MATH 2551, Spring 2017
 Practice Midterm 1, Solutions

Problem 1. Calculations.
(a) $\frac{d}{d t}[(2 t \mathbf{i}+\sqrt{t} \mathbf{j}) \bullet(t \mathbf{i}-3 \mathbf{j})]$
solution: $4 t-\frac{3}{2} t^{-1 / 2}$.
(b) $\frac{d}{d t}[(\cos t \mathbf{i}+\sin t \mathbf{j}+t \mathbf{k}) \times(3 \mathbf{i}+4 \mathbf{j}+5 \mathbf{k})]$
solution: $(5 \cos t-4) \mathbf{i}+(5 \sin t+3) \mathbf{j}-(4 \sin t+3 \cos t) \mathbf{k}$
(c) $\frac{d}{d t}\left[e^{\cos 2 t} \mathbf{i}+\ln \left(1+t^{2}\right) \mathbf{j}+(1-\cos t) \mathbf{k}\right]$
solution: $-2 \sin (2 t) e^{\cos 2 t} \mathbf{i}+\frac{2 t}{1+t^{2}} \mathbf{j}+\sin t \mathbf{k}$
Problem 2 A golf ball is hit at time $t=0$. Its position vector as a function of time is given by

$$
\mathbf{r}(t)=2 t \mathbf{i}+3 t \mathbf{j}+\left(-t^{2}+4 t\right) \mathbf{k}
$$

Notice that at $t=0$ the ball is at the origin of the coordinate system. The $x y$ plane represents the ground. At some time $t_{1}>0$ the ball will return to the $x y$ plane at some point $P(a, b, 0)$.
(a) Compute the velocity, the accelaration and the speed of the ball at an arbitrary time t.
solution:

$$
\mathbf{v}(t)=\mathbf{r}^{\prime}(t)=2 \mathbf{i}+3 \mathbf{j}+(4-2 t) \mathbf{k},
$$

$$
\begin{gathered}
\mathbf{a}(t)=-2 \mathbf{k} \\
v(t)=\|\mathbf{v}(t)\|=\sqrt{13+(4-2 t)^{2}}
\end{gathered}
$$

(b) Find the time $t_{1}>0$ and the coordinates of the point P where the ball hits the $x y$ plane again.
solution: $t_{1}=4$.
(c) Set up a definite integral equal to the length of the arc of the trajectory from the origin to the point P . You do not have to evaluate the integral.
solution: $\int_{0}^{4} \sqrt{13+(4-2 t)^{2}} d t$.
(d) Find the equation of the line tangent to the trajectory at P .
solution: $\mathbf{R}(u)=8 \mathbf{i}+12 \mathbf{j}+u \mathbf{r}^{\prime}(4)=(8+2 u) \mathbf{i}+(12+3 u) \mathbf{j}-4 u \mathbf{k}$.
(e) Find the equation of the vertical plane containing the trajectory.
solution: The plane is through the origin and is vertical. The vector \mathbf{k} is in this plane. The other vector can be easily found by the origin and the point P , i.e., $8 \mathbf{i}+12 \mathbf{j}$, or simply $2 \mathbf{i}+3 \mathbf{j}$. Thus the normal for the plane of the trajectory is

$$
\mathbf{n}=(2 \mathbf{i}+3 \mathbf{j}) \times \mathbf{k}=3 \mathbf{i}-2 \mathbf{j} .
$$

The plane equation is thus
$3 x-2 y=0$.
(f) Find the curvature of the trajectory at P.
solution: $(1) k=\frac{\|\mathbf{v} \times \mathbf{a}\|}{(d s / d t)^{3}}$. At $t_{1}=4$,

$$
k=\frac{\sqrt{52}}{29^{\frac{3}{2}}}
$$

(2) $k=\frac{\|d \mathbf{T} / d t\|}{d s / d t}=\frac{\sqrt{52}}{29^{\frac{3}{2}}}$.

Problem 3 At each point $P(x(t), y(t), z(t))$ of its motion, an object of mass m is subject to a force:

$$
\mathbf{F}(t)=m \pi^{2}[4 \cos (\pi t) \mathbf{i}+3 \sin (\pi t) \mathbf{j}] .
$$

Given that $\mathbf{v}(0)=-3 \pi \mathbf{j}+\mathbf{k}$, and $\mathbf{r}(0)=3 \mathbf{j}$. find the following:
solution: Upon integration, we have

$$
\begin{aligned}
& \mathbf{a}(t)=\pi^{2}[4 \cos (\pi t) \mathbf{i}+3 \sin (\pi t) \mathbf{j}] \\
& \mathbf{v}(t)=4 \pi \sin (\pi t) \mathbf{i}-3 \pi \cos (\pi t) \mathbf{j}+\mathbf{k} \\
& \mathbf{r}(t)=4(1-\cos (\pi t)) \mathbf{i}+3(1-\sin (\pi t) \mathbf{j}+t \mathbf{k}
\end{aligned}
$$

(a) The velocity $\mathbf{v}(1)$.
solution: $\mathbf{v}(1)=3 \pi \mathbf{j}+\mathbf{k}$.
(b) The speed $v(1)$.
solution: $v(1)=\sqrt{9 \pi^{2}+1}$.
(c) The momentum $\mathbf{p}(1)$.
solution: $\mathbf{p}(1)=m \mathbf{v}(1)=3 m \pi \mathbf{j}+m \mathbf{k}$.
(d) The angular momentum $\mathbf{L}(1)$.
solution: $\mathbf{L}(1)=\mathbf{r}(1) \times \mathbf{p}(1)=3 m(1-\pi) \mathbf{i}-8 m \mathbf{j}+24 m \pi \mathbf{k}$.
(e) The torque $\tau(1)$.
solution: $\tau(1)=\mathbf{r}(1) \times \mathbf{F}(1)=-4 m \pi^{2} \mathbf{j}+12 m \pi^{2} \mathbf{k}$.
(f) The position $\mathbf{r}(1)$.
solution: $\mathbf{r}(1)=8 \mathbf{i}+3 \mathbf{j}+\mathbf{k}$.
(g) The osculating plane equation at $\mathbf{r}(1)$.
solution: We know that both $\mathbf{v}(1)=3 \pi \mathbf{j}+\mathbf{k}$ and $\mathbf{a}(1)=-4 \pi^{2} \mathbf{i}$ are in this osculating plane, therefore the normal vector can be choosen any nonzero multiple of

$$
\mathbf{v}(1) \times \mathbf{a}(1)=(3 \pi \mathbf{j}+\mathbf{k}) \times\left(-4 \pi^{2} \mathbf{i}\right)=-4 \pi^{2} \mathbf{j}+12 \pi^{3} \mathbf{k}
$$

Here, we choos $\mathbf{n}=-\mathbf{j}+3 \pi \mathbf{k}$. Therefore, the plane equation is

$$
-(y-3)+3 \pi(z-1)=0 .
$$

(h) The tengential and normal components of accelaration $\mathbf{a}(1)$.

solution:

$$
\begin{gathered}
a_{T}(1)=\frac{\mathbf{v}(1) \cdot \mathbf{a}(1)}{v(1)}=0, \\
a_{N}(1)=\frac{\|\mathbf{v}(1) \times \mathbf{a}(1)\|}{v(1)}=4 \pi^{2} .
\end{gathered}
$$

Remark: in this problem, from $a_{T}(1)=0$, you see that $\mathbf{a}(1)$ has only normal component,therefore, $a_{N}(1)=\|\mathbf{a}(1)\|=4 \pi^{2}$

