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Abstract

We investigate the zero dissipation limit problem of the one dimensional compressible non—isentropic
Navier—Stokes equations with Riemann initial data in the case of the composite wave of two shock waves.
It is shown that the unique solution of the Navier—Stokes equations exists for all time, and converge
to the Riemann solution of the corresponding Euler equations with the same Riemann initial data
uniformly on the set away from the shocks, as both the viscosity and heat-conductivity tend to zero. In
contrast to previous related works, where either shock waves are absent or the effects of initial layers are
ignored, this gives the first mathematical justification of this limit for the compressible non-isentropic
Navier—Stokes equations in the presence of both shocks and initial layers. Our method of proof consists

of a scaling argument, the construction of the approximate solution and delicate energy estimates.
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1. Introduction

The asymptotic behavior of viscous flows in vanishing dissipation limit process is one of
the important, longstanding problems in the theory of compressible fluid flow. It is expected
that the solution of viscous flows should converge strongly, when dissipation vanishes, to the

solution of the corresponding inviscid flow. When the solution of the inviscid flow is smooth,
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this problem can be solved by classical Hilbert expansion along with energy method. However,
the inviscid compressible flow usually contains discontinuities, such as shock waves and contact
discontinuities, which have so far prevented solving the problem in the general setting by means
of known analytic tools. Essential new ideas and methods are needed to tackle this open problem.
Therefore, any attempt on this problem that involves the singularity in the inviscid solution can
be viewed as progress to this general program.

In one space dimension, interesting progress has been made on system of hyperbolic conser-

vation laws with artificial viscosity

U+ f(U)y = €Uy,

Using a matched asymptotic expansion method, Goodman and Xin [8] proved that, given any
piecewise smooth entropy solution with finitely many non-interacting shock waves of the inviscid
conservation laws, the above viscous problem admits a sequence of smooth solutions converging
to the given invisid solutions in vanishing viscosity limit. Later, Yu [36] improved the results of
8] to allow initial layers by a detailed pointwise analysis. Recently, Zeng in [38] justifies the limit
for the superposition of shock waves with contact discontinuities. In the context of small BV
initial data, the seminal result of Bianchini and Bressan [1] proved the the vanishing visicosity
limit of solutions of this viscous hyperbolic system by deriving the uniform BV estimates of
solutions independent of the viscosity. This fully settled the problem in small BV case when
viscosity matrix is e/. However, the problem is still unsolved for physical systems such as the
Navier—Stokes equations.

In this paper, we study the existence and asymptotic behavior, as the viscosity and heat—
conductivity coefficients go to zero, of solutions to the one dimensional compressible non—isentropic

Navier—Stokes equations in Lagrangian coordinates

Vg — Ug = Oa
U + P = €(42),, (1.1)
Et + (pu>:p = "1(%)1 + E(uvﬂ)my

where the functions v(z,t) > 0, u(z,t), (x,t) > 0, p = p(v,0) and e = e(v,0) represent
the specific volume, velocity, absolute temperature, pressure and internal energy respectively.
E=e+ “72 is the total energy, while € > 0 and x > 0 denote the viscosity constant, and the
coefficient of the heat conduction respectively. Here we consider the perfect ideal gas, that is,
RO RO

p:p(v>9):_> €=

1.2
) T (12)



where R > 0 is the gas constant and v > 1 is the adiabatic exponent. Using the specific entropy
s (see [5]), one can write
~y—1
p=pv,s)=Av Ve R * (1.3)

for some positive constant A.

As in [19] and [32], we assume that the viscosity € and heat—conductivity x satisfy

{ k= O(e), as € —0; (1.4)

uw=r/e>c>0, forsome positive constant ¢, as € — 0.

The assumption (1.4) stems from physical consideration. Indeed, when one derives the compress-
ible Navier—Stokes system (1.1) as the first order approximation of Bolzmann equation through
Chapman-Enskog expansion, (1.4) is verified.

We consider the Cauchy problem for (1.1) with Riemann initial data

(v,u_,E_), x<0,

1.5
(’U+,U+,E+), T > 0, ( )

(v,u, B)(x,0) = {

'lL2 . .
where v > 0, uxr € R and FL = % + = ( 0+ > 0) are given constants. We are especially
interested in the relation between the Navier-Stokes solutions, U¢(z,t) of (1.1) and (1.5), and

the solutions, U°(z, ), of the corresponding Euler equations

v — Uy =0,
Ei+ (pu), =0

with the same Riemann initial data (1.5).

Although the zero dissipation limit for compressible Naiver-Stokes equation remains as an
important open problem, many interesting results were achieved in the past. These results
roughly fall into three categories. The first is to use theory of compensated compactness to
establish the compactness of the sequence of solutions of the Navier-Stokes, and then to extract
a subsequence to converge to a limit, which was later justified as a weak solution of corresponding
compressible Euler equations. The representative results are obtained by DiPerna [7], and by

Chen and Pereperitsa [4]. These results are valid for the 1D isentropic Navier-Stokes equations

- :c:O7
{Ut " ) (1.7)

Uy +p(v)$ = E(Tx)w



to the corresponding isentropic Euler equations

{ v~ e =0, (1.8)

U + p(v)fﬂ = 07

in the vanishing viscosity limit. However, the framework of compensated compactness is basicly
limited to 2 x 2 systems so far, and the abstract analysis yields little information on the qualitative
nature of the viscous solutions. The second kind of results utilize recent development of nonlinear
stability analysis results on elementary waves for compressible Navier-Stokes equations. Moti-
vated by early work of Xin [33] for rarefaction waves, and Goodman and Xin [8] for solution with
shock waves, exciting advancement has been made in this direction. It was shown that, given a
solution of the compressible Euler equations (1.6) which is piecewise smooth and contains simple
wave patterns, there exists a sequence of solutions of the compressible Navier-Stokes equations
that converge to the pre-fixed Euler solution in zero dissipation limit. The advantage of this
approach is that it can be generalized to general system, and the explicit construction of the
visous solutions gives detailed structure of solutions along with explicit convergence rate. The
possible disadvantage of this approach is that this kind of results are often valid only for finite
time when shock presents, and the convergence is good only for the preferred (or constructed)
sequence of viscous solutions. We refer the readers to [2-3, 6, 11-13, 16-28, 30-3 37| for a par-
tial list of results in this direction. Last but not least, Hoff and Liu [9] proposed a framework
to study directly the compressible Navier-Stokes equations with Riemann data, establish sharp
and uniform estimates, analyze the detailed behavior of the solutions in initial, intermediate,
and large time regimes, and finally prove the zero dissipation limit to the Riemann solutions
of compressible Euler equation. Comparing to the second category, this program is different in
at least four aspects. First, rather than the preferred sequence with approxiamte initial data,
this program shows uniform convergence of Navier-Stokes system with fixed same data as Euler.
Second, the stability analysis component in this program has large initial perturbation. Third,
this program takes care of both shock waves and initial layers. Finally, the convergence result
of this program is globally, not only for a finite time. So far, except for Hoff and Liu [9] where
the isentropic Naver-Stokes (1.7) with a signle shock wave initial data was solved, no much de-
velopment appeared in the past two decades. In an early paper, we generalized this result to
isentropic flow with two compsite shocks. In this paper, we will further extend this framework to
the full Navier-Stokes system (1.1) with Riemann initial data (1.3) in the case of the composite
two shock waves. In particular, we prove that the solution of the full compressible Navier—Stokes
system exist for all time, and converge to the Riemann solution of the Euler equations with the
same Riemann initial data that is a composite wave of two shock waves, as the viscosity and

heat—conductivity tend to zero. This gives the first mathematical justification of this limit for



the compressible non-isentropic Navier-Stokes equations in the presence of both shock waves
and initial layers.

We now introduce some preliminary notations and give some background materials before
stating the main theorem. It is known that the Euler system (1.6) has three eigenvalues: A\; =
—\/p/v < 0, Ay = 0, A3 = \/W > 0, where the second characteristic field is linearly
degenerate and other two are genuinely nonlinear. In the present paper, we focus our attention
on the situation where the Riemann solution of (1.6) and (1.5) is a composite wave of two shock

waves (and three constants states):

(v_,u_,E_), x<sit,
Uz, t) = (0°,u°, E°)(x,t) = (Vs Uy B),  $1t < @ < s3t, (1.9)

(vy,up, Ey), x> sst.

Here, (Up,, U, Ey) is the intermediate state and the shock speeds s; and s3 are constants deter-

mined by the Rankine-Hugoniot condition and satisfy entropy conditions
M_yu_y E_) > 81 > M (U Uy, Em)y As3(Umy Uy Er) > 83> Ag(vg, uy, Ey). (1.10)
To describe the wave strengths for later use, we set

01 = |vm — O] + |tm —u_| + |Ep — E_|, 03 = vy — 04| + |t — uy| + [ By — By
§=|vy —v_|+|uy —u_|+|E; — E_|, § = min{dy, 53} (1.11)

When ¢ is chosen small in our situation for the fixed (v_,u_, E_), it holds
01+ 03 < €9, (1.12)
where C'is a positive constant depending only on (v_,u_, F_). Then, if it holds
0 +05<C6, as 6 +0d3 =0, (1.13)

for some positive constant C, we call the strengths of the shock waves “small with same order”.
In what follows, we always assume (1.13).
Next, we recall the definitions of viscous shock waves of (1.1) which correspond to the above

shock waves. The 1-viscous shock wave associate to the 1-shock wave is a traveling wave solution



of (1.1) with the formula Uf(x — s1t) = (V5, Uf, ES)(x — s1t) which is determined by

[ —s1(Vi) = (Uf) =0,

e/ € €\/ UE ' /
—sa(Ur) + 9705 = Uy,
1
€\/ € € &y @el UE Ue// ]_]_4
—sE) + v o] = (O ATy (119
1 1

(Vi UL, EY)(—o0) = (v, u—, E_),
\ (‘/16’ Ule,Ef)(—FOO) = (UmaumaEm>7

where ' = d%, §=x — st
Similarly, the 3-viscous shock wave U§(z — s3t) = (Vi§, US, ES)(x — sst) is defined by

s (V) (03 =0,
/ € €\/ Us /
sy () + (.05 = (2,
3

ey ¢ ATl ©3)  Us(Us)'., 1.15
| ) + (v O3)05) = [ Sy By, (1.15)
3 3
(V;, U§>E§)(_OO) = (Umaum; Em)a

\ (‘/367 U§7E§)(+OO) = (U+7u+7E+)a

v = Vi(x — s1t) + Vi (z — s3t) — Upn,
ut = Uf(x — s1t) + U§(x — s3t) — Uy, (1.16)
B¢ = ES(x — s1t) + E5(x — s3t) — E,p.

