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The equality of ratios of areas in one given figure to the ratios of correspond-
ing areas in a similar figure follows as before:

A′
1

A′
2

=
A1

A2
.

Applying this principle concerning ratios of areas to the right triangle on the
right in Figure 1.6 we have

a2

A1
=

c2

A1 + A′
1

=
b2

A′
1

.

Therefore,

a2 =
c2A1

A1 + A′
1

and b2 =
c2A′

1

A1 + A′
1

.

Thus,

a2 + b2 = c2
(

A1

A1 + A′
1

+
A′

1

A1 + A′
1

)

= c2. �

Exercise 1.1 (pre-Cartesian Euclidean length) Show the angle bisector at
A in a triangle with vertices A, B, and C intersects the side opposite vertex
A in a point P for which

length
(

PB
)

length
(

AB
) =

length
(

PC
)

length
(

AC
) .

1.3 Descartes: precalculus

Let me begin this section with a reformulation of Euclid’s definition of a
point in terms that emphasize both the distinction suggested by Spengler
and the “developments” I wish to present below:

A point is an indivisible body by itself.

Spengler argues that Fermat was primarily representative of the abandoning
of the classical mind and the introduction of an entirely different western cul-
tural tradition. At least Spengler presents Fermat’s perception of a relation
like

x2 + y2 = z2
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as truly indeterminate (or containing variables) as opposed simply to a sym-
bolic representation of specific examples 32 + 42 = 52 and 52 + 122 = 132

presented in classical “bodily form” so to speak. Spengler presents the tran-
sition as a somewhat enigmatic and novel one, but one that was at length
unavoidable. For Euclid3 any meaning beyond the “bodily presentation” was
unthinkable. Putting the inovation of Descartes in contrast to Euclid’s defi-
nition of a point provides in our context an even better example. Here might
be the updated version of Euclid’s definition which to us is very familiar:

A point is a location in a Euclidean space with coordinates.

From this perspective the “spaces” Rn are the base and ground for all geomet-
ric consideration. In principle, this is obviously limiting. Computationally,
however, Descartes’ point of view may be viewed as rather fruitful if not
revolutionary. It is also very familiar, and it survives in some form in the
concept of a Riemannian manifold the understanding of which is, in a certain
sense, our ultimate objective.

This is our first mention of Rn which plays a key role in all that follows,
so we take a moment to give something of a formal introduction. Instead of
the bodily point of Euclid, we now have many points considered together,
and to consider them, it is natural to first pick a dimension. Location, and
hence point, is from this perspective connected to number. Associated with
dimension n = 0 we can take the single number 0. Thus, in dimension zero
there is a single solitary point with a single solitary location. It is not the
presence of something at x = 0, but rather the absence represented by the
point. Paradoxically or as Spengler would say with inherent contradiction,
in this point of view a point itself is the presence of absence.

For n = 1, we obtain the foundational case of the real numbers R. We
can distinguish the complete Archimedian field from the real vector space or
the Riemannian manifold of dimension one by using R1, though we will not
be very strict about this. From there, we have

R
n = {x = (x1, x2, . . . , xn) : x1, x2, . . . , xn ∈ R}.

Many of the properties of the field R and the vector spaces Rn should be
familiar, though we will discuss some of them explicitly below especially when

3. . . or any “classical man” as Spengler styles humans sharing that particular culture
which he perceives as well-defined
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the properties in question are important for the discussion of Riemannian
manifolds.

We have mentioned Descartes whose name is associated with the Carte-
sian coordinates of what we call the Euclidean spaces Rn, and we have men-
tioned Fermat though we have not mentioned Diophantus (c. 210–290 AD)
who Spengler describes as anticipating the non-classical western culture (or
equivalently mathematics) involving space and equations with variables but
lacking the language to express that mind. There is a nice story to tell
about Descartes and Fermat, and the story is relevant to the direction of our
presentation.

Folium of Descartes

Desartes challenged Fermat to find the equation of the tangent line at each
point to the curve {(x, y) ∈ R2 : x3 + y3 = 3axy} now known as the folium
of Descartes.

Exercise 1.2 (folium of Descartes) There are many approaches to giving a
solution to the problem with which Descartes challenged Fermat now that
calculus is available to us. The steps (a)-(d) given below in this exercise
outline one such approach. Preliminary to consideration of (a)-(d), you
might challenge yourself:

(i) Give a solution of Descartes’ challenge problem without the use of cal-
culus as Fermat was able to do.

(ii) Give your own solution of Descartes’ challenge problem.

Here is an outline of a solution:

(a) Consider alternative coordinates (ξ, η) obtained by rotating the plane by
an angle π/4. Specifically, if

p ∈ Γ = {(x, y) ∈ R
2 : x3 + y3 = 3axy},

then the new coordinates of p are given by

(

ξ
η

)

=

(

cos[π/4] sin[π/4]
− sin[π/4] cos[π/4]

)

p (1.3)
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so that the folium in the new coordinates is given by

{(

ξ
η

)

=

(

cos[π/4] sin[π/4]
− sin[π/4] cos[π/4]

)(

x
y

)

: x3 + y3 = 3axy

}

.

That is,

(

ξ − η√
2

)3

+

(

ξ + η√
2

)3

= 3a

(

ξ − η√
2

)(

ξ + η√
2

)

. (1.4)

The expressions in (1.3) and (1.4) may themselves be obtained in var-
ious ways. One way is to note that the coordinates (ξ, η) of the point
p on the left in Figure 1.7 are obtained by a clockwise rotation of the
plane by π/4 so that (1.3) holds.

Figure 1.7: Rotation of coordinates and the folium of Descartes

(b) For a > 0, plot the affine functions gj : R → R for j = 1, 2 by g1(ξ) =
3a−ξ

√
2 and g2(ξ) = ξ

√
2+a in the same ξ, η-plane to find the common

interval where the quotient
g1(ξ)

g2(ξ)

is positive.
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(c) Using what you found in part (b) solve (1.4) for η as a function of ξ on
an appropriate interval to obtain a function f : (−a/

√
2, 3a/

√
2] → R

by

f(ξ) =
ξ√
3

√

3a− ξ
√
2

ξ
√
2 + a

for which the folium is given by

Γ =

{

(ξ,±f(ξ)) : − a√
2
< ξ ≤ 3a√

2

}

.

(d) Verify that f(0) = 0 = f(3a/
√
2), and use calculus to show the function

f in part (c) increases to a unique maximum at ξ = a
√

3/2 and satisfies

lim
ξց− a

√

2

f(ξ) = lim
ξր 3a

√

2

f ′(ξ) = −∞

so the graph looks like the one illustrated on the right in Figure 1.7.

(e) Find the equation for the tangent line to each point of the folium in the
rotated ξ, η-coordinates.

(f) Rotate back to find the equation for the tangent line at each point in the
original x, y-coordinates.

(g) Consider the cases a = 0 and a < 0.

(h) Use mamthematical software to plot the folium in the original x, y-
coordinates and verify the equations of the tangent lines at the origin.

Before turning to the consideration of calculus in more general terms in
relation with geometry, I will attempt to cast the three problems of Euclidean
geometry into this new framework.

Descartes’ length problem (Problem 1): Given two points

x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn)

in Rn find the length of the line segment connecting x to y in terms of in
terms of the Cartesian coordinates of x and y.
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Descartes’ angle problem (Problem 2): Given two points

x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn)

in Rn find the angle between of the line segments connecting 0 to x and 0
to y in terms of in terms of the Cartesian coordinates of x and y.

Descartes’ area problem (Problem 3): Given a triangle with vertices
x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn), and z = (z1, z2, . . . , zn) in Rn, find
the area of the triangle in terms of the Cartesian coordinates of x, y and z.

