

What I have written in the previous paragraph may seem terribly myste-
rious, and in a sense it is. But what I have written is also correct. The key
is in the meaning of “smooth structure.” One way to think of this is as some
formal notion according to which one can make a distinction among real val-
ued functions f : C′ → R concerning which ones have particular regularity
properties.

Taking one step back, if we want a “topological structure” on a (point)
set like B (the Riemannian manifold/disk of Chapter 3), C (the spray of
points from Chapter 3 which will also be a Riemannian manifold when we
get done with it), or C′ (Ruijia’s dihedral corner surface—a part of Ruijia’s
surface of a cube that I’ve isolated), then you need a topology. If you have a
topology, you can distinguish the continuous real valued functions f : C′ → R

from the discontinuous ones. The set C′ has an induced topology from R3,
so this is one way to put a topology (or “topological structure”) on C′. But
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Figure C.8: A singlular triple junction. Such sets are interesting in other
contexts, notably in geometric measure theory and modeling soap films, but
they are rather complicated.

we can also say a set U ⊂ C′ is open in C′ if and only if p−1(U) is open in
B1(0). It turns out this gives you the same thing. That is similarly true
for B. It is not true for the spray of points C. In that case, we ignore the
subspace topology on C inherited from R3, and we specifically choose the
topological structure/topology induced by the bijection p : B1(0) → C from
Exercise 3.16: A set U ⊂ C is open in C if and only if p−1(U) = ξ(U) is open
in B1(0). That gives me a topology on that spray of points C and I can tell
if a function f : C → R is continuous with respect to that topology. That is
a topological structure.

Exercise C.11. Show a real valued function f : C′ → R defined on the trihe-
dral corner surface is continuous if and only if f ◦ p ∈ C0(B1(0)). Similarly,
given any topological space X , the function f : C → X is continuous (with
respect to the topology on C induced by the bijection p : B1(0) → C) if and
only if f ◦ p ∈ C0(B1(0) → X). Finally, show f : X → C is continuous if
and only if ξ ◦ f ∈ C0(X → B1(0)) where ξ = p−1 : C → B1(0).

In much the same way, the continuous bijections p : B1(0) → B, p :
B1(0) → C and p : B1(0) → C′ allow me to determine if a real valued
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function f with domain one of these spaces is differentiable, C1, C2, etc., or
C∞. How do I do that? Here is how:

Remember this is (or these are) just definitions:
A real valued function f : C′ → R is differentiable if f ◦ p : B1(0) → R

is differentiable.
This definition has the advantage that it certainly distinguishes some

functions f : C′ → R as “differentiable” and others as not differentiable. This
definition also has the irritating, and probabably justifiably objectionable,
characteristic that there is no function g : C′ → R which can be recognized
as a partial derivative (or more generally as a directional derivative) of a
“differentiable” function f . This can be understood in a couple different
ways. First of all, partial derivatives of the composition f ◦ p would, of
course, not really qualify as partial derivatives of the function f itself. We
will see this more clearly when we consider additional chart functions, but
it is pretty obvious that if there is a notion of a partial derivative of f , then
a partial derivative of some composition involving f like f ◦ p should not
be it. Furthermore, there is no way to directly calculate a partial derivative
of f : C → R. Of course, in some instances there is a way you could try.
For the Riemannian manifold B, you could happily take (partial) difference
quotients with respect to the Euclidean coordinates in B1(0) since this is the
“same” as B as a point set, but if you think about it, you will get the wrong
answer because the Euclidean distance in B1(0) is not correct with respect
to the distances in B. We can see this more clearly in the next section below.

Let’s pause for a moment to consider carefully the difference between this
“new” definition of differentiability and a/the more familiar one. We say a
function f : U → R defined on an open set U ⊂ R2 is differentiable at
x ∈ U if there exists a linear function L : R2 → R1 such that

lim
p→x

f(p)− f(x)− L(x− p)

|x− p|
= 0.