One of the main difficulties arises here, comparing with Hoff and Liu [9] of isentropic case where
initial excess mass is zero up to a spatial shift in shock profile, the Riemann initial data (1.5)

is not a perturbation with zero excess mass over viscous shock waves any more. Indeed, the
o0
integral (m® — m®)(z,0)dx is in general not zero in the direction of second characteristic

field, whicﬁoijannot be handled through location shift of shock waves. To use the anti—derivative

technique, we need to find a refined ansatz m¢ such that / (m® —m)(x,0)dr = 0 in addition

to the requirement |m¢ — m¢ — 0 as t — oco. Motivated by the stability result in [12], we

introduce a linear diffusion wave to carry the initial excess mass and construct the new ansatz



me = (0,4, E) by

3 z t
¢ = Vi(x — sit + age) + Vi (z — st + aze) — v, + @(? E>’
t
¢ = Us(x — s1t + aqe) + Us(x — sst + aze) — upy, + a@:{:&, ), (1.17)

€€
- m x t . Tz 1
E¢ = FE{(x — s1t + ay€) + E5(x — sst + agze) — B, + p—@(—, =), +au,©.(—, -),
vy—1 ‘€€ € €
where © and a are defined in (5.15). From (5.19), it is easy to see that we can choose o and aj
and the total mass of © so that

/ (me — 7 (z, 0)dz = 0. (1.18)
Define the composite wave consisting of two viscous shock waves:

ngi,ag = Uf(z — s1t + age) + US(z — szt + aze) — Uy, (1.19)
Our main results are given in the following Theorem.

Theorem 1.1. Let the constant states Uy (with vL > 0, 6+ > 0) be connected by a composite
wave of two shock waves, defined by (1.9) above, and § = |U; — U_| be sufficiently small. oy
and «ag are choosen such that (1.18) holds. If (1.4) and (1.13) hold, then the Navier—Stokes
equations (1.1) with Riemann initial data (1.5) have a unique, global, piecewise smooth solution
U(z,t) = (v, u, E°)(x,t), for each € > 0, satisfying the following properties:

(i) u(z,t), 6°(x,t) is continuous for ¢ > 0; u, 65, v¢, v and v§ are uniformly Hélder continuous
in the sets {x < 0,t > 7} and {x > 0,t > 7} for any 7 > 0; u§, u,, v5,, 05 and 65, are Holder
continuous on compact set in {(x,t),z # 0,t > 0}. Moreover the jumps in v*(z,t), u$(z,t) and
0 (z,t) at o = 0 satisfy

[0, )], [[uz(0, )], 05(0,0)]] < cexp{—ct/e}, (1.20)

where ¢ is a positive constant independently of ¢ and e.
(ii) For fixed viscosity € > 0, the solution U¢(x,t) approaches the composite wave U;i o defined

in (1.19) uniformly as time ¢ goes to infinity, i.e.,

lim sup |U(z,t) — Ugia% (x,t)] =0. (1.21)

t—o00 zeR

(iii) The solutions U¢(x,t) converge to the composite wave U°(x,t) defined in (1.9) uniformly as

the viscosity € — 0 on sets of the form {(z,?) : |v — sit| > h and |z — s3t| > h}, for any positive



number h, i.e.,
lim  sup \U(x,t) — U°(x,t)| = 0. (1.22)

€20 |z s;t|>h,i=1,3

The convergence rate in LP—distance is given by

sup |U(-, 1) — U°(-, ) || » < Cev, for any 2 < p < 00, (1.23)

t>0

where the positive constant C' is independent of ¢ and t.

Remark 1.2. It is interesting to make a comparison between Theorem 1.1 and those of Yu [36],
where the author gives a sharp characterization of the zero dissipation limit process with shock
and initial layer for the hyperbolic conservation laws with artificial viscosity. The main theorem
of [36] is valid on the time interval 6 27%e < ¢t < O(1)§* (here ag is a given positive constant,
e and ¢ denote the viscosity coefficient and the strength of the wave, respectively, see the main
theorem on page 278 of [36] for details). The convergence rate in (1.22) and (1.23) is not as good
as in [36], but they are valid for all the time ¢ > 0.

Now, we sketch the main idea of the proof and explain on some of the main difficulties and
techniques involved in the process. Roughly speaking, we follow the framework of Hoff and Liu
[9] on isentropic flows, and the proof involves the following four steps.

In first step, using the hyperbolic scaling property of the problem (1.1) and (1.5) and the
Riemann problem (1.6) and (1.5), we perform the scaling argument to reduce the proof of
Theorem 1.1 to the nonlinear stability problem in large time. Therefore, we encounter the
problem to prove large time noninear asymptotic stability of a composite wave of two viscous
shock waves for (1.1) under the Riemann data (1.5). It is worth mentioning here that for Rie-

mann initial data (1.5), the L*norm of the spatial antiderivative of the initial perturbation, i.e.,

/ (U(y,0) — Uyy.a5(y,0))dy, is of the order §7/2, where § = |U, — U_|. Thus, if we take J

— 00
x

small, the H*norm of / (U(y,0) — Uq, .05 (y,0))dy becomes arbitrarily large. Therefore, the

—00

classic energy methods in [12, 21-24], depending essentially on the smallness of the H?*-norm of
the spatial antiderivative of the initial perturbation, do not work here. Comparing to isentropic
case in [9], where the excess mass is zero up to a shift of viscous shock wave, the new difficulty
here is that the excess mass is not zero, and a linear diffusive waves was introduced to carry the
excessive mass, as explained earlier in (1.17). Furthermore, we have two viscous shocks in the
solution. Therefore, one expects the interaction between two shock waves and the linear diffusion
wave in the solution of Navier-Stokes. These difficulties become more crucial in the last step,

where the stability estimate is proved.



In second step, we develop sharp approximate solution of Navier-Stokes equations with Rie-
mann data (1.5) in the initial time regime. It is well-known that viscous shock waves are leading
asymptotic ansatz for shock wave in large time, but do not generate good approximation in
short initial time. Therefore, both [9] and us encounter difficulty from initial layer. To overcome
this difficulty, we construct approximate solutions through nonlinear Burgers’ equation and the
solution of a linear parabolic equation with contact discountinuity wave data, the latter appears
as new difficulty in non-isentropic case. The key idea is that instead of viscous shock wave, we
decompose the Riemann data in phase space and reconnect them through two rarefaction waves
and a contact discountinuity. For rarefaction wave parts, we built the Navier-Stokes’ correspon-
dences through nonlinear Burgers’ equation, while the contact discontuity is described by a linear
diffusion wave. These give a much better approximation to the Navier-Stokes solution in its lead-
ing order and matches well the initial Riemann data. Therefore, detailed local information on
the solution is obtained, and the solution is extended to the intermediate time regime of order
O(67%7Y), where § denotes the strength of the initial jumps, and ¥ is a small positive constant.

In step 3, we establish the key property of the solution of Navier-Stokes in the critical interme-
diate time regime. By making full use of the nonlinearity of Burgers’ equation, decay properties
of the solution of the linear parabolic equation with contact discontinuity wave data and the
delicated energy methods, we can show the difference between the solution of the Navier—Stokes
equations and the approximate solution remains small, at least for times up to intermediate time
of order O(6-277). It is now we are able to deal with the problem caused by the fact that the L?-
norm of the spatial antiderivative of the initial perturbation is as large as 612, In fact, motivated

by [9], one of key observations is that the square of the L*-norm of / (U(y,t) = Uny a5 (y, 1)) dy

—00

is of the order §%(t + 1)” (where a and b are nonnegative and a — 2b > 0, see (5.21)), which may
be arbitrarily large if the strength of the initial jumps ¢ is sufficiently small and ¢t = O(§=277).
The estimate (5.20) will enable us to obtain that the square of the L? norms of higher-order
derivatives are of the order 6%(¢+1)” (where a and b are nonnegative and a —2b > 1), which may
be arbitrarily small if the strength of the initial jumps ¢ is sufﬁcientl); small and t = O(627Y).

This, in turn, will lead to the desired smallness of the L>*-norm of / (U(y,t) — Uayas(y, t))dy

—00

and L?-norms of higher-order derivatives which is exactly the a priori assumption of Theorem
5.1. The energy estimates thus can be closed. We remark that the smallness assumption on the
strength of the initial jumps is essential here.

In the last step, we show that for very large time, the solution of the Navier-Stokes equations
coalesces with the composite viscous traveling wave of the Navier-Stokes equations. This argu-
ment is proved by using the new linear diffusion wave firstly introduced in [12] and by means

of energy estimates, using time O(6-277) as initial time. The detailed estiamte of solution in



intermediate time regime helps to soften the roughness of the initial data due to dissipation of
Navier-Stokes. The resumed smallness in certain order norms gives the possibility to prove this
stability result using energy method. Comparing to [12], the main novelty in this step of this
paper is to overcome the difficulties arising from non-smooth initial perturbations and the careful
energy estimate on the boundary integral terms. These can be easily seen from the new and very
different energy estimates in, for instance, the proofs of (6.7) and (6.8), and the estimates on the
boundary integral terms arising from the non-smooth initial perturbations (see (6.41)).

The rest of this paper is organized as follows. In the next section, we first perform scaling
argument, and construct approximate solutions Up and Upyy. We also introduce the correction
function to U to deal with the major error caused by Ur. Properties and estimates are collected
in this section for later use. In Section 3, we study the difference between the exact solution
U and our approximate solution Up + U. These estimates ensure the existence of U up to
intermediate time. In Section 4, we collect some facts of viscous shock waves and some estimates
on wave interactions. With the help of results established in sections 2-4, we construct the
long time ansatz U and prove the intermediate-time estimate for U — U. In Section 6, we make
careful energy estimates to complete the proof of our main results—Theorem 1.1. For the readers’s
convenience, the frequently used symbols are also given in the Appendix at the end of the paper.

