
MATH 2551, Fall 2018
Practice Final : Solutions

Problem 1. This problem is about the function

f(x, y, z) = 3zy + 4xcos(z).

(a) Find the rate of change of the function f at (1, 1, 0) in the direction from
this point to the origin.

Solution: The direction vector is v = −i− j. Normalize it one obtains:u =
− 1√

2
(i + j). Compute the gradient of f at (1, 1, 0), we have

∇f(1, 1, 0) = 4i + 3k.

Thus: f ′u(1, 1, 0) = ∇f(1, 1, 0) • u = − 4√
2
.

(b) Give an approximate value of f(0.9, 1.2, 0.11)

Solution: To approximate f(0.9, 1.2, 0.11), we use differentials. We know
that f(1, 1, 0) = 4, and ∆x = −0.1, ∆y = 0.2, ∆z = 0.11. Thus,

f(0.9, 1.2, 0.11) ≈ f(1, 1, 0) + df = 4 + 4(−0.1) + 0(0.2) + 3(0.11) = 3.93.

(c) The equation f(x, y, z) = 4 implicitly defines z as a function of (x, y),
if we agree that z = 0 if (x, y) = (1, 1). Find the numnerical values of the
derivatives:



∂z
∂x

(1, 1) and ∂z
∂y

(1, 1).

Solution: By the implicit differentiation, we have

∂z

∂x
(1, 1) = −∂f/∂x(1, 1, 0)

∂f∂z(1, 1, 0)
= −4

3

∂z

∂y
(1, 1) = −∂f/∂y(1, 1, 0)

∂f∂z(1, 1, 0)
= −0

3
= 0.

(d) Suppose r(t) = (x(t), y(t), z(t)) is a parametric curve such that r(0) =
(1, 1, 0) and r′(0) = (3, 2, 1). Find the value of

d

dt
f(r(t))|t=0.

Solution: By chain rule,

d

dt
f(r(t))|t=0 = ∇f(r(0) • r′(0) = (4i + 3k) • (3i + 2j + k) = 15.

Problem 2. Consider the planar vector field
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F(x, y) = (y−2x2)i+4j, and G(x, y) = (1+xy)exyi+x2exyj, and the curve
C from point A(−2, 0) to B(1, 3) that goes along the parabola y = 4− x2.

(a) (4 pt) Is F a gradient field? If yes, find a function whose gradient is F.

Solution: Set p = y − 2x2, q = 4, we see that

∂p

∂y
= 1 6= ∂q

∂x
= 0.

So, F is not a gradient field.

(b) (6 pt) Is G a gradient field? If yes, find a function whose gradient is G.

Solution: Set P = (1 + xy)exy, Q = x2exy, we compute

∂P

∂y
=
∂Q

∂x
= 2xexy + x2yexy.

So, G = ∇g for some g.

We now look for g(x, y). To this purpose, we know from ∂g
∂y

= Q that

g(x, y) = xexy + h(x).

However, ∂g
∂x

= P = (1+xy)exy = (1+xy)exy+h′(x). This implies h′(x) = 0.
Thus

g(x, y) = xexy + C
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.

(c) Compute the work done by the field F along the curve C.

Solution: C can be parametrized by

r(t) = ti + (4− t2)j, −2 ≤ t ≤ 1.

The work done by F is

∫
C F · dr =

∫
C(y − 2x2)dx+ 4dy

=
∫ 1
−2[(4− t2 − 2t2) + 4(−2t)]dt

= 15.
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(d) Compute the work done by the field G along the curve C.

Solution: Since G = ∇g, by the fundamental theorem of line integrals, the
work done by the G is

∫
C

G · dr = g(1, 3)− g(−2, 0) = e3 + 2.

Problem 3. Evaluate I =
∫
CR

dx + x2ydy, where CR is the triangle with

vertices (0, 0), (0, R), (R, 0) oriented counterclockwise.

Solution: A convenient way is to apply Green’s Theorem. Set P = 1,
Q = x2y, we have

∮
CR

dx+ x2ydy =
∫ ∫

D
2xydxdy =

∫ R

0

∫ R−y

0
2xy dxdy

=
∫ R

0
y(R− y)2 dy =

1

2
R4 − 2

3
R4 +

1

4
R4

=
R4

12
.

Problem 4 Let S be the portion of the surface x = 5 − y2 − z2 in the half
space x ≥ 1, oriented so that the normal vector at (5, 0, 0) is equal to i. Let
F(x, y, z) = −i + j (a constant vector field).

(a) Set up and evaluate the flux of F across S.
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Solution: Step 1: We first paramatrize the surface S by r(y, z) = (5− y2 −
z2)i + yj + zk, (y, z) ∈ D. Here D is the disc

y2 + z2 ≤ 4.

Step 2: We now compute the fundamental vector product N(y, z).

r′y = −2yi + j,

r′z = −2zi + k,

N = r′y × r′z = i + 2yj + 2zk.

We confirm that N(0, 0) = i. Set n be unit vector normalized from N.

Step 3: We now compute the flux of F across S:

the flux =
∫ ∫

S
F · n dσ

=
∫ ∫

D
F ·N dydz

=
∫ ∫

D
(−1 + 2y) dydz

=
∫ 2π

0

∫ 2

0
(−1 + 2rcosθ) rdrdθ

=
∫ 2π

0
(−2 +

16

3
cos(θ)) dθ

= −4π.