In this case the linear function L ∈ i(R2 → R) is called the differential of
f at x and is denoted by dfx : R2 → R. Furthermore, the quantities

lim
v→0

f(x+ vej)− f(x)

v

are well-defined for j = 1, 2 where e1 = (1, 0) and e2 = (0, 1). These are
called partial derivatives and are denoted by

∂f

∂xj
(x) = lim

v→0

f(x+ vej)− f(x)

v
.
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More generally, differentibility at a point also implies the existence of the
limits

Duf(x) = lim
v→0

f(x+ vu)− f(x)

v
(C.9)

for any u ∈ R2, and these limits are called directional derivatives. Some-
times the notation and limits taken in (C.9) is limited to situations in which
u ∈ S1 (or more generally in which |u| = 1) to emphasize that the value gives
the rate of change of the function f in a certain direction.

Exercise C.12. Give an interpretation of Duf(x) as a rate of change of
values of the function f when u is not a unit vector.

We say f is differentiable on all of U if f is differentiable at each point
x ∈ U . In this case, the differential dfx can be used to define a function
pf : U × R2 → R by pf(x,v) = dfx(v). The function pf , which we can call
the point differential function has various properties. For example, pf is
linear in the second argument. We do not know much, however, about the
regularity of pf in the first argument. In this case, there is also a natural
function assigning to each x ∈ U a (bounded) linear functional in i(R2).
This function is naturally denoted df : U → i(R2) and is also called the
differential. We can distinguish between dfx and df by calling the former
the differential at a point and the latter the differential function or
differential form if we like. Finally, in this case, the values of the partial
derivatives define functions

∂f

∂xj
: U → R

for j = 1, 2. Again, we do not know anything about the regularity of these
functions. In summary, the above is differentiability for a real valued function
f defined on an open subset of R2.

Now we can add a couple more observations about differentiability we
have left out. These have to do with collections of functions satisfying the
conditions of differentiability.

1. If f : U → R is a function which is differentiable at a point x ∈ U ,
then the function cf : U → R obtained by scaling the value of f by a
constant c ∈ R is also differentiable at x.

2. If f : U → R and g : U → R are two functions both of which are
differentiable at a point x ∈ U , then the f + g : U → R obtained by
adding the values of f and g is also differentiable at x.
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3. Consequently the collection of all functions f : U → R which are
differentiable at the point x ∈ U is a real linear space.7 This linear
space is not used so often, and I do not know that it has any special
name or notation associated with it. It is a well-defined linear space
all the same.

4. The collection of all differentiable real valued functions on all of U is
also a linear space. This real linear space also does not seem to have
a (standard) notation, but it deserves one. Here is my suggestion:
Diff1(U).

5. If you think about it, there are a number of other natural linear spaces
to consider in connection with Diff1(U). For example, the collec-
tion of differential functions associated with differentiable functions in
Diff1(U) is a linear space. That is,

Dform1(U) = {df ∈ i(R2)U : f ∈ Diff1(U)}.

Exercise C.13. Verify that the collection of all point differential functions
pf : U × R2 → R associated with functions f ∈ Diff1(U) is a real linear
space, and make up a good notation for this space of point differential
functions.

Exercise C.14. Given an open set U ⊂ R2, the collection of all functions
v : U → R2, that is, (R2)U , is a linear space. You can check it. Verify that
the collection of all functions vf : (R2)U → RU by vf(v)(x) = pf(x,v(x))
for some f ∈ Diff1(U) is a real linear space. Of course, the space (R2)U is
the space of vector fields on U . The function vf determined by the differ-
ential of a function f ∈ Diff1(U) may be called a point-field differential
function.

In contrast, we have a new definition of differentiability for sets like B, C,
and C′. This new definition uses the old definition above. Take for example
Ruijia’s trihedral corner surface C′:

A function f : C′ → R is differentiable if f ◦ p : B1(0) → R is
differentiable (in the old sense).