More extensive comments on each of these essentially important prob-
lems may be found in various places below. Perhaps I will only mention
at this point something about the answers. The first problem leads to a
generalization

ℓ =

√

√

√

√

n
∑

j=1

(yj − xj)2 (1.5)

of the formula (1.1). The angle problem leads to consideration of the quantity

x · y =

n
∑

j=1

xjyj (1.6)

which it will be noted enjoys an interesting relation to the quantity in (1.5).

Exercise 1.3 Express the quantity ℓ in (1.5) as an appropriate expression
in terms of the dot product appearing in (1.6).

It is not entirely clear if (1.5) is properly a solution to the problem, that
is a calculation giving the solution, or simply the definition of the length.
Similarly, for the angle problem one either calculates the angle to be or
defines it as

θ = cos−1

(

x · y
|x| |y|

)

(1.7)

where |x| and |y| denote the lengths of the segments from 0 to x and from
0 to y respectively.

Overall, the topic of linearity and the vector space structure of Rn

comes to one’s attention in these problems, and these are both important
and considered in more detail below.
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As with the Euclidean area problem there are various approaches to the
Cartesian area problem posed above. By use of linearity, the points x and y
may be taken as arbitrary and the third point z may be taken to be 0 ∈ Rn

in the third problem. After this reduction, the calculation/definition gives

1

2
|x| |y| sin θ =

1

2

√

|x|2|y|2 − (x · y)2. (1.8)

Linearity again suggests the consideration of the parallelogram

{ax + by : a, b ∈ [0, 1]} (1.9)

with area twice that of the triangle or

√

|x|2|y|2 − (x · y)2. (1.10)

Expanding the quantity inside the square root, one finds

|x|2|y|2 − (x · y)2 =
(

n
∑

j=1

x2j

)(

n
∑

j=1

y2j

)

−
(

n
∑

j=1

xjyj

)2

=

n
∑

i=1

[

n
∑

j=1

x2i y
2
j −

n
∑

j=1

xiyixjyj

]

=

n
∑

i=1

[

n
∑

j=1,j 6=i

x2i y
2
j −

n
∑

j=1,j 6=i

xiyixjyj

]

.

This is an interesting quantity. Specializing to the case n = 2 for example,
we have

x21y
2
2 − x1y1x2y2 + x22y

2
1 − x2y2x1y1 = (x1y2 − x2y1)

2,

so the area of the parallelogram becomes

√

|x|2|y|2 − (x · y)2 =
∣

∣

∣

∣

det

(

x1 y1
x2 y2

)∣

∣

∣

∣

. (1.11)

Exercise 1.4 Show the square of the area of the parallelogram spanned by
x,y ∈ Rn satisfies

|x|2|y|2 − (x · y)2 = det(ATA)
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where A is the n× 2 matrix

A =











x1 y1
x2 y2
...

...
xn yn











with x and y, or more properly xT and yT in the columns.

Exercise 1.5 The linear translation preceeding the formula (1.8) if executed
properly and in detail leads to replacing x − z with x, y − z with y and
z−z = 0 with 0. One of these replacements is notationally justified. Repeat
the discussion above starting with (1.8) but use instead the vectors v =
(v1, v2, . . . , vn) = x − z and w = (w1, w2, . . . , wn) = y − z. In particular,
obtain alternative formulas for (1.11) and in Exercise 1.4 in terms of (the
original) x, y, and z.

Exercise 1.6 Based on your solution to Exercise 1.5 above, you should have
a formula for the parallelogram spanned by vectors v and w in Rn from (1.9).
Based on the observation that the line segment from x to y is parameterized
in Cartesian coordinates by (1− t)x+ ty, show the parallelogram consists of
precisely the line segments connecting points in the edge segments

Γ1 = {av : 0 ≤ a ≤ 1},
Γ2 = {bw : 0 ≤ b ≤ 1},
Γ3 = {v + bw : 0 ≤ b ≤ 1}, and
Γ4 = {w + av : 0 ≤ a ≤ 1}.

Draw pictures to illustrate the edges and the six different kinds of internal
segments you considered.
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1.4 Newton: general paths and areas

Naturally we can associate the topics of differentiation and integration with
Isaac Newton, though an association with Gottfried Wilhelm Leibniz (1646–
1716) would be equally natural. Here the framework of Cartesian coordinates
is assumed and one encounters naturally the graph of a function and the
spaces of functions C0[a, b] and C1[a, b] consisting of real valued functions de-
fined on a closed interval [a, b] of the real line with a < b which are continuous
and continuously differentiable respectively.

To emphasize the change of perspective involved in the revolutionary ideas
of calculus, I immediately start by stating versions of the three geometric
problems given (twice) above:

Newton’s length problem (Problem 1): Given two points (a, ya) and
(b, yb) in R2 with a, b ∈ R satisfying a < b, find the length of the graph

{(x, h(x)) : a ≤ x ≤ b}

of a continuously differentiable function h : [a, b] → R in

{f ∈ C1[a, b] : f(a) = ya and f(b) = yb}

as indicated in Figure 1.8.

Figure 1.8: A C1 graph connecting two points in the plane.

Newton’s angle problem (Problem 2): Given two C1 paths α : [a1, b1] →
Rn and β : [a2, b2] → Rn where aj, bj ∈ R with aj < bj for j = 1, 2 satisfying

α(t1) = β(t2)

for some tj ∈ (aj , bj) for j = 1, 2, find the angle at which the paths meet at
the common point α(t1) = β(t2).
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Newton’s area problem (Problem 3): Given a, b ∈ R with a < b, find
the area of the region

{(x, y) : 0 ≤ y ≤ h(x), a ≤ x ≤ b}

determined by a nonnegative continuous function h : [a, b] → R. Such a
region is indicated in Figure 1.9.

Figure 1.9: A C0 graph enclosing (along with the horizontal axis and two
vertical segments) an area in the plane.

You have likely noticed that a precipitous drop in dimension has occurred
in Newton’s length problem and Newton’s area problem relative to the cor-
responding problems associated with Descartes above. There are reasons for
this, but there are also generalizations to higher dimensions.

Exercise 1.7 Solve Newton’s length problem as stated above using polyg-
onal approximation as follows:

(a) Based on a partition P = {x0 = a < x1 < x2 < · · · < xk = b} of the
interval find the sum of the lengths |(xj+1, h(xj+1))− (xj , h(xj))| of the
line segments connecting consecutive pairs of points.

(b) Take the limit of this sum as the norm of the partition

‖P‖ = max{xj+1 − xj : j = 0, 1, 2, . . . , k − 1}

tends to zero.

Exercise 1.8 State and solve a generalization of Newton’s length problem
for parameterized curves α : [a, b] → Rn.
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Exercise 1.9 Explain how the solution of Exercise 1.8 applies to Exer-
cise 1.7.

Exercise 1.10 Solve Newton’s angle problem. Be careful, it may be that
Newton was careless, and you may need to include additional hypotheses.

Exercise 1.11 Specialize Newton’s angle problem to graphs of C1 functions
of one variable.

Exercise 1.12 Consider Newton’s area problem in the special case of a par-
allelogram spanned by ae1 = (a, 0) ∈ R2 and w = (w1, w2) with a, wj > 0 for
j = 1, 2. (Using Newton’s approach, do you get the same answer obtained
in Exercise 1.5)?

Exercise 1.13 Consider Newton’s area problem in the special case of a par-
allelogram spanned by ae1 = (a, 0) ∈ R2 and be2 = (0, b) with a, b > 0 for
j = 1, 2. (Using Newton’s approach, do you get the same answer obtained
in Exercise 1.5?