To conclude the introduction, we classify some notations. Throughout this paper, we will use

the following

0 +o00
=1 Mew, |4 =11 lleees + - 2w, Fdy=[ dy+ dy.
0

2. Approximate solutions

In this section, we modify the technique developed in Hoff and Liu [9] to construct the
approximate solution based on the self—similar solutions of the Burgers equation and the solution

of a linear parabolic equation with contact discontinuity wave data, and collect some estimates

needed in sections 3-6. To begin with, using scaling (x,t) — (£,%), we scale the system (1.1) to
the form

vy — Uy = 0,

u+ pe = (4 )z, (2.1)

B+ (pu), = M(%z):r + (=),

(=1)

Normalize #2—= = 1 and rewrite (2.1) as

U U _ 0 U

5 TAU) 5 = 7 (BU)5), (2.2)

10



where

v 0 —1 0 00
U=|wu |, AU)=| -2 —b=be 22l , BU) = Lo
E —pu gy Olu (=l 0 1
The characteristic speeds A; and right eigenvectors r;, i = 1,2, 3, for A are
)\1: \l@, )\2—0 )\3 \/fyp
= VP P VP 7]7
v+ 1 ’Vp T+l w L

(10—1t, VN -ri=1,i=1,3, Vi -ry=0.

We can compute that:

1 — Riemann invariants : {s,u —/ vV —pu(v, s)dv},

2 — Riemann invariants : {u,p},

3 — Riemann invariants : {s,u +/ vV —pu(v, $)dv}.

Let R; and R3 be integral curves of r; and rs, passing through U_ and U, respectively, and
Ry = {(v,u, E)|u = const, p = const}, then the curve Ry intersects Ry and Rz at U, and U,

respectively. Here, the two constant states are given by

Unmy ¢ Uy ¢
Uml = (Um17um1,€m1 + 21) 9 Um2 = (vmzaumgaeﬂm + 22) 9 (24)

where Umy = Umy = Um,  Pmy = Pmy = Pm-

Define
5 = %[Al(U_) (U] > 0, (2.5)
and
Gy = 5 (U)oU) > 0. (2.6)
Noting that
§/C <6y, b5<C86, (2.7)

11



we have from Theorem 17.16 of Smoller [29] that
Uy — Upny| < C8, Uy — Uy, | < O, Uy — Uy, | < O3, (2.8)

Now, we are ready to describe Riemann data solutions and traveling wave solutions of the
Burgers equation, and use this information to construct the approximations Ui and Upy required
later on.

Let Ag be the solution of the Burgers equation
A+ A =Pz, t>0, z€R, (2.9)

with Riemann initial data

0, =<0,

N 2.10
—20, x>0, ( )

)\R(.T,O) = {

where [ and 5 are positive constants.
Using the well-known Hopf-Cole transform, we can solve the initial value problem (2.9)-(2.10)
directly. The following lemma is given in Theorem 2.1 of [9].

Lemma 2.1. The solution of the initial value problem (2.9)-(2.10) is given by

€S(z+5t)/ﬂf(_L2‘3t)

Ap = —26—— o Vapt (2.11)
eé(i-ﬁ-ét)/ﬁf( T 4ﬁt ) + f( )
where
1 oo 2
Fla) = n3 / e dr. (2.12)
Moreover, Ag satisfies
—20 < Ap <0, (2.13)
|a/\R( )| [575‘%@_%; +52 —5|x+5t|//3]
’082;‘2’:"'( )] < [(5|$|t 3 —1—5215*5)@ 4ﬁt + 3¢ 5|lf+5t|/5]’ (2.14)
S
|a3)\R( O < C{[o ( 23 4 |:17|t*§) + (52(|l’|t7§ + til) + 53t7§]€7475t + 54675|:p+6t\/5]}‘

So, we let A%, i = 1,3, be the solution of the Burgers equation (2.9) with initial data

; 0, z<0,
Ag(z,0) = { IS (2.15)

12



and 8 = b;i(Un,) = 2L i =1,3, and set

2vUmy

{uﬂ%wzxym—katvaMt+D+*ﬂﬁ% (2.16)

ph(x,t) = Ah(x — A3(Upy) (E + 1), 8+ 1) 4+ A3(Upny ).

It is easy to see that u’ are also solutions of (2.9) with “initial data”

MWUZ), <0,
phtr, 1= )
/\1(Um1), T > O,

and

A3(Upy), x <0,
i, 1) = 4 A0m)
)\3(U+>, x> 0.

So, we construct approximate solutions Uj, i = 1,3, by taking U% € R; and \;(Uk(x,t)) =
ph(z,t). The 2-family approximate solution U3 = (0%, u%, €% + (4%)?/2)! is defined by

—2 = 2
U'R_uma pR_pmv

7 7 I Um17 z < 07
(Ur)e = Bo(Up)as, Uil —1) = { (2.17)
Un,, >0,
where 3y = ﬁ It is clear that U3 is selfsimiar in the form U3( \/tmfl) with total variation of
order 6% due to (2.8). We finally arrive at
Up=Up+ Ui+ U} — Uy, — Upy, (2.18)

which satisfies
(Ur)t + F(UR)s = B(Up, )(UR)ww — A1 — Ag — A3 + [B(Upny) — B(Un )](Up)aw + Day,  (2.19)

where

Ay = 325, b5 (UR) (1) aars (
Az = 2521 b3j( 1?:“‘,
Ao = (B)an( 0,5,

D = (0,pr — Pr, — D% + Dm» DRUR — PRUR — Dl + Pmiim )"

Uk) + ()2 B(Unn, ) (r1 (Ug))a
) (1w (15 (UR) + 72__71< — = o) + (1) B(Uns ) (r3(UR) )

’Um2 ’Um1

(2.20)

13



and

o)™t = o )T (o)
B = | ~E VB0 L) APl | @2
5 Om) ™ T BT (o)
At t = —1, Ug agrees with U(-,0)
_ U_., <0,
Up(z, —1) = (2.22)
U+, x>0

Another approximate solution Upys is constructed in exactly the same way, except that,
in place of the solutions A% of the Burgers equation with Riemann data, we substitute the
corresponding traveling wave with the traveling wave data Ay, (z,0) = (—25;)/(1 4 e~%2/5),
with 8 = b;i(Up,) = 2”’_ . Thus,

2vvm,
. —20; ,
/\TW<x’t) - 1—|—e—8i($—§it)/5’ v = 1737 (223)
where M (UZ) + M (UL Ns(Unny) + A (U
2 2
and
prw (T, ) = Ay (2, 6+ 1) + M (U-),
fipw (2,8) = Ny (2, €+ 1) + A3(Upy), (2.25)
UTW = UTW + UTW + UTW Um1 - Umza Where,
)‘i(UTW(xat)) = :uTW(x?t)a Uji“W €R;, 1=1,3, U%W = UIQ%
The following lemma collects some basic properties of Ui needed in sections 3-6.
Lemma 2.2. Let Ug be defined in (2.18), then it holds that
oU
H i t)H < OBt 4 1)1 4 6%/, (2.26)
/ / (8UR) drdt < C[62(t +1)1/% + 53], (2.27)
ou
H B Clo(t 4+ 1)73/4 4+ 67, (2.28)
HaUR HaUR ) <CP(t+1)72 + 8%, (2.29)
L>

14



’ ‘ aUR < C5, (2.30)

‘%R — i + fo, (2.31)

where —C§ < f1 <0, and || fo(-,1)||pe < CO[5(t + 1)1 4+ 82(t + 1)71/2 4 6%,

+o00 0o 2
/ / (Uh = Uy )y, t)y| dw < C2(1 + 1)3/2e=HD/C (2.32)
00 i B 2
/ / (U3 — Uy (y, t)dy| dx < C8(t + 1)>/2e~HD/C (2.33)
|Ur(-,0) = Ug(-,—1)|| < C§, (2.34)
/ /yD\da:dt < 06,
(2.35)

/ /]D\ dadt < C5*.

Proof: The proof of (2.26)-(2.28), (2.30) and (2.32)-(2.35) can be found in Hoff and Liu [9], we
focus our attentions on the proof of (2.29) and (2.31). From construction, we have
OUg

oU%, oU2 oU

ottt = | + G w0+ )
Opg 71 Opiy 773 oUR
~ | Bt o] + | G o + |G| @30
<CB(t+1)77 467,
where we have used (2.7) and (2.14).
Similarly, we can obtain
OUR 1

Then, (2.29) follows from (2.36) and (2.37) immediately.
For (2.31), one has from the construction that 88% = (u)rs(UL), i = 1,3. Therefore, with the
help of (2.3), it is clear that

Jv Ovg _ oy o, 0v%

o o (239
where a; = O(1)(i = 1, 3), is positive. By virtue of (2.16), we have
dvp O\ Pk
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and

aaif%:[%(x—)\g(UmQ)(t—i‘l),t—i—l)—)\3([] )aa)‘; (x = A3(Upy)(t+ 1), +1)].  (2.40)

(2.38)-(2.40) gives that

%L:: [—a M (U )aa)\; (z = M(U)(t+1),t 4+ 1) + ashs(Un, )%}‘; (2 — Ag(Upy ) (t +1),t +1)]
+[a1£(x_)\1(U—)(t+l) t+1)—03£<$—/\3(U )(t+1),t+1)+%]_ (2.41)

ot ot ot

The first term here, which we take to be fi, is negative, since the solution operator for (2.14)
preserves monotonicity. It is clear that —C'd < f; < 0. The second term above, which we define
to be f,, satisfies

OO PR Y PR TP P
<Ot +1)" 4+ 82t +1)7 467, (2.42)

where we have used (2.13), (2.14) and (2.17). Therefore, the proof of (2.31) is completed.
The following properties of Ury are given in Theorem 2.5 of [9].

Lemma 2.3. Let Ury be as constructed above. Then
9 3/2
5, 0w (]| < €0 (2.43)
and
| Urw (-, 0) = Urw (-, —1)|| < C&*2. (2.44)

The following lemma concerning with the difference between Ui and Upyy can be proved in
a similar way as Theorem 2.6 of [9].

Lemma 2.4. Let Ui and Uy be as constructed above. Then

Ug(-, 1) — Upw (-, 8)]| < C[6Y2 + 6(t + 1)/4e=0"+D/C (2.45)
0 x 2
/ / (UL — Uby) (g, )dy| dx < C[67Y% + 6(t + 1)1/4)e*t+D/C (2.46)

2
do < C[67V2 + 6(t + 1)/ 4]e " ¢+D/C (2.47)

i

We note that from (2.19), it is clear that the approximate solution Uy is not conservative,

| @~ )ty

leading to big error. To explicit the main error, we introduce the correction function U defined

16



by
U+ F' (U )Uy = BUue + A1 + A3, z€R, t>0, (2.48)

with the initial data
U(x,0) = Uz, —1) — Ug(x,0), (2.49)

where § = # Thus Ug + U agrees with U at ¢t = 0 (see (2.22)), and U — U — U, satisfies a
mi
conservative equation.
Similar to Theorem 3.1 of [9], we have the following lemma on U.

