
MATH 2551, Fall 2016
Practice Final : Solutions

Problem 1. This problem is about the function

f(x, y, z) = 3zy + 4xcos(z).

(a) Find the rate of change of the function f at (1, 1, 0) in the direction from
this point to the origin.

Solution: The direction vector is v = −i− j. Normalize it one obtains:u =
− 1√

2
(i + j). Compute the gradient of f at (1, 1, 0), we have

∇f(1, 1, 0) = 4i + 3k.

Thus: f ′u(1, 1, 0) = ∇f(1, 1, 0) • u = − 4√
2
.

(b) Give an approximate value of f(0.9, 1.2, 0.11)

Solution: To approximate f(0.9, 1.2, 0.11), we use differentials. We know
that f(1, 1, 0) = 4, and ∆x = −0.1, ∆y = 0.2, ∆z = 0.11. Thus,

f(0.9, 1.2, 0.11) ≈ f(1, 1, 0) + df = 4 + 4(−0.1) + 0(0.2) + 3(0.11) = 3.93.

(c) The equation f(x, y, z) = 4 implicitly defines z as a function of (x, y),
if we agree that z = 0 if (x, y) = (1, 1). Find the numnerical values of the
derivatives:



∂z
∂x

(1, 1) and ∂z
∂y

(1, 1).

Solution: By the implicit differentiation, we have

∂z

∂x
(1, 1) = −∂f/∂x(1, 1, 0)

∂f∂z(1, 1, 0)
= −4

3

∂z

∂y
(1, 1) = −∂f/∂y(1, 1, 0)

∂f∂z(1, 1, 0)
= −0

3
= 0.

(d) Suppose r(t) = (x(t), y(t), z(t)) is a parametric curve such that r(0) =
(1, 1, 0) and r′(0) = (3, 2, 1). Find the value of

d

dt
f(r(t))|t=0.

Solution: By chain rule,

d

dt
f(r(t))|t=0 = ∇f(r(0) • r′(0) = (4i + 3k) • (3i + 2j + k) = 15.

Problem 2 (a) Find the value of a such that the field on the plane
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F(x, y) = (axy)i + x2j

is conservative. Find a potential for the resulting field.

Solution: Set P = axy, Q = x2. For F(x, y) to be conservative, we need

∂P

∂y
= ax =

∂Q

∂x
= 2x.

Hence, a = 2.

We now look for f(x, y) such that ∇f = F. To this purpose, we know
from ∂f

∂x
= P = 2xy that

f(x, y) = x2y + g(y).

However, ∂f
∂y

= A = x2 = x2 + g′(y). This implies g′(y) = 0. Thus

f(x, y) = x2y + C

.

A potential of F is G(x, y) = −x2y.

(b) Compute the line integral of the conservative field you found in part (a)
over the curve r(t) = et

2
i + tcos(2πt)j, 0 ≤ t ≤ 1.

Solution: We first determine the endpoints for the curve. It is clear that the
curve starts at (1, 0) and ends at (e, 1). Since F = ∇f , by the fundamental
theorem of line integrals, we have
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∫
C

F(r) • dr = f(e, 1)− f(1, 0) = e2.

Problem 3. Evaluate I =
∫
CR

dx + x2ydy, where CR is the triangle with

vertices (0, 0), (0, R), (R, 0) oriented counterclockwise.

Solution: A convenient way is to apply Green’s Theorem. Set P = 1,
Q = x2y, we have

∮
CR

dx+ x2ydy =
∫ ∫

D
2xydxdy =

∫ R

0

∫ R−y

0
2xy dxdy

=
∫ R

0
y(R− y)2 dy =

1

2
R4 − 2

3
R4 +

1

4
R4

=
R4

12
.

Problem 4 Let S be the portion of the surface x = 5 − y2 − z2 in the half
space x ≥ 1, oriented so that the normal vector at (5, 0, 0) is equal to i. Let
F(x, y, z) = −i + j (a constant vector field).

(a) Set up and evaluate the flux of F across S.

Solution: Step 1: We first paramatrize the surface S by r(y, z) = (5− y2 −
z2)i + yj + zk, (y, z) ∈ D. Here D is the disc

y2 + z2 ≤ 4.
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Step 2: We now compute the fundamental vector product N(y, z).

r′y = −2yi + j,

r′z = −2zi + k,

N = r′y × r′z = i + 2yj + 2zk.

We confirm that N(0, 0) = i. Set n be unit vector normalized from N.

Step 3: We now compute the flux of F across S:

the flux =
∫ ∫

S
F · n dσ

=
∫ ∫

D
F ·N dydz

=
∫ ∫

D
(−1 + 2y) dydz

=
∫ 2π

0

∫ 2

0
(−1 + 2rcosθ) rdrdθ

=
∫ 2π

0
(−2 +

16

3
cos(θ)) dθ

= −4π.

(b) Verify that F = ∇×G, where G = zj− xk.

Solution: Obivious, omitted.

(c) Give an alternative calculation of the surface integral of part (a) by ap-
plying Stokes’ theorem.

Solution: The bounding curve of C is y2 + z2 = 4 oriented in the counter-
clockwise direction coresponding to i. C is parametrized as y = 2cosθ, z =
2sinθ, with θ ∈ [0, 2π]. Along C, x = 1.
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By Stokes’ Theorem, we can compute the flux as following:

the flux =
∫ ∫

S
F · n dσ

=
∫ ∫

S
(∇×G · n) dσ

=
∮
C
zdy − xdz

=
∫ 2π

0
[2sin(θ)(−2sin(θ))− 2cos(θ)] dθ

=
∫ 2π

0
(−4sin2(θ)− 2cos(θ)) dθ

= −4π.