Exercise 1.14 Consider Newton’s area problem in the special case of a par-
allelogram spanned by ae1 = (a, 0) ∈ R2 and w = (w1, w2) with w1 < 0 <
a,w2. (Using Newton’s approach, do you get the same answer obtained in
Exercise 1.5)?

Exercise 1.15 Show that given two vectors v,w ∈ R2 with |v| = a > 0,
there is a unique rotation p : R2 → R2 of the plane for which p(v) =
ae1. What happens if you try to use this approach in an effort to apply
Exercises 1.12-1.14 to obtain the assertions of Exercise 1.5?

Exercise 1.16 What happens if you try to generalize Exercise 1.15 to the
case of v,w ∈ Rn for n > 2?

Exercise 1.17 Consider the following generalization of Newton’s area prob-
lem: Given a, b ∈ R and ǫ > 0, by a cyclic path α ∈ C1([a− ǫ, b+ ǫ] → R2)
we mean a function each of whose values is given by a pair α(t) = (α1(t), α2(t)
where αj ∈ C1[a− ǫ, b+ ǫ] is a continously differentiable real valued function
for j = 1, 2 and for which we require

α(t1) 6= α(t2) for a ≤ t1 < t2 < b,



1.4. NEWTON: GENERAL PATHS AND AREAS 33

α(t) = α(b− a+ t) for a− ǫ ≤ t ≤ a,

α(t) = α(a+ t− b) for b ≤ t ≤ b+ ǫ,

and |α′(t)| 6= 0, what is the area of the region A enclosed by

Γ = {α(t) : t ∈ [a, b]}?

(a) In what way is this not a generalization of Newton’s area problem?

(b) Prove R2\Γ = A ∪ B where A and U are connected, disjoint open sets
with U unbounded.4

(c) Newton’s answer5 to this problem might be along the following lines: Let
P = {Aj∩A}kj=1 be a collection of (closed) rectangles (intersected with
the region A). We say P is a partition of the region A if the rectangles
have intersections Ai ∩ Aj contained in the union of the edges of the
rectangles when i 6= j and

A =

k
⋃

j=1

(Aj ∩ A).

Define the norm of the partition by

‖P‖ = max{diam(Aj) : j = 1, 2, . . . , k}

where

diam(S) = sup{|y− x| : x,y ∈ S}.

Then

area(A) =

∫

A

1 = lim
‖P‖→0

k
∑

j=1

area(Aj ∩ A).

4If you do not know enough topology to make sense of all the terminology in this
problem, you can look ahead to Chapter 13 and read about topics like topological spaces,
open sets, and connected sets. This is a simple version of the famous Jordan curve theorem.

5Technically, this might be more properly recognized as Riemann’s answer, but we’re
making no pretense to historical accuracy here. In fact, you may wish to look ahead at
Chapter 3 to see more of what Riemann had in mind.
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(i) It might be objected that finding the area of Aj∩A is just as difficult
as finding the area of the region A, at least when Aj\A 6= φ. Show
that even though the value of area(Aj ∩ A) may be difficult to
compute one has

lim
‖P‖→0

k
∑

j=1,Aj\A 6=φ

area(Aj ∩A) = 0

so that

area(A) =

∫

A

1 = lim
‖P‖→0

k
∑

j=1,Aj⊂A

area(Aj).

(ii) Show there exist partitions by rectangles of the region A as de-
scribed above.

(iii) Find a sequence of partitions Pm of the region A by rectangles
with

lim
m→∞

‖Pm‖ = 0.

(d) Gauss’ answer might be

area(A) =
1

2

∣

∣

∣

∣

∫

x∈Γ

x · n
∣

∣

∣

∣

(1.12)

where

n = n(x) =
(−α′

2(t), α
′
1(t))

|α′(t)|
determined by t ∈ [a, b] with α(t) = x.

(i) Give a definition of the integral appearing in (1.12)

(ii) Justify Gauss’ answer.

(e) George Green (1793–1841) might have given a slightly different answer:

area(A) =
1

2

∣

∣

∣

∣

∫

x∈Γ

x · α
′

|α′|

∣

∣

∣

∣

(1.13)

where α′ = α′(t) is evaluated in the integral at a value of the parameter
t ∈ [a, b] determined by the condition α(t) = x.
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(i) Give a definition of the integral appearing in (1.13)

(ii) Justify Green’s answer.

As might be imagined, the revolution represented by calculus motivated
many fundamentally new kinds of problems and new kinds of geometry prob-
lems in particular. The next three subsections distinguish some of those new
problems:

1.4.1 New problem(s): The geometry of functions

We have mentioned the collections of functions C0[a, b] and C1[a, b] consisting
of certain real valued functions h : [a, b] → R defined on a closed interval

[a, b] = {x ∈ R : a < x < b}

with a, b ∈ R. This may be a good time to review and generalize these
spaces of functions which are considered in much more detail in Chapter 13.
A function h : [a, b] → R is continuous at x0 ∈ [a, b] if for each ǫ > 0, there
is some δ > 0 for which

|h(x)− h(x0)| < ǫ whenever x ∈ [a, b] and |x− x0| < δ. (1.14)

A function h : [a, b] → R is continuous on all of [a, b] and we write
h ∈ C0[a, b] if h is continuous at each point x0 ∈ [a, b]. For such functions it
is natural to distinguish a new kind of geometric question:

Newton’s first integration problem (Problem 5): Given h ∈ C0[a, b],
find the integral

∫ b

a

h(x) dx

of h.

This problem easily generalizes to higher dimensions and from this point
allows a fundamental distinction between the geometry of sets in the domain
A ⊂ Rn of a real valued function h : A → R and the geometry associated
with the graph of the function h or with the function h more generally.

In order to make the generalization carefully, we proceed in several steps:
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1. If U is an open and bounded set in Rn, by which we mean for each
P ∈ U , there is some r > 0 for which

Br(P ) = {x ∈ R
n : |x− P | < r} ⊂ U

and there is some R > 0 for which U ⊂ BR(P ), we can define the
closure U of U to be the set

U = {x ∈ R
n : Br(x) ∩ U 6= φ for every r > 0}.

This is a/the higher dimensional version of the closed interval [a, b].

2. A function h : U → R is continuous at P ∈ U if for each ǫ > 0, there
is some δ > 0 for which

|h(x)− h(P )| < ǫ whenever x ∈ U and |x− P | < δ. (1.15)

3. A function h : U → R is continuous on all of U and we write
h ∈ C0(U) if h is continuous at each point P ∈ U .

4. The set U\U is called the boundary of U , and is denoted by ∂U . The
boundary of an open bounded subset of Rn can be a complicated set,
so we would like to focus on open and bounded sets U for which the
complication of the boundary does not cause us undue consternation
in regard to integration. One way to deal with this is the following:

(a) A closed cubical cell in Rn is a set of the form

n
∏

j=1

[aj , bj] = {x = (x1, x2, . . . , xn) ∈ R
n :

aj ≤ xj ≤ bj for j = 1, 2, . . . , n}

where aj , bj ∈ R with aj < bj for j = 1, 2, . . . , n.

(b) The diameter of a closed cubical cell

C =
n
∏

j=1

[aj , bj]

is given by

diam(C) = max{|y − x| : x,y ∈ C}.
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(c) The n-dimensional measure of a closed cubical cell

C =
n
∏

j=1

[aj , bj ]

is given by

L(C) =
n
∏

j=1

(bj − aj).