Lemma 2.5. Let U be constructed above , and assume that § = |U;. — U_| is sufficiently small.
Then

HZ:](-,L‘)H <Cc Y s+ (2.50)
a—2b>1
t —
//]U|2da:dt§0 > s+ 1) (2.51)
0 JR a—2b>0
t —
//]Ux|2dxdt§0 > s+ 1), (2.52)
0 JR a—2b>2
‘ (Z(-,t)H <C Y e+, iz, (2.53)
a—2b>1
t —
//yUm\dedth oSt t>1, (2.54)
1 VR a—2b>2
t — 4
//‘U‘ dudt <C S g1y, 1> 1, (2.55)
L JR a—2b>2
‘ 0y, 1) ‘ <05, t>1, (2.56)
0 x 2
/ / Uy, tydy| de <C > §*(t+1), (2.57)
—o0 [/ =00 a—2b>0
00 0o _ 2
/ / Uly,tydy| de<C > §*(t+1)". (2.58)
0 z a—2b>0

Here Y7, 5, 0%(t + 1) denotes a finite sum of the terms of the form 6“(t 4 1)* where a and b
are nonnegative and a — 2b > c.

3. Comparison of U with Ug + U

In this section, we derive a priori energy estimates for the difference U — Up — U , and we
apply these estimates to show that the solution of (2.1) and (1.5) exists at least up to time

T = O(67%77) for some small positive 9.

17



setting AU = U — Ug — U, We obtain from the equations (2.1), (2.19) and (2.48) that

i

AU + [F(U) = F(Ur) = F' (U )UL )
= B(Uny) AUz + [(BU) = B(Un,))Uals + (B(Unni) = 52)Usa
—Dy = [(B(Un,) = BUn,)|(Ug)ze + As.

From the construction in Section 2, we can define the following anti-derivative variable
Vi) = [ AUty = (602 (0.0, (31)
which satisfies
Y, + [F(U) = F(U) = F'(Un,)U]

B(UWH)Y;:x + (B<U) - B(Um1>)Ux + (B<Um1> - ﬁQ) T D (32)
(B( ) B(Um1))(U}§i)$ + AQ;

with Ay = (73).(—=2—,0 —) We recall that the initial data is identically zero for both AU

Yomy? ) Yum
and Y by (2.22) and (2 49).
Let

TNz ). (3.3)

Inserting (3.3) into (3.2) and linearizing the resulted system, we obtain

( ¢t — Pz = _527:)1“ - 52(1_}]2{)1 = Ql?
_ Pr R, _ $aa 1_ 1 1 Y
Pont gpze = 22 4 (5 — o )ue + (5 — P2)la

~(o = o) @h)e — [Pr — P — Pl + P
~lp—pPr—Vbr- (U —Ug)+ (Vir — Vp(Un,)) - U]
-1,
e (3.4)
t"‘ﬁRS%— - 1 mx—l—QSa

0 - e+ (2 T)l(e ) — ] - AZL(E + ), — gl

[pR< Up — Up) + Pp(tr — Uk) + P (U — Ug)] ¥ Lo (0h)0 + 5 (UR)aat
—(G1 — (e + W), — ap(ad).] — (ar)w
0

| = ) (u— ) + (k= @) VP(Un) - T + (B — ).

The following lemma gives energy estimates for the solution Y of (3.4) with zero initial data.
Lemma 3.1. For cach U_, there exist positive constants C' = C(U_), o, and 61 /C <y < Csi

18



such that, if the solution (¢, ¢, z) of (3.4) (and thus U) exists up to time ¢ > 0 and satisfies

No(t) = sup (6.0l <

Na(t) = U |6 2o 2o 7H + (01 0,7 H <

and if
53, Slog(t+1) < no,

then

0<r<t

w11 60.2) I+ [ 151668+ ot + [ 16wz
CllloaA?(t) + (14 6%) / (o s + 32 851 +1) (35)

a—2b>0

Proof: Multiplying the first three equations of (3.4) by ¢, (g—’; ), Fn )22 respectively, adding
then up, and integrating, we have from (2.31) that

sup || (6,0,2) IP + / / Al + 2)dadr + / 1(6us 0, 20 2

0<r<t

<ol [ 18I+ 2+ o+ Gne - D) p2)
B+ @ + 20,

+ Ve | 00n | + | [—————
|(Um1pR) | 1 Um, (v — 1)P%

7
12210y — (@) + (i) st d] [Jddr = 3 I

k=1

(3.6)

We apply the estimates (2.26)-(2.35) for U and (2.50)-(2.58) for U to bound Iy, (k = 1,---7).
Firstly, we have from (2.31) that

||+ |12] < C/O (63 +6%(1 + 7‘)_% + (1 + 1) Ydr( sup /R(cp2 + 2%)(z, 7)dx)

0<r<t

< C[6log(1 +1t) + 62(1 + t)2 + 6%] sup /(902 + 2%)(x, 7)d,
R

0<r<t

which can be absorbed into the left-hand side of (3.6) by our assumptions on § and t.
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Similarly, we have

B0l < g [ [ 1Al + @54 //so

+ C[6%t 4 6°(1 4+ 1) + dlog(1 4 t)] sup /(902 +2%) (2, 7) da,
R

0<7<t

A g//|q§x||v|dxdr+//| )od| dzdr
<q / [ tex+ cten / [ 58+ 168D + / | laklo?

//|¢$|2+Cel Zé“l—l—t)—kC(SSl—thSup/(b x,7) dx,

a—2b>0 0<r<t

where €; is a positive number to be choosen small later.
To estimate the terms I and I, we have from the a priori assumptions and Taylor formula
that

Q2 = OW)[(v—vr)*+ (E = Er)*+ (u—tgp)*| + O) | U+ (U, — Ug) |
v—1 1 1 1 1

———¢(ur)s + (= =
UR Vo Uy, Umy,  YUm,

11,

~[pr = PR — Pl + P — (-
and

Q3| = O(W)[(v = vR)* + (E = Er)* + (u — ug)*’] + O(1) | U - (U, — Ug) |
1

2 1 1 u? _ 1 _ -
+Um1 (uR)x%v + (; - U )[(e + E)x - uRUw] - (Uml - VO )[(6 + =)z — URly
1
—[Pr(tr — ag) + Pr(ir — g) + Pm(Um — Gr)] + ——(UR) szt — (UR)p
my
Dm —2 o 1 o 1 =3 (E?I)%)Q a5 (3
22, — (- Ly, - ana.

Therefore, we have

o<o{ [ [ el o+ o+ (B - En) - T2,

Pr
1N U N Uny = Ur 4|0 =vm |[ua |+ [0l @all @]+ ] (@r)zpti| (3.7)
8
+ [ PR = PR — D+ D || @ |+ | Vmy — Oy || (ﬁ%)x||g0|::Z[é,

i=1
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t = _
<0 [ 11w onf + (= + (B - Enf}+ | 2| T 1| Un, — Un
0
12 1 @rla 1 0a |+ 12110 = v || B = tms | +] 2 || Bx s |
| 2 || Pr(tr = k) + PR = Up) + P (n — ) | (3:8)
g = 112 1| (B = tnla)a |+ 12 1| (@R | + | (@n)asioz

10
+ | (ar)epz |:= ZI;f
k=1

Next, we estimate the terms I%(i = 1,2, ..., 8) one by one. By virtue of Sobolev inequality, Cacuhy
inequality, (2.29) and (2.51), we have

t t _
15| < CNo(t)/ /(¢§+goi+2§)dxd7+0/ / | U |? dedr
0 R 0 R

<onn) [ [@rdvon [ [Eranisrre [ 1o

< vyt | t [+eteon [ t [anze+c 3 s

a—2b>0

< CNy(t) (/Ot /R(gﬁi + @2+ 22) + (6% + 6% log(1 + 1)) sup /R<p2) +C Z §*(1+ )"

Os7<t a—2b>0

Similarly, we have

2] < CL8%(1 + 1) + 6%] sup / &,
R

0<r<t

1
\I§\+|I6|<8 sup/tp +C Y M1+t

0<r<t a—2b>0

[4‘<CN2 /][(bQ —sup/ 2
80<T<t

C(8%t +1 /][gom—l—C >+t

a—2b>0

I <el/][gox+Cel Z 641 41)°

a—2b>0

ID < C[5+ 6%t +1)] + C[6° + 6] sup /@2,
R

0<7<t

I8 < C85% sup /¢2+C' Z 5 (1 +1)°.

OsT<t a—2b>0
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These imply that

I <052t+1/][%+0N0 +e /][cb + @2+ 22)

(2+C(53t+05210g( t)) sup /gp + Cle) Z 51 +1)".
R

Os7<t a—2b>0

Finally, using (3.8), we can bound the terms I%, (i = 1,2, ..., 10) in a similar way as above. More

precisely, we have

t 1
|1;] SONO(T)/ ][(¢i+soi+zi)+— sup /902,
0 80<T<t R
1 a
|I$|§§ sup /RZQ_I_O Z 5 (1+1)°,

Os7st a—26>0

t
\I?\ Sel/ /4,0326+C(61)[(5210g(1+t)+54t] sup /22,
R

0<r<t
|I7] < CN(t) /][¢ +—SUP/
40<T<t

C(1+ 6%) /][gomjtszrC > s+t

a—2b>0

1
5 2 § a b
|]}|f§ g SUI)(/;Z? +‘(7 ) (1 *‘t),

Os7<t a—2b>0

B <C[6+8t+1)]+C[0° + 6] sup [ 22
! R

0<r<t

7] < C8% sup /z2+C’ RS
R

Os7<t a—2b>0

I3 §C’63t+1% sup 22+ 6%,
! R

0<r<t

|I2| + | 13°| < Clolog(t+ 1) + 6*(t + 1)% §3t] sup /(¢2+z2),
R

0<r<t
These estimates gives
1 1
Bl <[5+ C@hogt+ 1)+t + DY+ 5°0)] sup [ (54 22)
8 0<r<tJR
t
+Cla+ Nm) [ flated+a

C(1 + 6%) /][gom—i—zm—I—C'q > st

a—2b>0
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Substituting the above estimates for I; to I7 into (3.6), choosing €; small, and noting the as-

sumptions listed in Lemma 3.1, we deduce that

aw |60 1607+ [ [l [ [+

< C(N(T) + &1) /][¢ + C(1 4 0%) /][%+zm)+cel ) D> 8L +1)" (3.9)

a—2b>0

t
Next, we proceed to estimate the term / ][@26 To this end, multiplying (3.4)s by (—¢.),
0
and (3.4)1 by (¢.), respectively, and then adding the resulted equations, we obtain