7You may note that I am trying to use the term “linear space” here in contrast to

the usual “vector space.” This is not by accident, and the rationale for such, perhaps

inconvenient and perhaps subversive, distinctions will be elaborated later.
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Let’s assume for a moment that this new definition of differentiability is
reasonable. What does it get us? As mentioned above, it does not get us a
derivative (or partial derivatives or directional derivatives) for f . Let us leave
aside for a moment the question of whether or not we can get a reasonable
notion of a differential for f or any of the various flavors of differential func-
tions discussed above. I will have a good deal to say about that later. What
we can say for sure is that this new (relatively simple) notion of differentiable
does get us some linear spaces. The collection of all real valued differentiable
functions, according to this new definition, is a linear space for sure. To see
this, simply note that if f : C′ → R satisfies

f ◦ p ∈ Diff1(B1(0))

and c ∈ R, then (first of all) cf is a well-defined real valued function on
the trihedral corner surface C′. Furthermore (cf) ◦ p has the same values as
c(f ◦ p). Since Diff1(B1(0)) is a linear space, we know then

c(f ◦ p) ∈ Diff1(B1(0)).

And it follows that cf satisfies the new definition of differentiability on C′.
Similar reasoning applies to f+g when f, g are (new) differentiable functions
on C′.

This observation about the linear space of (new) differentiable functions
on a set like the trihedral corner surface C′ is largely what is meant—in
its entirety—by saying C′ has a “smooth structure” or is given a smooth
structure by the chart function p : B1(0) → C′.

Now let’s take a moment to be a little more critical. Is it really reasonable
to say a function f : C′ → R is differentiable just because f ◦p : B1(0) → R

is differentiable (in the old sense)? Of course, it does say something about
the function f as compared to other real valued functions with domain C′

which might not satisfy this condition. On the other hand, we do not even
get a partial derivative or directional derivatives out of the deal. From this
point of view, I think it is reasonable to say this property should actually
not be called differentiability. It should be called something else. And I have
a suggestion. We could do this:

If a function f : C′ → R has the property that f◦p ∈ Diff1(B1(0)),
then we can say the function f is chart differentiable.8

8. . . or differentiable with respect to the chart—or even differentiable with respect

to charts if we have more than one chart, which is a situation we have not really addressed

in any substantial way yet.
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I actually like this terminology and the idea behind it quite a lot. But you
must realize that if you go with me on this, you will be bucking the trend that
I guess started with Hermann Weyl who is one of the recognized founders of
the subject of Riemannian geometry and is recognized (along with a lot of
other people who are not me) as something of an authority. On the other
hand, I’m no fan of authoritah, so I’m happy to go further in my blasphemy.

One can ask the question:

Should the fact that I have a bijection between a nice respectable
open set like B1(0) ⊂ R2 and some point set C be conflated to
justify the terminology that I’ve put a “smooth structure” on C?

Who is responsible for this terminology anyway? Is there a justification for
it? If there is, I suppose it is merely the fact that it allows the consideration
of various linear spaces as discussed above. If we wish to make a critical
response, as with differentiability we can offer a new name/term. I suggest
that instead of “smooth structure,” we might say topological spaces like B,
C, and C′ are given a chart structure.

We have used the chart structure to actually get a topology on the tri-
hedral corner surface C′, and then given any topological space X , it makes
good sense to consider the continuous functions C0(X → C′) or the con-
tinuous functions C0(C′ → X). These are not linear spaces. The real val-
ued continuous functions, however, C0(C′) and/or the continuous functions
C0(C′ → Rn), are linear spaces.

We can use the chart structure given by p : B1(0) → C′ to also define the
following linear spaces

{f ∈ C0(C′) : f ◦ p ∈ Diff1(B1(0))}

{f ∈ C0(C′) : f ◦ p ∈ C1(B1(0))} (C.10)

{f ∈ C0(C′) : f ◦ p ∈ C2(B1(0))} (C.11)

...