(d) The edge-faces of a closed cubical cell

C =
n
∏

j=1

[aj , bj ]

are the sets

Eℓ = {x = (x1, x2, . . . , xn) ∈ R
n :

aj ≤ xj ≤ bj for j = 1, 2, . . . , n and xℓ = aℓ} and

Fℓ = {x = (x1, x2, . . . , xn) ∈ R
n :

aj ≤ xj ≤ bj for j = 1, 2, . . . , n and xℓ = bℓ}

for ℓ = 1, 2, . . . , n. We then set

∂C = ∪n
ℓ=1(Eℓ ∪ Fℓ).

The set ∂C is called the boundary of the cubical cell C.

(e) A collection P = {Cj}kj=1 of closed cubical cells is said to be a
partition of

k
⋃

j=1

Cj

if Ci ∩ Cj ⊂ ∂Ci whenever i 6= j.

(f) The norm of a partition P = {Cj}kj=1 by cubical cells is given by

‖P‖ = max{diam(Cj) : j = 1, 2, . . . , k}.
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(g) The boundary ∂U of a bounded open set U ⊂ Rn is said to have
measure zero if the following condition holds:

lim
‖P‖→0

sup







k
∑

j=1,∂U∩Cj 6=φ

L(Cj) : ∂U ⊂
n
⋃

j=1

Cj







= 0

meaning for any ǫ > 0, there is some δ > 0 for which
∣

∣

∣

∣

∣

∣

k
∑

j=1,∂U∩Cj 6=φ

L(Cj)

∣

∣

∣

∣

∣

∣

< ǫ

whenever P = {Cj}kj=1 is a partition by cubical cells with

∂U ⊂
n
⋃

j=1

Cj.

In this case we write L(∂U) = 0.

Thus, we arrive at the following:

Newton’s general integration problem (Problem 5): Given an open
bounded set U ⊂ Rn with L(∂U) = 0 and a function h ∈ C0(U), find the
integral

∫

U

h

of h.

In practice, the condition L(∂U) = 0 in Newton’s integration problem is
often ensured by some other (stronger) condition(s) on ∂U .

Exercise 1.18 Given a cyclic path Γ ⊂ R2 of the kind described in Exer-
cise 1.17 above, show L(∂A) = 0 where A is the bounded open component
of R2\Γ.

Exercise 1.19 Given h ∈ C0(U) with U an open bounded subset of Rn with
L(∂U) = 0, justify the assertion

∫

U

h =

∫

U

h.



1.4. NEWTON: GENERAL PATHS AND AREAS 39

The main point is that given an open bounded set U ⊂ Rn (with L(∂U) =
0) general integration may be used to understand real valued functions h ∈
C0(U). For example, the “size” of a function h ∈ C0(U) may be considered
with respect to the following interesting quantities:

‖h‖L1 =

∫

U

|h|, (1.16)

‖h‖L2 =

(
∫

U

|h|2
)1/2

, and (1.17)

‖h‖Lp =

(
∫

U

|h|p
)1/p

for p ≥ 1. (1.18)

Exercise 1.20 Given an open bounded set U ⊂ Rn with L(∂U) = 0, show
the following:

(a) The set C0(U) is a vector space.

(b) For p ≥ 1, the following hold

(i) ‖h‖Lp ≥ 0 with equality if and only if h is the zero function in
C0(U).

(ii) ‖ch‖Lp = |c| ‖h‖Lp for c ∈ R and h ∈ C0(U).

(iii) ‖g + h‖Lp = ‖g‖Lp + ‖h‖Lp for g, h ∈ C0(U).

(c) Use the Lp norm to attach a notion of distance between functions
d(g, h) for each pair of functions g, h ∈ C0(U) and each p ≥ 1.

(i) d(g, h) ≥ 0 with equality if and only if g = h.

(ii) d(g, h) = d(h, g).

(iii) d(f, h) ≤ d(f, g) + d(g, h).

(d) Show that a notion of angle between functions may be attached to
a pair of nonzero functions g, h ∈ C0(U).

Exercise 1.21 Discuss cases of equality in parts (b)(iii) and (c)(iii) of
Exercise 1.20.
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Some care of a different flavor is required with respect to differentiation.
First of all, differentiability at a point x in the open interval (a, b) as we know
is defined by

h′(x) = lim
v→0

h(x+ v)− h(x)

v
. (1.19)

Specifically, the function h : (a, b) → R is said to be differentiable at
x ∈ (a, b) if the limit in (1.19) exists in the sense that there is some number
L ∈ R for which given any ǫ > 0, there exists some δ > 0 for which

∣

∣

∣

∣

h(x+ v)− h(x)

v
− L

∣

∣

∣

∣

< ǫ whenever |v| < δ. (1.20)

If this condition holds, we write h′(x) = L. If h : (a, b) → R is differentiable
at every point x ∈ (a, b), then we say h is differentiable on the entire
interval (a, b). In this case, a function h′ : (a, b) → R is defined, and if this
function is continuous, we write h ∈ C1(a, b). This is the basic condition
defining what it means for a function to be continuously differentiable
though the terminology is perhaps slightly opaque. Note carefully, however,
that the definition just given for C1(a, b) applies for a, b extended real
numbers with a < b. In particular, the values a = −∞ and b = +∞ are
included/allowed.

Exercise 1.22 Define the vector space of functions C0(a, b) for a ∈ [−∞,∞)
and b ∈ (−∞,∞] with a < b, and show C1(a, b) ⊂ C0(a, b).

An extension of the definition of differentiability at a point associated with
(1.19) and (1.20) to the closed interval [a, b] is readily obtained using the
same approach used to define continuity above:

The function h : [a, b] → R is said to be differentiable at x ∈ [a, b] if
the limit in (1.19) exists in the sense that there is some number L ∈ R for
which given any ǫ > 0, there exists some δ > 0 for which

∣

∣

∣

∣

h(x+ v)− h(x)

v
− L

∣

∣

∣

∣

< ǫ whenever |v| < δ and x+ v ∈ [a, b].

If this condition holds, we again write h′(x) = L, though often it may be
convenient to denote the value of the derivative at an endpoint by

h′(a+) = lim
vց0

h(a + v)− h(a)

v
or h′(b−) = lim

vր0

h(b+ v)− h(b)

v
.



1.4. NEWTON: GENERAL PATHS AND AREAS 41

If h : (a, b) → R is differentiable at every point x ∈ [a, b], we say h is
differentiable on the entire interval [a, b]. In this case, a function h′ :
[a, b] → R is defined, and if h′ ∈ C0[a, b] we write h ∈ C1[a, b] and say h is
continuously differentiable.

Exercise 1.23 Show C1[a, b] is a vector space of functions, and the following
statements are equivalent:

(i) h ∈ C1[a, b],

(ii) There exists some open interval I ⊃ [a, b] and a function g ∈ C1(I) with

g∣
∣

(a,b)

= h.

(iii) There exists a function g ∈ C1(R) with

g∣
∣

(a,b)

= h.

The difference quotient formulation of the condition (i) in Exercise 1.23 does
not carry over to higher dimensions. The alternative formulation (ii) allows
the consideration of functions adequate for many purposes.6

Given an open set U ⊂ Rn, a point P ∈ U , and j ∈ {1, 2, . . . , n}, the
j-th partial derivative of h : U → R at P is defined by

∂h

∂xj
(P ) = lim

v→0

h(P + vej)− h(P )

v

when this limit exists. The value may also be denoted Djh(P ), hxj
(P ), or

Dejh(P ). If the j-th partial derivative of h exists at every point P ∈ U , then
Djh : U → R is a well-defined function. If Djh : U → R is a well-defined
function for each j = 1, 2, . . . , n, then we say h is partially differentiable
in all of U . Note: This is not the same as differentiability or the condition
that h is differentiable even at a single point P ∈ U which we define
below. Partial differentiability is not the same (and does not imply in general)
differentiability.