VR (%

mi

Integrating the above equation, we get

t — t
/ Pry> o / b | (2, ) + / f@imﬁwigdm
o JR VR R 0

v [ f@uen 41 Qo htaar + [ 100107 a7,

which implies

/ f Gtandr <Cllo I @+ | vl / fi 2+
n / FQupe |+ 1 Qo iy + / [0l (0,7) [ dr. (3.10)

Next, we bound the last three terms on the right-hand side of (3.10) in order. First, we have

/ot][ml%' SC/Ot/R“’w%% |+ [ (0R)zs |
—C</t/wi+/tf@i+<@%>2>

//gox—l—C’ > s 4t) (3.11)

—2b>0

/Ot][|Q2<Z5x| SC/Ot][\%![(U—@R)2+(U_QR)2+(E_ER)g]

+ | ¢0e(tr)e | + | ¢a | U || Un, — Uk |
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| @2 || v — Uy ||ux|—|—|2:qubz|—|—|]53—]5}%—}53§+]5m||¢x|

7
+ | Oy = Oy || (UR)2 || 02 [:= Z Ji, (3.12)

i=1

Similar to those of I, we have the following estimates for J;,

< o<6+N1<t>>/0 fwi L)

+C(6 + Ny (1)[6F + 0% 1og(1 + )] sup /902—1—0 Z 6%(1+1)°,
R

Osrst a—2b>0
t t
B SC/][¢i§02+C/][(UR)§
0 0

§C(Nf(t)+5)/t][¢§+0 > o+,

a—2b>0
t —
5| sca/][lqmlUl
0

scaQ/Ot][¢§+o > a1+,

a—2b>0

7] §C(Nl(t)+5)/0t][¢i+0(1+52t)/Ot][gofm—i—C S,

a—2b>0
t t
1 < [ f e o [ fae o
0 0

<af t forrca s easo)

a—2b>0

<o [ e

gc&ﬁ/ot][¢§+o >+t

a—2b>0

for any positive €. Inserting the above estimates into (3.12), we have

[ e scosmu e [ farc [ fore

+C (6 + Ny(t)) sup / ©*+Clea) Y 6°(1+1)" (3.13)

Os7<t a—2b>0
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By virtue of Theorem 1.2 in [10], we have

| 1eed.n 1im= [ o007 Lar = [ 160,210, | dr 0. (314

From (3.10)-(3.11), and (3.13)-(3.14), we obtain by choosing €, small that

[ loatar < Clls. e+ [ (w2l +loak?lir + 3 0407 @15)

a—2b>0

Therefore, (3.5) follows from (3.9) and (3.15) immediately, if we choose €; small enough. The

proof of Lemma 3.1 is completed.

We will now derive higher order energy estimates for the solution Y (¢). Setting
1 _
(@, V) = (¢g, ), W =2, — 5\1;2 — (g +w)V, (3.16)

which is the unique solution of the following problem:

( = _
(I)t - qu = _BQUJT.Z’ - ﬁ(v%{)xz’ - lea

W, — 280, + W, = Tar o (28),8 — (L), [V + 102 + (g + D)V — (ar)s]
_’Y‘_l [\IJ\IJI + ((aR + l:l')\Ij):c - (URSO)xx] + QZ:{:?

3.17
Wi+ prY, = ( )

— (PR)2Y — [39° + (ar + @) ¥ — (Gre)al:
W (5 + D) — (@0)a]ae + Qs

= Z[fo +J2 + Qs

| (®, 0, W)(x,0) = 0.

Multiplying (3.17); by @, (3.17)2 by (”R\If) (3.17)3 by ((75;)12 W), respectively, and adding,

and integrating the results over R x [1,¢], we obtain

sup [|(@, 0, WY /][m2+w2) < (@, U, WD)

;0/ ][{|f2 \112+W2)+ I

—1
IV, |+ | (———
my R) | |( ml(pR)

(25 E W} dxdr

t 1 1
+c/ [T + L uw — ”R_ VO, — L WW,](0, 7)dr
1 pR Um, PR U,y (pR)

7)=WW, |
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= C(®, U, WH* (1) + C Y L. (3.18)

=1

Next, we estimate the terms L; in order. First, we have the following estimates for the first four

t
Ly gC&/][(\I/2+W2),
1

t
Lot Ly gC(S/][q T, | W)
1

terms.

t
chS/][(\If2+W2+\Di+W§),
1

bosos [ fars % [ F1@+ 1@

<C(5/][<I>2 () o"(1+1)+Co°)

a—2b>2

<C(5/][<I>2+C Z 64 (1 41)°

a—2b>1

Ls is slightly more complicated. We proceed as follows.

t _
L5<C/][J1—‘I’+C/][Q2xqi—R\I’
Pr

=L+ L3 (3.19)
For L} we have,
L} <C/][| )o@V | + | (0R) WY | + | (D) ¥ | + | (Vp), 0P |
| @n)ain®Y | + | (Ga)ln)op¥ | + 00, (3.20)

11
A0 |+ | B0 |+ | (iR)ea¥ | + | (2R)e0° = Y LY,

i=1

where
5
ZLéZ <05/][c1>2+\1ﬂ+w2)
LS <C770/][UR —1—0/][\ )o |72
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t
§052/][\1ﬂ+c > oo+t
1 a—2b>1
1,7 Pry—1,1 ¢
L' = C]/ ][—(_—)1\113 dxdr| < C(N4(t) —i—(S)(S/ ][\112,
1 3 pR 1
t
LY 4L+ L < 05/ ][(\112+\If§),
t C 1t
L < Cé/ ][‘IJQ“LE/ ][QOQ(aR)iI
1 1
t C t ’JJ|2 22 _ 8|atér]
SC(S/ ][\1124_5/ ][{(52_724‘(5471>€ 297 + 8¢ 28 }dde
1 1 T

t
< 06/ ][\112 + Cl6t2 + 6%t + 6]
1

t
sca/][xpuc S (1)
1

a—2b>1

Inserting the above estimates into (3.20), we conclude

t
Li < 05/ ][(<1>2 +T WU +C Y 5L +t) (3.21)
1

a—2b>1

Next, we bound the term LZ. By integration by parts, we have

L2 :—0/1 ]{%[Qg(%)x\l’vLsz—];‘I’x]Mdt—/l [QQ;—EW](OJW

o [a@w-c [ [alv. - [ mwi0mn
<o(1f [t [ folu) - [ Bt vpe 0.0

= L2+ L2+ 1P

It is easy to see from (3.7) that

t
L gca/ ][ (@, 0, W) P+C Y 8 (1+1)
1

a—2b>1

and

122 <omi it [ furioe [ fervewysow 3 s

a—2b>1
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< C(Nl(t)+5+es)/t][(‘1’i+q’i+wﬁ)

Cl(e3) N7 (1) /][|(I>\IIW|dT—I—Ceg Z5a1+t

a—2b>1

for every small postive e3 to be chosen later. Combining the above relations, we obtain the

desired estimate for Ly
t
1
t
+C(es)(6 + NA®) / ][ (B, 0, W) 2dzdr

Cles) Y 071+ 1) /PR\IJ[_“MVpR.U}(o,T)dT. (3.22)
R

)
a—2b>1 m1

Similarly, we can get the desired estimate for the term Lg
t
L <C(N:i(t)+ 6 +e3) / ][(\Ifi + W2+ 92)
1
t
L C(ea)(5 + Nf(t))/ ][|(<I>,\II,W)|2dxd7'

1

t

—1
C(Eg) Z 5a(1 + t)b + / 7—_2[WW$](0, T)dT. (323)
1

a—2b>1 Um, (pR)

Inserting the estimates for L;,i = 1 to 6 into (3.18), using the smallnss of N;(t), 9, and €3, we

obtain

t
sup ||, T, WY + / (2, W, )b 2dr
1

1<7<t

< O||®, ¥, WH>(1) + C(Ny(t) 4 6 + €3) /t | @ H2dr

+C(e3)(0 + N (t) /||<1>\11W)4+ dr+Cles) Y 0°(1+1)

a—2b>1

+/t[ o+ Lygw - gy, — Dy (T 4 Vpg - U))(0, 7). (3.24)

pR UmlpR PR Um,

By Theorem 1.2 in [10] and direct computation, one finds that the last term on the right-hand

side of (3.24) equals to zero. Therefore, we have

sup ||®, ¥, WHH +/ (T, W W dr

1<7<t
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< O, T, WHZ(1) + C(Ny(t) 4 0 + €3) /It | @ H2dr

+C(63)(5+N{1(t))/1t (@, 0, WHdr + Cles) > 8%(L+1t)".

a—2b>1

Applying similar, but simpler, arguments used in obtaining (3.25), we can obtain

0<7r<1

Applying Gronwall’s inequality to (3.26), we get

1
sup ||U — T2 (r) +/ I — 7,0 — B)dr < Co,
0

0<r<1

By (3.25), (3.27) and triangle inequality, we conclude that

t
sup ch,np,wm%r/ (W, W HH2dr
0<r<t 0

< C(5 + Ni(1)) /t (@, O, W 2dr

LI 4o+ e) [ e+ Oe) Y o1

a—2b>1
t
Next, we estimate the term / | @4 dr. Setting
0
K(v) =logwv,
we have from the first equation in (2.1) that
}{%t‘_'px = Ug.

Multiplying the above equation by K, we obtain

K2 R, ,  Rbu,

( 5 )+ ﬁevx + (v —u) Ky + 4 K,

= + [(u— 1) Kol — (v — ) Koy + 0 Ky

29

sup ||U—U4+2(r)+/0 ||(u—u,9—9)xHQdT§C[5+5/O |U — T4 dr).