Problem 5 For each item, circle the correct answer or indicate if the state-
ment is ture or false. Assume that the functions, fields and curves below are
smooth.

Solution:

(a) Let C be an arc from (0, 0) to (2, 1). According to the fundamental

theorem for line integrals,
∫
C

(y − 1)dx+ (x+ 2y)dy is equal to

(1) 2, (2) 1, (3) It depends on what C is.

Solution: The vector field (y − 1)i + (x + 2y)j = ∇f with f = xy − x +
y2, and therefore the fundamental theorem applies. The correct answer is
f(2, 1)− f(0, 0) = 1. So, Choose (2).
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(b) For every smooth function f , the integral
∫ 1

0

∫ 2y2+1

0
f(x, y) dxdy is equal

to

(1)
∫ 3

0

∫ √ 1
2
(x−1)

0
f(x, y) dydx,

(2)
∫ 3

1

∫ √ 1
2
(x+1)

0
f(x, y) dydx,

(3) None of the above.

Solution: The region of integration is of type II but not of type I. So correct
answer is (3).

(c) If F is a field such that
∫
C F · dr = 0 where C is the unit circle, then F

must be conservative.

(1) True, (2) False.

Solution: One cannot conclude that F is conservative just by knowing that
the integral of F around a particular closed curve is zero. One would need
to know that the integra of F around every closed curve is zero to conclude
that F is conservative. So the correct answer is (2).

(d) If C is the boundary of a bounded domain D and C is oriented as in the
statement of Green’s theorem, then

∫
C x

2ydx− ydy equals

(1)
∫ ∫

D(2xy − 1)dxdy
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(2)
∫ ∫

D(1− x2)dxdy

(3)
∫ ∫

D(−x2)dxdy

(4) None of the above.

Solution: In this case, Qx − Py = −x2, so the correct answer is (3) by
Green’s Theorem.

(e) If (a, b) is a critical point of a function f , and if

fxx(a, b) = −2, and fyy(a, b) = 1,

then what can one say about (a, b)?

(1) Noting can be concluded from the given information.

(2) (a, b) is a local minimum of f

(3) (a, b) is a local maximum of f

(4) (a, b) is a saddle point of f

Solution: It is tempting to conclude that, since we don’t know anything
about the value fxy(a, b), the correct answer should be (1). However, the
discriminant of this function at (a, b) is

−2× 1− (fxy(a, b))
2 ≤ −2 < 0,

and therefore the correct answer is (4).

Problem 6 Consider the surface S that is the part of the cone z =
√
x2 + y2
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below the plane z = 3.

(a) Give a parametric representation of S. Make sure to explicitly describe
or sketch the parametrization domain D.

Solution: We can parametrize S by r(x, y) = xi + yj +
√

(x2 + y2)k, where

(x, y) ∈ D, and D is the disc

x2 + y2 ≤ 9.

(b) Find an equation of the tangent plane to S at the point P (−1, 1,
√

2).

Solution: Let g(x, y, z) =
√
x2 + y2− z, S is the level surface of f(x, y, z) =

0.

∇g(−1, 1,
√

2) = − 1√
2
i +

1√
2
j− k.

So the tangent plane to S at P (−1, 1,
√

2) is

− 1√
2

(x+ 1) +
1√
2

(y − 1)− (z −
√

2) = 0.

(c) If the density function λ(x, y, z) is equal to the distance to the xy-plane,
find the total mass of the surface S.
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Solution:f(x, y) =
√
x2 + y2, x2 + y2 ≤ 9.

M =
∫ ∫

S
λ(x, y, z) dσ

=
∫ ∫

D

√
x2 + y2

√
f 2
x + f 2

y + 1 dxdy

=
∫ ∫

D

√
x2 + y2

√
2 dxdy

=
∫ 2π

0

∫ 3

0

√
2rr drdθ

= 18
√

2π.

Problem 7 Let E denote the portion of the solid ball of radius R centered
at the origin in the first octant, and let

F = (2x+ y)i + y2j + cos(xy)k.

Applying the Divergence Theorem, compute the net flux of the field F
across the boundary of E, oriented by the outward-pointing normal vectors.

Solution: The divergence of F is

∇ · F = 2 + 2y.

By the divergence theorem, the flux out of the given suface is equal to

∫ ∫ ∫
E

(2 + 2y)dxdydz = 2(volum(E)) + 2
∫ ∫ ∫

E
ydxdydz,

where E is the region inside the surface. The volume of E is one eigth of the
volume of the ball of radius R. Thus
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2(volum(E)) =
1

3
πR3.

In spherical coordinates, we have

2
∫ ∫ ∫

E
ydxdydz = 2

∫ π/2

0

∫ π/2

0

∫ R

0
ρsin(θ)sin(φ)ρ2sin(φ) dρdθdφ

=
R4

2

∫ π/2

0

∫ π/2

0
sin(θ)sin2(φ) dθdφ

=
R4

2

∫ π/2

0
sin2(φ) dφ

= R4

8
π.

So the final answer is

1

3
πR3 +

1

8
πR4.

Problem 8 Please complete the course survey. Your comments will help me
to improve my teaching in the future. Thank you in advance.
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