(b) Verify that F = ∇×G, where G = zj− xk.

Solution: Obivious, omitted.

(c) Give an alternative calculation of the surface integral of part (a) by ap-
plying Stokes’ theorem.
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Solution: The bounding curve of C is y2 + z2 = 4 oriented in the counter-
clockwise direction coresponding to i. C is parametrized as y = 2cosθ, z =
2sinθ, with θ ∈ [0, 2π]. Along C, x = 1.

By Stokes’ Theorem, we can compute the flux as following:

the flux =
∫ ∫

S
F · n dσ

=
∫ ∫

S
(∇×G · n) dσ

=
∮
C
zdy − xdz

=
∫ 2π

0
[2sin(θ)(−2sin(θ))− 2cos(θ)] dθ

=
∫ 2π

0
(−4sin2(θ)− 2cos(θ)) dθ

= −4π.

Problem 5 Find and classify all critical points of the function

f(x, y) =
5

2
x2 − xy + 15x+

1

75
y3 − 3y

Solution: Solve ∇f = (5x− y + 15)i + (−x+ 1
25
y2 − 3)j = 0, one finds the

critical points

P1(−3, 0) and P2(−2, 5).

To classify the type of the critical points, we perform the second derivative
test.
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fxx(x, y) = 5, fxy(x, y) = −1, fyy(x, y) =
2

25
y.

For P1, A = 5, B = −1, C = 0, AC − B2 = −1 < 0, so P1 is a saddle
point.

For P2, A = 5, B = −1, C = 2
5
, AC − B2 = 1 > 0, so P2 is a local

minimum since A > 0.

Problem 6 True or False? Circle the correct answer. No partial credit.

• 1 : Any constant vector field F is a gradient field.

(a) True (b) False.

Solution: (a) True.

• 2: If C1 and C2 are two oriented curves, F is a vector field, and the

length of C1 is greater than the length of C2, then
∫
C1

F ·dr >
∫
C2

F ·dr.

(a) True (b) False.

Solution: (b) False.

• 3: If ∇ · F = 0 and ∇× F = 0, then F = 0.

(a) True (b) False.

Solution: (b) False.
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• 4: If S1 and S2 are two oriented surface bounded by the same positively

oriented curve C and F is a smooth vector field, the the flux of ∇×F

through S1 and S2 are the same.

(a) True (b) False.

Solution: (a) True .

• 5 : If S is a unit sphere centered at the origin and F is a vector field

that has zero total flux out of S, then ∇ ·F = 0 at all points inside S.

(a) True (b) False.

Solution: (b) False.

Problem 7 Consider the surface S that is the part of the cone z =
√
x2 + y2

below the plane z = 3.

(a) Give a parametric representation of S. Make sure to explicitly describe
or sketch the parametrization domain D.

Solution: We can parametrize S by r(x, y) = rcos(θ)i+rsin(θ)j+rk, where
(x, y) is inside the disc x2 +y2 ≤ 9. Therefore, D is given by 0 ≤ θ ≤ 2π, 0 ≤
r ≤ 3.

(b) Find an equation of the tangent plane to S at the point P (−1, 1,
√

2).

Solution: Let g(x, y, z) =
√
x2 + y2− z, S is the level surface of g(x, y, z) =

0.
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∇g(−1, 1,
√

2) = − 1√
2
i +

1√
2
j− k.

So the tangent plane to S at P (−1, 1,
√

2) is

− 1√
2

(x+ 1) +
1√
2

(y − 1)− (z −
√

2) = 0.

(c) If the density function λ(x, y, z) is equal to the distance to the xy-plane,
find the total mass of the surface S.

Solution: λ(x, y) = z = r. We compute the fundamental vector product

N(r, θ) = r′r × r′θ = −rcos(θ)i− rsin(θ)j + rk

and thus ‖N‖ = r
√

2.

M =
∫ ∫

S
λ(x, y, z) dσ

=
∫ 2π

0

∫ 3

0
r2
√

2 drdθ

= 18
√

2π.

Remark: For this problem, one can also use the parametrization with a
surface given by the graph z = f(x, y) =

√
x2 + y2.
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Problem 8 Let E denote the portion of the solid ball of radius R centered
at the origin in the first octant, and let

F = (2x+ y)i + y2j + cos(xy)k.

Applying the Divergence Theorem, compute the net flux of the field F
across the boundary of E, oriented by the outward-pointing normal vectors.

Solution: The divergence of F is

∇ · F = 2 + 2y.

By the divergence theorem, the flux out of the given suface is equal to

∫ ∫ ∫
E

(2 + 2y)dxdydz = 2(volum(E)) + 2
∫ ∫ ∫

E
ydxdydz,

where E is the region inside the surface. The volume of E is one eigth of the
volume of the ball of radius R. Thus

2(volum(E)) =
1

3
πR3.

In spherical coordinates, we have
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2
∫ ∫ ∫

E
ydxdydz = 2

∫ π/2

0

∫ π/2

0

∫ R

0
ρsin(θ)sin(φ)ρ2sin(φ) dρdθdφ

=
R4

2

∫ π/2

0

∫ π/2

0
sin(θ)sin2(φ) dθdφ

=
R4

2

∫ π/2

0
sin2(φ) dφ

= R4

8
π.

So the final answer is

1

3
πR3 +

1

8
πR4.

Problem 9 Please complete the course survey. Your comments will help me
to improve my teaching in the future. Thank you in advance.
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