(3.25)

(3.26)

(3.27)

(3.28)



Integrating the above equation, we can get

t
sup [|o? + / 10 42dr
0

0<r<t

gc/t (T, Wl + OOl sup (2,0, WH + Y 6*(1+1)"]. (3.29)

Os7<t a—2b>1

Combining (3.28) with (3.29), and choosing €5 sufficiently small, we conclude that

sup [1(® % WH() + ok’ (- / (@0, 0 W 2dr
< C(6 + Ni(t) /||<1>\1/W)1+ dr+C Y 5"(1+1t) (3.30)

a—2b>1

By virtue of Lemma 3.1 and the crucial estimate (3.30), we are able to prove the following
theorem concerning the existence of the solution U up to time ¢t = O(§7277):
Theorem 3.2. If § is sufficiently small, the solution of (2.1) and (1.5) exists up to time 7" =
O(6727Y), where ¥ > 0 is a global small constant, and satisfies

aw [[602) I () + [ Nopnztiir<C Y #as0r @)

a—2b>0

sup [[[(62, 9o, 2t + | (v, 0, 62 1) (7)

0<r<t

t
# @ v W+ bl <O 5 (0t (332)
a—2b>1
fort <T.
Proof. First of all, under the assumption of Lemma 3.1, (3.5) and (3.30) hold. Choosing a
suitably small positive number ¢4, adding (3.30) x €, and 0 times (3.5), and noting the a priori
assumption N (t) < C§1, we get (3.31) and

Sup [, 0 20 M2 + (010 / [(@ o Wodr <0 S (10 (3.33)

0<r<t a—2b>1

Next, we estimate ||u 4t>(7). Multiplying (2.1) by —t,,, we obtain

d (1 2y | u?, ( ) Vsl RO, RO
—(=u 22 () = Uy — — Vgl
dt 2 * v ¢ V2 v V2
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Integrating the above equation and using (3.31) and (3.33), we have

ua(EHE + /0 liet®(r)dr <€ 3 52141, (3.34)

a—2b>1

Similarly, we can prove

102 (tHE + / t [0aadt®(7)dr < C D 51+ 1), (3.35)
0 a—2b>1
Therefore, (3.32) follows from (3.33)-(3.35).We thus proved (3.31) and (3.32) under the assump-
tion of Lemma 3.1.

We now prove this Theorem with the only assumption of smallness on §. Noting the zero
initial data of Y and AU, the smallness of ¢, and the local existence result in [10], ensure that
there exists a postive time T} > 0, such that Ny(t) < no, N1(t) < n1, 63 and dlog(t + 1) are
sufficiently small for all the time ¢ < 7). We thus use above argument to get (3.31) and (3.32)
as long as the smallness assumption in Lemma 3.1 holds. This enables us to extand our solution

beyond 7. Now, if we assume the solution along with the smallness condition
No(t) <mo, Ni(t) <m

holds up to some time ¢t < T := §~27Y where §3t and §log(t + 1) are arbitrarily small if ¥ and §
are sufficiently small, then the right hand side of (3.31) and (3.32) are bounded respectively by
C6Y8 and C6'~YB. A simple Sobolev inequality then shows that, for t < T,

(6,0, 2) 13 < Cll(bar by 2 || (0,0, 2) 1P
< OB <« 1, (3.36)

if ¥ and 0 are small. Therefore,
No(T') < no.

Similarly, we can obtain
9
2

Ny(T) < C62728 < gy,

These observations show that we can extend our solution further and keeps the estimates (3.31)
and (3.32) to at least a time T' = O(6~2?, which complete the proof.
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4. Estimates on viscous shock waves and wave interactions

In this section, we first give some fundamental estimates about the viscous shock waves. Then

we deal with the wave interactions from the two different characteristic fields.

We begin with

the following lemma concerning some properties of the viscous shock waves.
Lemma 4.1. Denote U; = (V;,Uy, Ey)t and Us = (V3,Us, E3)! by the 1-viscous shock waves

(U_, Uy, s1) and 3-viscous shock wave (U,,, Uy, s3) of (2.1), respectively. Here U, is intermediate

constant state, s; and sz are the shock speeds. Then,

where U; o, (7,t) = Uj(x — sit + a), (i =

1,3) and Ualm =

(U, — U_)(z,t)| < Coyettle=sttl/C g < g1t >0, (4.1)
((Uy — Up)(z,t)| < CoeMlr=stl/C 0 0 > 51t ¢ >0, (4.2)
(Us — Uy (2, )| < Coze 817 =53U/C 0 < sat, t >0, (4.3)
(U — Uy )(z,t)| < Coge™le=sstl/C g5 ot >0, (4.4)
Uso(x,t) <0, |Usy| < CoZedle=sitlC 2 e Rt >0, (4.5)
(Tas 0 = Trw)( )| < C[3% + 823 + 631), (4.6)
0 T 2
[ ] - Ohwoi| o 3 sy, (47
oo IV —oe a—2b>0
oo 0o B 2
L1 O = B) w0ty ar<c 3 sy (4.9
0 z a—2b>0
0o 0o 2
/ / (Ui = Un)(y, O)dy| da < Cl5~1e™C 167, (4.9)
0 T
0 z 2
/ / (Usas — Un)(y, t)dy| da < C[67 e 467, (4.10)

Ul,og + US,ag - Um-

Proof: Since the proofs of (4.1)-(4.5) are standard from ODE theory on (1.14) and (1.15),

we will focus on the proofs of (4.6)-(4.10).
First, noting that (1.14), (1.15), (2.25), (2.7)-(2.8

) and Lemma 2.2 in [21], we can follow the

arguments in [9] (see the proof of (5.17) in [9]) step by step to obtain

3 3 62 —d|z|/C
rwm—wmmz{ce ’
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and

_ _ C(6° 4 6201/ x <0
773 ) =Y
‘U?)('I) UTW(x)| < { 052675@‘/0, > 07 (412)
To prove (4.6), one has
1(Uas05 = Urw) (- D)
= [[(Uar.as = Urw) (- Ol 72y + 1(Uaras = Urw) ()] |Z2mery
= Ji+ Jo (4.13)
Using the Cauchy inequality, we have
. 0 - 2 0 2
Jp <4 (/ U oy (2,t) — Upyy (x = 51t)|"d +/ |Us g (2,t) — Uy | dx
0700_ ) o o )
+ / }U%W(x,t) - Um1| dzx +/ ‘U%W(x,t) — UmQ‘ dm)
= J + P+ J; + J}. (4.14)

By virtue of (4.5) and (4.11), we get

0
Ji < C/ <\(U1 — Upw)(@+ a1 = sit)|* + [Ubyp (@ + o — s1t) — Uy (2 — §1t)|2> dz

lo|—=s1t B ) UL |2
< C[/ ‘(Ul - U%W)(x)‘ de + (1+[s; — §1|2t2)/ —aiw dx]
oo N
< C[6% 4 6 + 677, (4.15)

where we have used the fact that

s1 = Al(U‘);Al(?m) +0(5?)
:MWJ;MWM+O®%:%+OW)

Applying (4.5), we obtain

_ a3—s3t _ 9
J? :/ |Us(z) — Up|” da

—00

0o ls|
gC[/ \Ug(:c)—Um|2dx+/0 \U(2) — Uy Pda]

—00

< C6. (4.16)
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From (2.15) and (2.17), we have

00 (o2 2
e 2t dy| dx
0

2

0
J < Ot YU, — Um2|2/

0
S C|Um1 - Um2|2/

+oo 9
e “ds| dx
Vi
0 22
< C|Up, — Um2|2/ e i dr < C0%t. (4.17)
Similarly, from (2.23) and (2.25), we get
< [° 1
o
Ji < 053 /Oo (1 +6—53(x—§3(t+1))/ﬁ)2dx
L, [ 1
< <
< Cdg /_OO (1 +€—§3(m—§3(t+1))/ﬂ)2dx
0o
< 062 / 93/C gy < 6. (4.18)

Inserting (4.15)-(4.18) into (4.14), we obtain

Ji < C[0+ 't + 6717 (4.19)
To control J,, we have
Unos = Urw = (Us,as — Upw) + (Uray = Un) + (U, = Upy) + (U, — Uyyr). (4.20)
Then, using the similar arguments just as before, we can obtain

Jy < C[6 + 6t + 6717, (4.21)

Therefore, (4.6) follows from (4.13), (4.19) and (4.21) immediately.
Now, we turn to the proof of (4.7). By virtue of (2.23), (2.25) and (4.11), we have

/io /;(Ulm — Utw)(y. )dy
<o ([l -t dy>2dx

+C /0 (/m | Uz (y + o1 — s1t) — Upyy (y — $1t)| dy)2 dzx. (4.22)

—00 —00

2

dx
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The first integral on the right hand side of (4.22) can be bounded as follows:

C/Z_Slt ( / Oo (T = Uk ()] dy)2 dz
<o [ ([ 1o thowla) a
o [ ([ o vl a)
e /l ( / (T - Oh)w) dy>2dx

< O[5+ 82(t+ 1) + 6%(t + 1)3).

The last integral in (4.22) is bounded by

oW)t+1) s px 9
C(1+|51—§1|2t2)/ (/ |(U}W)’(z)|dz) dr.

—00 —00

Using the fact that |(Uky,) (2)| < C6%2e~91#/%(see (2.23) and (2.25)) and that |s; — 5| < C§?, we
find that the second term on the right-side of (4.22) can be bounded by C[6%(t + 1) + &5(t +1)3].
These estimates prove (4.7). The proof of (4.8) is similar.

Finally, we prove (4.9) and (4.10). It suffices to show (4.9), since the proof of (4.10) is similar.
From the fact s; < 0, (1.11)-(1.12), and (4.2), we have

2

/ (Orar — U 0)dy| da
|041\ 2
< C( / / / U1,a1 —Upn)(y,t)dy| dx (4.23)
o | x
< O[5t 1 47). (4.24)

This proves the estimate (4.9). Therefore, the proof of Lemma 4.1 is completed.

To deal with the wave interactions from the two different characteristic fields, we divide

R x (0,t) into the following two parts

0 = {(x,t)|x < 8123315}, and QF = {(x,t)\x > 81;S3t}.

Then, we have the following lemma concerning the wave interactions estimates:
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Lemma 4.2. Let the two viscous shock waves U, ,, and Uz o, be as defined in Lemma 4.1. Then

I )@, 1) = 01 FH/C i QF, (4.25)
|(Us.a; = Un)(,1)] = O(1)dze~ =€ in 07, (4.26)
( )(2,1)] o, 1)] = O(1)330, (7 =H0/C - emonllEH0/C) - (4.27)
( ) ()] | = O(1)8765 (™1 wH0/C @ =%ll=¥0/C) = (4.28)

Proof: Since the inviscid system (1.6) is strictly hyperbolic, then s; < 0 < s3. When ¢ is large,
the major parts of two viscous shock waves will decouple. With this in mind, (4.24)-(4.27) can
be proved easily. Indeed, set ¢ty = 4@?}§{|ai|}/33. When ¢ < ¢y, the estimates (4.24)-(4.27) are

obvious. For t > ty, we have, in Q7
T+ o — Slt > (81 + Sg)t/Q + o1 — Slt > (Sg — Sl)t/4 > 0. (429)

By Lemma 4.1,
(U1, = Un) (2, )| = O(1)d; e~ hrten=sul/e, (4.30)

It is clear that |z 4+ oy — s1t| > Ct, by (4.28). When z < 0, we have
|z +ap —sit| =x+ a1 —s1t >z + (51— s3)t/4 — st > x— 3x/2 = |x|/2. (4.31)
When z > 0, if 51 + s3 <0,
|z +ap — sit] > x4+ a1 + s3t >z + 3|ay| >z = |z]; (4.32)
if s1+ s3>0,
|z +aqg —sit] > ax—(s1+s3)t/4 > x—x/2 = |z|/2. (4.33)

Therefore |z + a; — sit| > C|z|. Now, we have proved the estimate (4.24). The other estimates
in Lemma 4.2 can be treated similarly. We omit the details.