If h is partially differentiable and Djh ∈ C0(U) for each j = 1, 2, . . . , n,
then we say h is continuously partially differentiable on all of U and
write h ∈ C1(U).

6We are going to give a definition of C1(U) which is somewhat more restrictive than
the one usually given.
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Exercise 1.24 Show C1(U) ⊂ C0(U).

If U ⊂ Rn is open and bounded and h ∈ C1(U), we say h ∈ C1(U) if the
following condition(s) hold: There exists an open set V ⊃ U and a function
g ∈ C1(V ) for which

g∣
∣

U

= h.

Exercise 1.25 Let h ∈ C1(U).

(a) If there exists an open set V ⊃ U and functions g, g̃ ∈ C1(V ) for which

g∣
∣

U

= g̃∣
∣

U

= h,

then

g∣
∣

U

= g̃∣
∣

U

.

(b) Show

C1(U) =

{

g∣
∣

U

: g ∈ C0(U) and g∣
∣

U

∈ C1(U)

}

.

(c) In view of Exercise 1.24 and parts (a) and (b) above, it makes sense to
say C1(U) ⊂ C0(U) and in particular, h ∈ C0(U). (Explain.)

In view of the discussion above, we state what hopefully are considered
natural geometry problems from calculus:

Newton’s first differentiation problem (Problem 6): Given h ∈ C1[a, b],
find the derivative h′ ∈ C0[a, b].

Newton’s general differentiation problem (Problem 6): Given an
open and bounded set U ⊂ Rn and a function h ∈ C1(U), find the partial
derivatives Djh ∈ C0(U) for j = 1, 2, . . . , n.

The following important definition was probably not known to Newton.
It was certainly known to Fréchet (1878-1973).

Definition 1 Let U be an open set in Rn, and let h : U → R be a real
valued function with domain U .
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(i) The function h : U → R is differentiable at x ∈ U if there exists a
linear function L : Rn → R for which

lim
|v|→0

h(x + v)− h(x)− L(v)

|v| = 0.

The linear function L : Rn → R is called the differential of h at x and
is denoted by dhx : Rn → R.

(ii) The function h is said to be differentiable on all of U if h is differen-
tiable at each x ∈ U .

(iii) We will say the function h is differentiable on all of U if there is
some open set V ⊂ Rn with V ⊃ U and h is differentiable on all of V .

Exercise 1.26 Let U be a bounded open subset of Rn, and let h : U → R

be a real valued function defined on U .

(a) Show that if h is differentiable at x ∈ U , then h is continuous at x ∈ U .
Consequently, if h is differentiable on all of U , then h ∈ C0(U).

(b) Show that if h is differentiable at x ∈ U , then h is partially differentiable
at x ∈ U .

(c) Show that if h ∈ C1(U), then h is differentiable on all of U .

(d) Show that if h ∈ C1(U) then h is differentiable on all of U .

Newton’s general differentiation problem (Problem 6a): Given an
open set U ⊂ Rn and a function h ∈ C1(U), find the differential dhx : Rn → R

for each x ∈ U .

Exercise 1.27 (challenge(s)) Let U be a open subset of Rn with h ∈ C1(U).

(a) Consider the function g : U × Rn → R by

g(x,v) = dhx(v).

Characterize the regularity of g?
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(b) Consider the function Dh : U → Rn by

Dh(x) =

(

∂

∂x1
(x),

∂

∂x2
(x), . . . ,

∂

∂xn
(x)

)

.

Characterize the regularity of Dh.

(c) Consider the function ℓ : U → i(R2) by

ℓ(x) = dhx

where i(R2) denotes the vector space of real valued linear functions
L : R2 → R. Characterize the regularity of ℓ.

(d) If U is also bounded and h ∈ C1(U) under what conditions may it be
said that the functions g, Dh, and ℓ considered above extend to U , and
what can be said about the regularity of each function in that case?
Hint: Consider the case in which U ⊂ R2 and Γ = ∂U is a cyclic path.

Once the delicate issue of determining how to say a function h ∈ C1(U)
satisfies h ∈ C1(U) when U ⊂ Rn is an open set is addressed on one way or
another, then the question of higher derivatives is more or less straightfor-
ward. For an open set U ⊂ Rn and for an integer k ≥ 2, we say h ∈ Ck(U)
if all (partial) derivatives of order k or lower are in C0(U). All these par-
tial derivatives are perhaps easiest to express in multiindex notation. A
multiindex β is just an element of Nn

0 where N0 = {0, 1, 2, 3, . . .} denotes
the natural numbers with zero. Thus, a multiindex β = (β1, β2, . . . , βn) has
βj ∈ N0 for j = 1, 2, . . . , n, and we write

Dβh =
∂h|β|

∂β1x1∂β2x2 · · ·∂βnxn

where |β| = β1 + β2 + · · ·+ βn. Thus, for k = 1, 2, . . .,

Ck(U) = {h ∈ C0(U) : Dβh ∈ C0(U), |β| ≤ k}.

The vector space of functions Ck(U) is defined inductively with

C2(U) = {h ∈ C1(U) : Dβh ∈ C1(U), |β| = 1}

with whatever definition is given to C1(U), and

Ck(U) = {h ∈ Ck−1(U) : Dβh ∈ C1(U), |β| = k − 1}
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for k = 2, 3, 4, . . . in general.
We will mostly deal with derivatives of orders two and lower, so we will

often use the more traditional notation. There is also a few other vector
spaces that might be worth mentioning at this point. Given U an open set
in Rn,

C∞(U) =

∞
⋂

k=0

Ck(U),

C∞(U) =
∞
⋂

k=0

Ck(U),

and Cω(U) denotes the collection of real analytic functions, that is func-
tions h ∈ C∞(U) with the following property:

For each p ∈ U , there exists some r > 0 for which the series

∞
∑

j=0

∑

|β|=j

Dβ(p)

β!
(x− p)β

where β! = β1!β2! · · ·βn! and

(x− p)β = (x1 − p1)
β1(x2 − p2)

β2 · · · (xn − pn)
βn

converges for |x− p| < r and

f(x) =

∞
∑

j=0

∑

|β|=j

Dβ(p)

β!
(x− p)β for |x− p| < r.

1.4.2 A new problem: curvature

Euclid’s curvature problem (Problem 7): Given a circle of radius r > 0,
what is the curvature of the circle?

This problem7 is stated to suggest the formulation of the definition of
curvature as much as the calculation of the particular number k = 1/r.
What is curvature? In this case, a first approximation of the answer might
be something like “Curvature is a number associated with a circle or a straight
line which is zero for a straight line, positive for a circle, and decreasing with

7Perhaps first answered by Nicolas Oresme (c.1320–1382).
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the radius for circles and tending to +∞ as the radius decreases to zero.”
There are many choices of course, but the particular choice k = 1/r with the
limiting value

lim
rր∞

1

r
= 0

giving the curvature of a line (as a circle of infinite radius) is a natural one.
It is probably not natural to associate a curvature problem with Descartes

and/or Fermat, but in honor of Fermat’s triumph (and percociousness) in
solving Descartes’ calculus problem before he properly had the use of calculus,
it may be natural to pose the following problem.

Exercise 1.28 Show the curvature of the folium of Descartes (Exercise 1.2)
does not vanish.

Newton’s first curvature problem (Problem 7): What is the curvature
of the graph of function h ∈ C2[a, b] in the plane?

Exercise 1.29 Solve Newton’s first curvature problem.

We should like to state a version of this problem for a function x : (a, b) →
Rn which parameterizes a curve like, for example, the folium of Descartes.
There is a problem.