{f ∈ C0(C′) : f ◦ p ∈ C∞(B1(0))}. (C.12)

We have seen above that

f ∈ C0(C′) ⇐⇒ f ◦ p ∈ C0(B1(0)).
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See Exercise C.11. Recall the linear space C1(B1(0)) consists of those func-
tions f ∈ Diff1(B1(0)) for which each of the partial derivatives

∂f

∂xj

satisfies
∂f

∂xj
∈ C0(B1(0)).

Consequently, the set in (C.10) is a linear space. This linear space might
usually be referred to as C1(C′) and the elements called continuously differen-
tiable functions on C′. I think it’s fair, however, to object to such terminology
and notation, but to be constructive we might wish to offer a replacement.
As we had chart differentiable functions f ∈ C0(C′), we could designate the
linear space in (C.10) as the collection of chart C1 functions and write

cC1(C′) = {f ∈ C0(C′) : f ◦ p ∈ C1(B1(0))}.

Exercise C.15. The definition I’ve given above for C1(B1(0)) is not quite the
usual one. More generally, if U is an open subset of Rn and f : U → R, then
f is said to be partially differentiable at x ∈ U if for each j = 1, 2, . . . , n
the limit

lim
v→0

f(x+ vej)− f(x)

v
(C.13)

exists. Also when the limit in (C.13) exists, the value of the limit is denoted
of course by

∂f

∂xj
(x) = lim

v→0

f(x+ vej)− f(x)

v
.

As usual f is said to be partially differentiable on all of U if f is par-
tially differentiable at each point, and in this case the values of the partial
derivatives define functions

∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn
∈ R

U .

The collection (which is a linear space) of partially differentiable functions
may be denoted by pDiff(U). The usual definition of C1(U) is

C1(U) =

{

f ∈ pDiff(U) :
∂f

∂xj
∈ C0(U) for j = 1, 2, . . . , n

}

. (C.14)
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Show this definition is equivalent to the nonstandard one given above. That
is, show that each function f ∈ C1(U) according to (C.14) is differentiable,
i.e., satisfies f ∈ Diff1(U).

Exercise C.16. Show cC1(C′) ⊂ C0(C′).

I’ll finish up this section by tidying up and summarizing the proposed
notation:

cDiff1(B) = {f ∈ C0(B) : f ◦ p ∈ Diff1(B1(0))}

cC1(B) = {f ∈ C0(B) : f ◦ p ∈ C1(B1(0))}

cC2(B) = {f ∈ C0(B) : f ◦ p ∈ C2(B1(0))}

...

cC∞(B) = {f ∈ C0(B) : f ◦ p ∈ C∞(B1(0))}.

These are the chart differentiable functions on B, the chart C1 func-
tions on B, the chart C2 functions on B, and so on, to the chart C∞

functions on B.

C.6 Lance’s idea/answer

It can also be good to ask a well-posed question. This can especially be the
case when the answer to the question is not immediately obvious (to you)
but you think you have a good chance to answer the question. Though I
may not have posed the question, originally finding its origin in the ideas of
Travis and Ruijia above, using the discussion of smooth embedded regularly
parameterized surfaces included in my comments about Ruijia’s question
above, we now have the means to pose it precisely:

Does there exist a surface S ⊂ R3 regularly embedded by some
single chart function q : B1(0) → R3 where B1(0) ⊂ R2 so that
the natural bijection ψ : B → S by ψ(P ) = q ◦ (x) where p(x) =
P ∈ B is the point set identity has the property that paths α ∈
C1([a, b] → B1(0)) have corresponding paths

β = q ◦ α ∈ C1([a, b] → S)

with length given precisely by

lengthS [β] = lengthB[α] =

∫

(a,b)

4

4 + |α|2
|α′|?
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The answer to this question is “yes,” and I think Lance Lampert has found
such a surface and a chart function to go along with it. I will leave it to
Lance to explain his answer.