Therefore, the proof of lemma 4.2 is completed.

5. Intermediate-Time estimate for U — U

We see from previous sections that Uy provided good approximation to U in short time and
intermediate time. However, visous shock waves would be the main part of U in large time.
Therefore, Uy is not a good comparison background to U, and we will prepare the transition

estimates for the large time regime in this section. In particular, we will first construct the sharp
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large time ansatz U, which will contain viscous shocks and a linear diffusion wave. We then make
estimates on U — U in the intermediate time regime. These estimates will lay a solid base for
the final proof of Theorem 1.1 in next section.

Recalling U = Uy+Us—U,,, the composite viscous shock waves, we note that the Riemann data

(1.5) is a nontrivial discountious perturbation near U. In general, the integral / (U-U)(z,0)dx

is not zero. We note that the three vectors 7 = (v, — v_, Uy, — u_, B,y — E_)', 7y = 19(U,,,) and
73 = (Vy — U, Uy — U, By — E,,)! are linearly independent in R? if 6, + d3 is small. Therefore,
it holds that

[ﬁau%m-ixummx:E:%@, (5.1)

(e}

where a;(i = 1,2,3) are constants uniquely determined by the initial data. The excessive mass
a7 in the first characteristic field can be eliminated by the translation in 1-viscous shock wave
with a shift ay, i.e., U;(z — s1t + o). Similarly, we can eliminate as73 by shifting Us(z — s3t) to
Ug(x — 83t + a3). So the remaining problem is how to remove the excessive mass in the second
characteristic field, i.e., asTy, which in general is not zero. For this, we apply the technique

developed in [12] to look for our ansatz U = (9, @, E)! in the form

0 =Vi(x — sit + ay) + V3(z — s3t + ag) — vy, + O(x, 1),
i =U(x —s1t+ 1) + Us(x — sst + a3) — uy, + f(2,1), (5.2)
E = Ey(x —sit+ay) + Es(x — sst + ag) — B, + %@ +g(z,1).

Here, we expect (0,0, %@)t = Or, to be a basic approximation of the diffusion wave associated
with the second characteristic field which tends to zero as t — +o00, and carries excessive mass
Oég?zg, i.e.

C|042| _ca? o
e 1+t

V1i+t ")

We also expect that f(x,t) and g(z,t) are higher order correction terms compared with O(z,t)

|O(z,t)] < O(z,t)dr = as. (5.3)

which behave like derivatives of the diffusion wave, i.e.,

Clag| _ ca?
0,01+ ot 1) < S22l (5.4

and carry zero mass, i.e.,

/if@iﬂxz/ig@jﬂxz& (5.5)

Finally, we should expect that U = (#, 1, E)* gives a good approximate solution of (2.1) in the
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sense that

{Lt + ﬁz = (%)$ + le,xa~ (56)
z ugz )1‘ + R2,m7

where the error terms R;(i=1, 2) should decay fast enough for a priori estimates we will establish
(see (5.20)-(5.21)). From the estimates for wave interactions (4.24)-(4.27), we expect R;(i = 1,2)
satisfy

Ri|, |Rinl < C(62 + |ag|62)e 00z 4 C(1|—|)€ T4 C(6 4 |og) eI+ (5.7)
+

where and in what follows the constant ¢ and C' are uniformly positive constants with respect to
small ¢ and ap. We will also denote A ~ B if

|A — B| < C(82 + |ay|62 e+ +Cﬁ

e E £ C(6 + |ag))e 0. (5.8)
(1+1)2

In order to achieve (5.6) and (5.7), we now try to choose the functions (O, f, g) satisfying (5.3)-
(5.5). Substituting (5.2) into (2.1); and using the definitions of U; and Us,, we obtain

—fo=0. (5.9)

By virtue of (5.3), (5.4) and Lemma 4.2, we get

Bl YT B Pmgy , 7 —1  y-1

Hence we choose g = u,, f so that
)~ O+ 65— 0, + 76 (5.11)

In the same way, we have
. _
:%%PI—i_Pii_pm?
%P1U1+P3U3_pmum+pmf7
Nt o R Le | Dar g Pmg
. Vi Vs Vi Vs Rv,,
Uy (}1le U3U3x

A Vs

3 'g; =

(5.12)

Qz@1|

r
[S31
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Substituting (5.2), (5.11)-(5.12) into (2.1); and using (1.12), we have

Prm @t—l—pmfx:@@m—irgz, e~ 0.
v—1 Rv,,

Combining (5.9) and (5.13), we obtain

(v—1)

1
O, = ®:c:r: z, €7 0.
t ’vam +¢€ e

Therefore we choose the function ©

fE2 -_—
Oz, t) = ——22 o wmm, g = (o =Dn

>0
dra(l +1t) yRvy,

as the unique solution of
G)t - d@xm @|t:—1 - Oégé(.f), / @(I,t)dl’ = (O,

and also define f and g by
flz,t) =a0,, g(x,t) = au,0,.

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

It is clear that (O, f, g) defined above satisfy (5.3)-(5.5), and so (5.11), (5.12), (5.6) and (5.7) are

justified.

Now we return to (5.2). Substituting (©, f, ¢g) defined as in (5.15)-(5.17) into (5.2), we finally

reach the defintion of U,

=Vi(zx —sit+aq) + Va(x — st + a3) — v, + O,
Up(x — sit + ay) + Us(x — sst + ag) — Uy, + 0O,

(31

U

E = E(x — sit +ay) + Es(x — sst + as) — Ep, + p—ml@ + au,,0,.
/'y_

It follows from (5.1) that

/OO(U(x,O) — U(z,0))dz

o0

_ / h (U(x,0) — U(x,0))dz + / N (U(2,0) — U(x,0))dz

oo [e.o]

— Zaiﬂ + Z/OO (Vi(x) = Vi(x + 4), Ui(z) — Ui(z + o),

i#2 Y
Ei(x) — Ei(x + ay)) — apfy = 0,
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o0

where we have used the fact that / Odx = ay. Thus U is the desired ansatz.

—00

The following theorem is about L? bounds for U — U and its piecewise H'-norm for U — U
at time ¢ < §727Y. These bounds give the control of the “initial” data for the energy estimates
of Section 6, where we finally conclude the proof of Theorem 1.1.

Theorem 5.1. Under the condition of Theorem 1.1, if §, and ¥ are sufficiently small, then for
t < 67277 it holds that

U —-TUR + (U -D)H><C D *t+1), (5.20)
a—2b>1
|[w-0om| <t ¥ serr
FE ()Y 4 R 1)) (521)

In addition, there is a positive number M, depending only on U_ and U, such that, if
Mélogdt<t <527
(which is possible for small §), then at time ¢,
|U = U + (U = U)o < C5' % (5.22)

and
2

) (U = U)(y, t)dy|| <C67, (5.23)
/.

where B is a positive constant depending only on U_.
Proof: It is clear that the bounds (5.22) and (5.23) follow from (5.20) and (5.21), respectively.
Therefore, it is sufficient to prove (5.20) and (5.21).

To prove (5.20), we triangulate as follows:

U—-U=(U-Ug—0)+ Ug—Urw)+0
(U1 — Unya) — (0,30, %@ + aun©,)". (5.24)

By virtue of (3.32), (2.45), (2.50), (4.6), (5.15) and (5.24), we have

U-T*<C Y o(t+1) (5.25)

a—2b>1
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From (3.32) and (5.15), we obtain

U -0)f*<C > s (t+1) (5.26)

a—2b>1

Thus, (5.20) follows from (5.25) and (5.26) immediately. To prove (5.21), we treat the case x < 0
and x > 0 separately. First, for z <0,

U—0=U—Ug—0)+ (U, — Uby) + (0% — Upy) + (03 — Upy) + T
HOhw = Ura) + (Un = Us) = (0,805, 50+ aun®,)'. (527

From the definition of U2 in (2.17), we have

0 z 2 0 x 2 2
[ | @-ta)woi| dr<cn —vnl [ | [ ey ar
—o0 |J —o0 —o(c; —o; 3
< C|Up, — Um2|2t/ e 272t dy < C'6%t2. (5.28)
Again from (5.15), we also have
0 T 2
/ / (0,40, %@ + aum®,) (y, t)dy| dx < C. (5.29)

So, from (3.31), (2.46), (5.28), (2.33), (2.57), (4.7), (4.10), (5.29) and (5.27), we can obtain the
desired estimate for .

For x > 0 we triangulate differently:

2

dz.

f%U—@@ﬁ@

U-U=U-Uz—0)+ 0%~ Uw) + Uk — Uny) + (U = Uny) + U
(O3 — Usa) + (Un — Uray) — (0,0, —ij L0 +au,0,) (5.30)

Similarly, by combining (2.1), (5.6) and (5.19), and noting that

f%U—@@ﬁwz—/mw—Umwm%

—0o0

we finally get (5.21).
The proof of Theorem 5.1 is completed.
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6. Proof of Theorem 1.1

In this section, we combine the results of the previous sections to complete the proof of
Theorem 1.1. Setting

©.0.2)= [ ©-0)w.td. (6.1)
then,
o R T
V—0=0, u—1u=VT,, —1(0—9)+§|\Px| +av, = Z,. (6.2)
N —

Instead of the variable Z, which is the anti-derivative of the total energy, it is more convenient

to introduce another variable related to the absolute temperature

which turns (6.2) into
V=T =D, u—Uu=0,, 0 —0="7, — L——(=|T,|* + 1, 7). (6.3)

Subtracting (5.6) from the system (2.1) and integrating the resulting system, we have the follow-
ing system for (®,V, 7):