Exercise 1.30 Plot the curve Γ determined by the function x : R → R2

with x = (x1, x2) and

x1(t) = t3

x2(t) = t2.

We would say x ∈ C∞(R → R2) because xj ∈ C∞(R) for j = 1, 2. In fact,
xj ∈ Cω(R) for j = 1, 2.

In view of the example of Exercise 1.30 it should be clear that differentiability
(or regularity) alone is not enough to ensure that concept of curvature makes
sense. Thus, we pause for a definition and an intervening technical question.
Also, motivated by Exercise 1.30 it is natural to extend the notation for
derivatives (at least for regular derivatives) to functions x : (a, b) → Rn

defined on an open interval by

x′ =

(

dx1
dt
,
dx2
dt
, . . . ,

dxn
dt

)

.
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Definition 2 A function x ∈ C2((a, b) → Rn) is said to be a geometrically
regular parameterization of Γ = {x(t) : t ∈ (a, b)} if |x′(t)| 6= 0 for
t ∈ (a, b).

Newton’s first reparameterization problem (Problem 8): Given a
geometrically regular parameterization x ∈ C1((a, b) → Rn) of

Γ = {x(t) : t ∈ (a, b)},

find a function γ ∈ C1((c, d) → Rn) defined on some interval (c, d) ∈ R and
satisfying

(i) |γ′(t)| ≡ 1 for t ∈ (c, d), and

(ii) Γ = {γ(t) : t ∈ (c, d)}.

Exercise 1.31 Solve Newton’s first reparameterization problem.

A parameterization γ ∈ C1((a, b) → Rn) satisfying the conditions in New-
ton’s first reparameterization problem is called a parameterization by ar-
clength.

Newton’s second curvature problem (Problem 7): What is the cur-
vature of of a curve given by a geometrically regular parameterization x ∈
C2((a, b) → Rn)?

Newton’s third curvature problem (Problem 7): Does the curvature of
of a curve given by a geometrically regular parameterization x ∈ C2((a, b) →
R2) determine the curve?
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Exercise 1.32 Find two very different curves Γ1 and Γ2 determined by ar-
clength parameterizations

γ1 ∈ C2((−1, 1) → R
3) and γ2 ∈ C2((−1, 1) → R

3)

and satisfying the following:

(i) γ1(0) = γ2(0),

(ii) γ̇1(0) = γ̇2(0) where

γ̇j =
dγj
ds

,

and

(iii) γ̈1(s) ≡ γ̈2(s) for −1 < s < 1 where

γ̈j =
d2γj
ds2

.

Newton’s fourth curvature problem (Problem 7): Are there quantities
similar to curvature determining a curve given by a geometrically regular
parameterization x ∈ C2((a, b) → Rn)?

This last problem should probably not be attributed to Newton but rather
to someone like Jean Frédéric Frenet (1816–1900) or Joseph-Alfed Serret
(1819–1885) both of whom were asking this kind of question sometime around
1850.

It makes sense to extend at least some of these kinds of problems to higher
dimensional (parameterized) objects at least for graphs.

Newton’s fifth curvature problem (Problem 7): What is the curvature
of the graph of a function h ∈ C2(U → R) where U is an open subset of R2?

Of course, this should really probably be called Gauss’s first curvature
problem, but certainly it is a question Newton might have thought about.

Newton’s sixth curvature problem (Problem 7): What is the curvature
of the graph of a function h ∈ C2(U → R) where U is an open subset of Rn?

And of course this would qualify as Riemann’s first curvature prob-
lem.
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1.4.3 Weierstrass: minimization of functionals

Contemplating Newton’s (and Leibniz’) calculational revolution, Karl Weier-
strass undertook the task of imposing some additional rigour in the appli-
cation of the suggested techniques. Much of this heightened level of critical
thought is familiar to us now, but certainly at the time Weierstrass was ask-
ing questions that might have never occurred to Newton or Leibniz or even
Weierstrass’ contemporaries. I do not know if the following problem was
originally posed by Weierstrass, but he certainly knew about it.

Weierstrass’ minimization problem (Problem 5): Among all C1 graphs,
with endpoints fixed at (a, ya) and (b, yb) as in Newton’s length problem,
which graph has the shortest length?

It may seem audacious or even absurd to pose such a problem. Of course,

h0(x) =
yb − ya
b− a

(x− a) + ya =
yb(x− a) + ya(b− x)

b− a
(1.21)

gives the solution, but asking such a question turns out to be an important
one as we will see below. For the moment, let’s humor eccentric Professor
Weierstrass and try to answer his question as rigorously as we can (i.e. with
as much critical thinking as we can muster).

We have a set of admissible functions

A = {h ∈ C1[a, b] : h(a) = ya and h(b) = yb}

and a real valued functional length : A → [0,∞) by

length[h] =

∫ b

a

√

1 + [h′(x)]2 dx. (1.22)

I’ve used the same name for the length functional in the special case of
graphs under consideration at the moment rather than the more general
length functional

length[α] =

∫

(a,b)

|α′| (1.23)

given below (3.2) in Chapter 3 and which may be familiar from elementary
differential geometry.

Exercise 1.33 Show the length functional (1.22) arises as a special case of
the length functional (1.23) which applies to the length of paths parameter-
ized by a function α ∈ C1([a, b] → R2).
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Exercise 1.34 Specify an appropriate admissible class corresponding to pa-
rameterized paths on which to consider a more general version of Weierstrass’
minimization problem (Problem 5) involving the length functional given in
(1.23).

Notice that if h ∈ A and φ ∈ C1[a, b] with φ(a) = φ(b) = 0, then for
every t ∈ R, there holds h + tφ ∈ A. Thus, if

length[h] ≤ length[g] for every g ∈ A,

then in particular, f : R → R by f(t) = length[h+ tφ] has a minimum value
at t = 0. Assuming the function f ∈ C1(R), it follows that a minimizer h
must satisfy

f ′(0) = 0.

Exercise 1.35 Show that if

h ∈ A = {g ∈ C1[a, b] : g(a) = ya and g(b) = yb}

and
φ ∈ C1

0 [a, b] = {g ∈ C1[a, b] : g(a) = 0 = g(b)},
then f : R → R by

f(t) = length[h + tφ]

satisfies f ∈ C1(R) and calculate f ′(t) for each t ∈ R.

The calculation suggesed in Exercise 1.35 should lead to an expression of
the form

f ′(t) =

∫ b

a

[h′(x) + tφ′(x)] Φ(h′(x) + tφ′(x)) φ′(x) dx

for some function Φ ∈ C∞(R). If h is taken as a minimizer of the length
functional length : C1[a, b] → [0,∞) as suggested above, then we should have
f ′(0) = 0. That is,

∫ b

a

h′(x) Φ(h′(x)) φ′(x) dx = 0 (1.24)

with the equality holding for every

φ ∈ C1
0 [a, b] = {f ∈ C1[a, b] : f(a) = 0 = f(b)}.

Thus, we contemplate the question:
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What does an integral equality like that in (1.24) imply about
the factor h′Φ(h′) in the integrand, if it holds for all φ ∈ C1

0 [a, b]?

The first thing I would like to point out is the following: This question would
be a lot easier if there was no derivative on the function φ in (1.24).

The expression on the left in (1.24) defines a linear function L : C1
0 [a, b] →

R by

L[φ] =

∫

(a,b)

h′Φ(h′) φ′, (1.25)

and the question is: What does the condition L[φ] = 0 for all φ ∈ C1
0 [a, b]

say about the factor h′Φ(h′) in the integrand?
The easier version referered to above is this: Let M : C0

0 [a, b] → R be
given by

M [φ] =

∫ b

a

g(x) φ(x) dx (1.26)

where g ∈ C0[a, b] is some (fixed) continuous function and

C0
0 [a, b] = {f ∈ C0[a, b] : f(a) = 0 = f(b)}.