It occurs to me, however, that it may not be entirely clear to some of you
how the verification of the assertion would go. . . even if you had the surface
and the chart in hand. Thus, I will try to briefly explain that here.
How to compute the lengths of curves on a surface

Say we have a chart q : B1(0) → R3 whose image is a regular embedded
surface S. In particular, we assume q is a regular embedding, so the vectors

∂q

∂x1
and

∂q

∂x2

are linearly independent. And I assume you can compute these vectors.
When Lance gives his answer, I guess you will be eager to do so. Thus, you
have two functions

∂q

∂xj
: B1(0) → R

3

for j = 1, 2. Now, say you have a curve α : [a, b] → S ⊂ R3. In fact, it makes
perfectly good sense, since each coordinate function αj of α = (α1, α2, α3)
is a real valued function on B1(0), to assume α ∈ C1([a, b] → R3). In this
case, we could also use “chart regularity” as described above considering S
as a subset of R3 with chart structure, a.k.a. smooth structure, induced by
the chart q. In partiucular to say α ∈ cC1([a, b] → S) would mean the
composition

q−1 ◦ α ∈ C1([a, b] → B1(0)).

Let us denote q−1 by η : S → B1(0). Then β = η ◦α gives the path in B1(0)
corresponding to α. Naturally, we can think of the image of β as being in B,
so we can calcualate the Riemannian length lengthB[β]. And the question is:

Is lengthB[β] = lengthB[η ◦ α] always the same as lengthS [α] = lengthR3[α]?

In order to check this, since we know lengthB[β] is given by

lengthB[β] =

∫

(a,b)

4

4 + |β|2
|β ′|,

it makes sense to reexpress α as α = q ◦ β. Then

lengthR3[α] =

∫

(a,b)

|α′| =

∫

(a,b)

|(q ◦ β)′|.
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Thus, the question becomes: What is (q ◦ β)′? Well, remember the function
β = (β1, β2) has two component functions since β : [a, b] → B1(0) ⊂ R2.
Thus, using the chain rule

d

dt
(q ◦ β) =

∂q

∂x1
(β)

dβ1

dt
+
∂q

∂x2
(β)

dβ2

dt

=
∂q

∂x1

dβ1

dt
+
∂q

∂x2

dβ2

dt
.

Therefore,

|(q ◦ β)′|2 =

〈

∂q

∂x1

dβ1

dt
+
∂q

∂x2

dβ2

dt
,
∂q

∂x1

dβ1

dt
+
∂q

∂x2

dβ2

dt

〉

R3

=

〈

∂q

∂x1
(β),

∂q

∂x1
(β)

〉(

dβ1

dt

)2

+ 2

〈

∂q

∂x1
(β),

∂q

∂x2
(β)

〉

dβ1

dt

dβ2

dt

+

〈

∂q

∂x2
(β),

∂q

∂x2
(β)

〉(

dβ2

dt

)2

.

On the face of it, it may seem rather unlikely that this quantity will turn out
to satisfy

|(q ◦ β)′|2 =

(

4

4 + |β|2
|β ′|

)2

=
16

(4 + |β|2)2

[

(

dβ1

dt

)2

+

(

dβ2

dt

)2
]

,

but that is the calculation to be checked.
We haven’t really considered multiple charts, and I do not have time

at the moment to type up a detailed explanation of how that works, but
we should be doing that soon, and when we do, the following question will
be natural. In some sense it is natural now, and you should be able to do
it if Lance’s answer is correct (and understood), so I’m going to go ahead
and record the exercise. Then I’ll make some pictures and provide some
explanation to go along with it later.

Exercise C.17. While it is possible to give a global chart function for the
trihedral corner surface C′ considered above, it is not possible to give a global
chart function for the entire surface ∂C1(0) of a cube in R3 that was men-
tioned by Ruijia. Notice there are eight vertices on the surface of the cube.
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Give eight chart functions, one for each vertex of the cube that induce on
the entire surface of the cube a chart structure (a.k.a., a smooth structure)
which is isometric to the natural chart structure on the extension of B to a
compact Riemannian manifold.