If M [φ] = 0 for all φ ∈ C0
0 [a, b], then g(x) = 0 for x ∈ [a, b]. This assertion8

is called the fundamental lemma of the calculus of variations or the
fundamental lemma of vanishing integrals, and it is easy to prove.

The functions φ appearing in definitions of integral operators like those
defined in (1.25) and (1.26) have become known as test functions.

Proof of the fundamental lemma of vanishing integrals: Assume
g(x0) > 0 for some x0 ∈ (a, b). By the continuity of g, there is some δ > 0
with δ < min{x0 − a, b− x0} and

g(x) ≥ g(x0)

2
> 0 for |x− x0| < δ. (1.27)

Exercise 1.36 Actually use continuity (pick an ǫ and then get an δ > 0 so
that |g(x) − g(x0)| < ǫ for |x − x0| < δ) and use the triangle inequality to
conclude/prove (1.27) holds.

8Technically, this is only one version of the fundamental lemma of the calculus of
variations. All results which might be called this have roughly the same form. Some
versions are “stronger” because they either allow more general functions g to play the
role of the integrand factor in (1.26) and/or they require the vanishing of the integral
functional M to hold for smaller classes of test functions φ.
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Once we have a fixed δ > 0 as described above, we can note that φ : [a.b] →
[0, δ0] by

φ0(x) = χ[x0−δ,x0+δ](x) [δ − |x− x0|] (1.28)

satisfies φ0 ∈ C0
0 [a, b]. Here I have used a characteristic function χ. Such

functions are also sometimes called indicator functions. In case you are
not familiar, given any set X and a subset A ⊂ X , the characteristic function
with support on A is defined by

χA(x) =

{

1, x ∈ A
0, x /∈ A.

Characteristic functions are typically discontinuous, but in this case things
work out.

Exercise 1.37 Show the test function φ0 defined in (1.28) satisfies the fol-
lowing:

(a) φ0 ∈ C0
0 [a, b].

(b) φ0(x) ≥ 0 for a ≤ x ≤ b.

(c) φ0(x) > 0 for |x− x0| < δ.

(d) φ0(x) ≡ 0 for |x− x0| ≥ 0.

It follows that

M [φ0] =

∫

(a,b)

g φ0

=

∫

(x0−δ,x0+δ)

g φ0

≥ g(x0)

2

∫

(x0−δ,x0+δ)

φ0

= g(x0) δ
2

> 0.

This contradicts the assumption g(x0) > 0 at some x0 ∈ (a, b). We conclude
g(x) ≤ 0 for x ∈ (a, b).

Exercise 1.38 Give a detailed argument showing g(x) ≥ 0 for x ∈ (a, b).
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From Exercise 1.38 one can conclude g(x) ≡ 0 for a < x < b. By continuity

g(a) = lim
xցa

g(x) = 0 and g(b) = lim
xրb

g(x) = 0.

Therefore g(x) ≡ 0 for x ∈ [a, b] as claimed, and the proof is complete. �

So we have some version of the fundamental lemma of vanishing integrals
which applies to functionals of the form given in (1.26). Unfortunately, the
functional L : C1

0 [a, b] → R appearing in (1.25) does not quite have this
form, and this is the functional with which we have to deal. Here is a first
observation about this more restrictive condition: If the factor h′Φ(h′) is
continuously differentiable, that is if

h′Φ(h′) ∈ C1[a, b],

then we can integrate by parts to write the value of L[φ] as

L[φ] = h′Φ(h′) φ∣
∣

b

x=a

−
∫

(a,b)

d

dx
[h′Φ(h′)] φ

= −
∫

(a,b)

d

dx
[h′Φ(h′)] φ.

Then taking the integrand factor g = −(h′Φ(h′))′ in the fundamental lemma
we can conclude (h′Φ(h′))′ = 0 or h′Φ(h′) = c is constant.

Exercise 1.39 Go ahead and solve the two point boundary value problem






h′Φ(h′) = c, a ≤ x ≤ b
h(a) = ya,
h(b) = yb

for the ordinary differential equation h′Φ(h′) = c where c is an (unknown)
constant to be determined along with the function h ∈ C1[a, b]. Hint: You
should get the function given in (1.21).

So this gives what we expect (and presumably want), but there are a few
details to clean up. One big problem is that we essentially assumed a min-
imizer h must satisfy h ∈ C2[a, b]. The assumption lead to precisely the
minimizers we expected, but it is still troubling that we had to make the
assumption without any real justification. There are various ways to deal
with this problem which generally fall under the heading of the lemma of
Dubois-Reymond. Here is one version:
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Lemma 1.1 Let g ∈ C0[a, b] and L : C1
0 [a, b] → R be given by

L[φ] =

∫

(a,b)

g φ′.

If L[φ] = 0 for all φ ∈ C1
0 [a, b], then g ≡ c is constant (for some constant c).

Proof: We will use the fundamental lemma which applies to linear functionals
having the form satisfied by M : C0

0 [a, b] → R discussed above. The question
to ask (though maybe it is not an obvious one) is the following:

How can you construct a C1
0 function from an arbitrary C0

0 func-
tion?

Let ψ ∈ C0
0 [a, b]. The function ψ may not be differentiable, but ψ is good for

integration. Notice also, that if it happens that ψ = φ′ for some φ ∈ C1
0 [a, b],

then by the fundamental theorem of calculus

∫

(a,b)

ψ =

∫

(a,b)

φ′ = φ(b)− φ(a) = 0.

Thus, a necessary condition for ψ ∈ C0
0 [a, b] to satisfy ψ = φ′ for some

φ ∈ C1
0 [a, b] is

∫

(a,b)

ψ = 0. (1.29)

It turns out this is also sufficient.

Exercise 1.40 Show that if ψ ∈ C0
0 [a, b] and (1.29) holds, then there is some

φ ∈ C1
0 [a, b] with ψ = φ′.

Let µ ∈ C0
0 [a, b] satisfy

∫

(a,b)

µ = 1.

Such a function should be easy to find. For example, the function µ =
φ0/(2δ

2) where φ0 is defined in (1.28) should work.
Given an arbitrary ψ ∈ C0

0 [a, b], consider the function

ψ − Cµ
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where C is a constant. The constant C is not going to be the constant in
the statement of the lemma. In fact, take

C =

∫

(a,b)

ψ.

Then we see
∫

(a,b)

(ψ − Cµ) =

∫

(a,b)

ψ − C

∫

(a,b)

µ =

∫

(a,b)

ψ − C.

In view of the value of C this quantity vanishes, which means the function
ψ − Cµ is the derivative of some function φ ∈ C1

0 [a, b]. In particular, this is
a function for which the conditions of the lemma hold so that

L[ψ − Cµ] = 0.

Since L is linear, and C is a constant, this also means that for every ψ ∈
C0

0 [a, b] we have L[ψ]− CL[µ] = 0. That is,

∫

(a,b)

g ψ − C

∫

(a,b)

g µ = 0. (1.30)

Now remember that g is a fixed function, and µ is a fixed function too, so
whatever form the value

c = L[µ] =

∫

(a,b)

g µ

happens to take, it is a constant, and this is the constant in the statement
of the lemma. Also, we remember again the value of the (other) constant C
so that (1.30) becomes

∫

(a,b)

g ψ − c

∫

(a,b)

ψ = 0 for all ψ ∈ C0
0 [a, b].

That is,
∫

(a,b)

(g − c) ψ = 0 for all ψ ∈ C0
0 [a, b].

By the fundamental lemma then we have the lemma of Dubois-Reymond:
g ≡ c. �
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The preceeding result has a rather interesting corollary. A function h ∈ A
for which the condition

L[φ] =

∫

(a,b)

h′Φ(h′) φ′ = 0 for all φ ∈ C1
0 [a, b]

holds with a linear operator L like the one in (1.25) is called a C1 weak
extremal for the problem. Every minimizer of the length functional, for
example, is a C1 weak extremal, but coneivably there could be other such
functions which are not minimizers. It turns out in this case, that all C1

weak extremals h actually satisfy h ∈ C∞[a, b]. There are other problems,
however, for which there exist C1 weak extremals which are really only in C1,
say in C1[a, b] and not in C2[a, b]. The Lemma of Dubois-Reymond applies
in all these cases to imply that whatever factor turns up in the integrand
will, if necessary, somehow make the resulting expression differentiable.

Corollary 1.1 If h ∈ A is a C1 weak extremal for length, then the expres-
sion h′Φ(h′) which is (on the face of it) only continuous (h′Φ(h′) ∈ C0[a, b])
is actually continuously differentiable (h′Φ(h′) ∈ C1[a, b]) and

(h′Φ(h′))′ = 0.

Thus in fact φΦ(h′) ∈ C∞[a, b].

Exercise 1.41 Ignore the spatial restriction of B1(0) in relation to the Rie-
mannian manifold B and find some C1 weak extremals for lengthB : A →
[0,∞) where −1 < a < b < 1, a2 + y2a, b

2 + y2b < 1,

A = {h ∈ C1[a, b] : h(a) = ya, h(b) = yb},

and

lengthB[h] =

∫

x∈(a,b)

4

4 + x2 + h2

√
1 + h′2

is obtained by using the parameterization α(t) = (t, h(t)).

This question was considered by Ty Bondurant, and some of what he
is found is included in Appendix B below. For the moment, I’m going to
move on to the other big problem with the discussion above,9 and then to a
generalization of Weierstrass’ (in some ways) irritating question.

9I should emphasize that if you have not completed or at least seriously attempted
Exercise 1.41, then the best immediate use of your time to make progress toward under-
standing Riemannian manifolds may be to think about that exercise.
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When given a problem that involves minimizing a functional like

length : A → [0,∞)

with domain a subset A of an infinite dimensional space of functions like
C1[a, b], it is not always clear that a minimizer exists. Everything we have
said above leading to the ordinary differential equation (called the Euler-
Lagrange equation for C1 weak extremals (and minimzers in particular)
is based on the assumption that a minimizer exists. In calculus, for example
if we look at a particular function h ∈ C0[a, b], then the extreme value
theorem guarantees there exist points x0 and x1 in [a, b] with

h(x0) = min
x∈[a,b]

h(x) and h(x1) = max
x∈[a,b]

h(x).

In short, we do not have such a theorem for functionals on subsets of infinite
dimensional spaces in general. One says that in general there is no compact-
ness. Fortunately, this question of existence can be addressed directly in the
case of Euclidean distance in Weierstrass’ minimization problem (Problem 5)
as suggested below.

Consider the minimization of

length[α] =

∫

(a,b)

|α′|

over
A = {α ∈ C1([a, b] → B1(0)) : α(a) = x, α(b) = y}.

This is essentially

Weierstrass’ second minimization problem (Problem 5): Among all
geometrically regular paths parameterized by a function α ∈ C1([a, b] → R2)
and satisfying α(a) = x and α(b) = y for some fixed x,y ∈ R2, find the path
of minimum length.

Exercise 1.42 Show

length[α] =

∫

(a,b)

|α′| ≥ |y − x| for α ∈ A.

Hint: Look ahead at Exercises 1.7-1.9 and use the triangle inequality.
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Exercise 1.43 Consider the assertion of Exercise 1.42:

(a) Apply the assertion to conclude the nonparametric problem has a solu-
tion (minimizer) h ∈ C∞[a, b].

(b) Apply the assertion to conclude the parametric problem has a solution
α ∈ C∞([a, b] → R2).

(c) Apply the Lemma of Dubois-Reymond to conclude every minimizer for
the nonparametric problem is given by (1.21).

Let us again assume we have a minimizer α ∈ A of the functional

length : A → [0,∞).

Now, we take a function φ ∈ C1([a, b] → R2) with φ(a) = 0 = φ(b) so that
α + tφ ∈ A for each t ∈ R, and we consider the function f : R → R by

f(t) = length[α + tφ] =

∫

(a,b)

|α′ + tφ′|.

Since α is assumed to minimize length, we should have f ′(0) = 0. Thus, we
calculate

f ′(t) =

∫

(a,b)

〈α′ + tφ′, φ′〉R2

|α′ + tφ′|
and

f ′(0) =

∫

(a,b)

〈α′, φ′〉R2

|α′| = 0.

Of course, there is a (potential) problem here when |α′ + tφ′| = 0, but the
assumption that α is a geometrically regular parameterization should take
care of this at some level. Note the product formula:

d

dt

〈

α′

|α′| , φ
〉

R2

=

〈(

α′

|α′|

)′

, φ

〉

R2

+
〈α′, φ′〉R2

|α′| .

This allows us to integrate by parts (if we assume some extra regularity for
the minimizer α in addition to possibly the nonvanishing of |α′|. Proceeding
as if all this is no problem:

f ′(0) =
〈α′, φ〉R2

|α′| ∣

∣

b

t=a

−
∫

(a,b)

〈(

α′

|α′|

)′

, φ

〉

R2

.
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If this quantity vanishes we can consider the component functions φj ∈
C1[a, b] of φ = (φ1, φ2) for j = 1, 2 separately (taking for example φ2 ≡ 0
and φ1 arbitrary) to conclude the coupled system of ordinary differential
equations

{

(α1/|α′|)′ = 0
(α2/|α′|)′ = 0

should hold for a minimizer. The vector quantity in this case (assuming α is
geometrically regular according to Definition 2 above)

1

|α′|

(

α′

|α′|

)′

(1.31)

is called the curvature vector, so the necessary condition we have obtained
for a minimizer is that the curvature vanishes.

Exercise 1.44 Explain why the expression in (1.31) is a reasonable expres-
sion to call a/the curvature vector, and determine all paths with vanishing
curvature vector.

Perhaps now you can address the following:

Weierstrass’ general length minimization problem (Problem 5):
Among all geometrically regular paths parameterized by a function α ∈
C1([a, b] → Rn) and satisfying α(a) = x and α(b) = y for some fixed
x,y ∈ Rn, find the path of minimum length.

We conclude with a problem that should make sense if you have had a
look at Chapter 3.

Riemann’s length minimization problem (Problem 5): Among all
geometrically regular paths parameterized by a function α ∈ C1([a, b] → Rn)
and satisfying α(a) = x and α(b) = y for some fixed x,y ∈ Rn, find the path
that minimizes

lengthM [α] =

∫

(a,b)

√

〈(gij) α′, α′〉Rn

where (gij) is an n× n positive definite symmetric matrix having entries gij
for i, j = 1, 2, . . . , n satisfying gij ∈ C0(R2).

Exercise 1.45 Derive a system of ordinary differential equations for the
component functions αj , j = 1, 2, . . . , n for a minimizer of Riemann’s length
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minimization problem. (Assume as much regularity as you need, but note
how much regularity that is. Specifically, explain how regular the component
functions αj, j = 1, 2, . . . , n and the matrix entries gij, i, j = 1, 2, . . . , n need
to be in order for your calculus techniques/manipulations to be justified.)