4 —

q)t \Ilac = 07
_ 5o, R 1. - 1.
U - (-2, + 22+ i, = U, + Jy - R
) v } ( ) v (6.4)
~ ~ YU, L = Moy = '
— 4t (= )+ 7 (GP)s+
- gwa + J2 - R37
( v
where Rg = Rg — ﬂf%l and
~ —1- 1 1 - D = R ~
Ji= 120, 0,0, — (p—p+ LD, — 20— 0)),
20 VU VU ( ) v 5 1{9 é) (6.5)
~ Uy Uz \ = 7_ ,U— - /JJ x - x
J - - \Ijr - — \IICC - ~ \Ijx\p:c:c - ~
2= (=)Wt (2 = 20, - D —
In what follows, we use the notations
_ _ _ _ v — 1 1= o=
o=, v=V, (=Z7Z,— T(§\I}i — u, V). (6.6)

which exactly correspond to v — @, u — @ and 6 — 0 by (6.3). Following the proof of Theorem 1

in [12] and using the results of the previous sections, we first show the following a priori estimates:
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Lemma 6.1. For each U_, there exist positive constants C' = C(U_), no and 61 /C < < Cd7
such that, if 6 = |U_ — U, | < 1, and if a solution U of (2.1)-(1.5) exists for Md2logd! = t; <
t < t; and satisfies

M%m)iggﬁwwxxmw+M%wm@mﬂ%sW
then
s @B+ [ 105 2
+[;AmmwﬂﬂwmmMW+ﬁmmT
SZC'H(@7W72)@0NP‘FH¢zﬁoﬂﬁ‘+5;*—]ZIUKEHQ*‘HW$5H%dT BNCRS
and

sup [[[(6, 4, ) (THE + 11 (b, W, o) (]

to<7<t1

b [0 B M + 1 s o N

to

<C [II(@Z,@,C)(%)H” (s P, Co) (to) -2 +5/t (6%, Ot + 0] (6.8)

Remark 6.2. In contrast to [12], our energy estimates are new and different here. Indeed, the
proof of main theorem in [12] depends crucially on the smallness of the H?-norm of the spatial

antiderivative of the initial perturbation (see the assumptions of Theorem 1 on page 850 of [12]).

However, as mentioned before, the H2 norm of / (U(y,t) — Uny s (y,t))dy is arbitrarily large
here. Therefore, the energy methods in [12] do not work here (see the proofs of (6.7) and (6.8)).

Furthermore, we need to deal with the boundary integral terms arising from the non—smooth

initial perturbations carefully (see (6.41)).

Proof: It is clear that inf(p — %) > 0 due to Lemma 4.1 and the smallness of 6. Let L =
inf(p — %)~'. Then, as in [12], multiplying (6.4); by ®, (6.4), by 0LV, and (6.4)3 by RL*Z

respectively, adding all the resultant equations, we obtain

Eiy+ Fy+ By + Ey = —0LRV + 9LJ,V — RsRL*Z + RL*J,Z + Fs.,., (6.9)
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with

1 2 R2 2r72 ~ T2
17_
_ I 1
= AV + LW,V + LV2 A= —5(@L)t + (y — 1)L,
2
E3=— R LLJM(@LZ) 727, ju@ﬁz2
7—1 (6.10)
_ 2~ (’7 Dp - oy
E,= R(L*t; — L,)VZ + ~—,L*Z,¥

2o
+(y — D piiy(—)VZ + —~RL*0,9, 7,
v vv

__n 1
By = LU, + ”L2ZZ R0z + DR 1247 4 60
U

We estimate E;(i = 2,3,4) one by one. From (5.11) and (5.12), we have

L BB (P (B
t~ _P P Ul’z U3,z ~ P Ul,z 2 o P US,z 2,
1+ 3= Pm — ViV, (1_V1) <3_V3) (611)
= Ly + Lay,

L:I: ~ Ll,ac + L3,xa

Uiz _ . . . . .
where L; = (P; — 7) !, i =1,3, which, together with (5.6), implies
1 1
A ~ (—5(‘/1L1)t + (’7 — 1)L1U17x) + (—5(‘/3[/3)75 + (/7 - 1)L3U37z) =. A1 + A3. (612)

We will treat all the errors arising from the relation “ &~ ” later. Furthermore, we can obtain
from Lemma 4.1, that for i = 1, 3,

1 1

Therefore, if ¢ is small, we get the following inequality for Es with the help of the Cauchy

inequality and Lemma 4.1,
Ey > C{(|Uy 4| + |Us o] )¥? + W2}, (6.14)
For Es5, we observe that
—Lyy — Ly, = 51 L3sTVi 4 + 83L3Vap = U o|sTL3 + |Us o |s3L3, (6.15)
(B 12,22, < SEDZ 4 CUL + |Usal? + 2)7
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and the fact ©2 ~ 0, we have
B3y > C{(|U1a] + |Us2|) 2% + Z23. (6.16)

On the other hand, we note that

L20, — Ly = L2(ity + o — (=2)y) = —L2Ry , ~ 0. (6.17)
v
Thus the Cauchy inequality and Lemma 4.1 give
Ey < CS(|Ur x| + [Us ) (92 + Z2) + C8(Z2 + 92). (6.18)

Next, we estimate the terms J; ¥ and J,Z. From (6.5), (6.6) and the a priori assumptions , we

can get

|J1U| < CNo(to, t1)(®2 + U2 4 22 4 2 ) + C>(|Ury| + |Uso|) T2,

. _ _ _ _ 6.19
|2 Z| < C'No(to, t1) (P2 + W2 + Z2 + (* + V2) + CO*(|Us | + |Us | ) W2 (6.19)

Finally, we estimate all the error terms arising from the relation “ ~ ” and also the terms R,V
and RsZ. Tt is easy to see that all the integrals of these terms on (o, ;) X R can be written as

follows:
11 _ _ B o _ _
/ ][ |R|[(U? + | 20| + Z%) + (|9, | + | ZZ,| + | Z, V| + |®,.Z])
to

+H([W]+ |Z])] = My + M + Ms. (6.20)

We estimate the terms M;( i = 1,2, 3) one by one. Firstly, as in [12], we have

t 2 _
M, < C/ ][‘[(52 + ’a2‘5%>6—c5(|x\+‘r) + |Oé—2’§e_ e + (5 + ’a2|)e—c(\x|+7)]<\p2 + ZZ)
0 (1 + 7')2
1 1 _1 - 1 —
SC(07 46777 +1,2) sup [|(V,2)]* <62 sup ||(T, 2)]”. (6.21)
to<7T<t1 to<7T<t1

Similarly, we have
t1 o _ B
M, gc/ ][|R|(q/2+z2+q>§+\lfi+zg)
to

t1
< OS2 sup ||(\II,Z)||2+05/ 1(®y, Uy, Zo W2, (6.22)
to

to<7<t1

45



and

(ST

t1 B B t1 5 _
M < c/ ][|R|2(q12 + 7%+ c/ ][|R|Z <Csz sup ||(T,2)|%+ Cse. (6.23)
to to to<t<t1
Combining the relations (6.20)-(6.23), we conclude
t1 N B _ L B _
/ ][|R|[(\1ﬂ+|qu|+z2)+(|wx|+|sz|+|zwqf|+|c1>12|)
to

t1 _ B N
+(|W] +12])] < Co2 sup ||(\IJ,Z)||2+C’5/ ||(<I>I,\I/x,Z$)-H2+C(55. (6.24)
to

to<t<t1
Integrating (6.9) over (tg,t;) x R and using (6.10), (6.14), (6.16), (6.18), (6.19), (6.24) and the

a priori assumptions, we obtain

t1 _
sup (B8 2))P+ [ (0. 2,)|Par

to<7T<t1 to

i1 B
T / / (Usa| + |Usa) (T + 22)ddr
to R

gCH((T),\I/,Z)(tO)Hz+C(N0(t0,t1)+(5)/1(”(51#2%—\|CIH2+ 1V, 42)dr + C52.(6.25)

to

t1
Next, we estimate the term / | @ A>d7. From (6.4); and (6.4),, we have
to

1- - 1 - R —1_ - ~ -
Py =V + P, = =2, + ! —u, ¥ + Ry — Ji. (6.26)
v vL v
Multiplying (6.26) by ®, yields
1y 1.y = 1., R_ y—=1__ = = _
— — ) P2 — PV, + —P7 = (=2, —u,V 4+ Ry — J1)P,. 6.27
(217 2t (26)75:0 AT AE (17 + u, VU + Ry — Jh) (6.27)
Since
we get,

1 _ _ t1 _
sup 847+ [ Bafar < C sup [P+ [@atto + [ (0 ZPar

to<t<t1

to to<t<ty to
t1 B t1 - -
) / / (|Ure| + |Us o] ) 9P dadr + / / (J? 4+ R})dxdr. (6.29)
to R to R
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By virtue of (6.5), Cauchy inequality and Sobolev inequality, we have

t1 _ 11 _ B
/ /dexdT gCNf(to,tl)/ (s, T, Z,, W2dr
t
’ t1 _ t1 _
CNH(toty) [ 10+ C5 [ [ (U0l + Una) Wdadr. (630
to R

to

From (5.7), it is easy to see
/ / Ridxdr < C6°. (6.31)

Then, (6.7) follows from (6.25) and (6.29)-(6.31) immediately.
We now prove (6.8). Applying 0, to the system (6.4) and using the notations (6.6), we obtain

uxgb)m - ~2/}xx R11+Q1m7

( ét - &x = 07
T R (.
=T B Dgr B B ( ;
. o 1, . 10,0 (6.32)
_1<t +p1/1x+(p—17)um+%%¢— Ux% ( ) Cx ( 72 )93
\ = %sz + aRl,:v - RQ,I’ (p p)wx + % + QQ,(E?
where
0= { G- i (- 26— S0-0) (6.33)
(6.34)

oY :U“éar 2| ,quga:
@2 = (U@Q ) < vo )
¢, and adding and integrating, we find

| <2

y =, and (6.32)3 b

=

Multiplying (6.32); by ¢, (6.32) b

5.0, O (W + / (o, G2

sup ||(¢,

ST o " ) 7 1
< 1G5+ [ (G + G + 16

0d b o B T R R
P24 Tl + 1B 200+ (e - (B2

|<~~2> (Gl + |<ﬁ2 Q)s .
HIlp =i+ a6 = Ll = (5):G 5+ [P+ Qul
7.2
E e 2

[/&él,z - R2,x + QZ x] F;QC + H(p - )¢x
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R6
—(—¢ + wc - ij - ¢ccx ’fm 3¢ + Mcz»w)

=: C||(, 4, ) (toHt* + Z/L (6.35)

Next, we estimate the terms A;, i = 1 to 12. It is easy to see

8 t1 o B
S A< 05 [ ON + e N (6.36)
i=1 to
Using integration by parts, we have
5 t1 5 B Iy o - - -
%SQ/%WMM+@@Q|i/@M@ﬂmi%+ﬁ+£7 (6.37)
to to

It is clear that .
Al <05+ 05/ |b||2dr.

to

By virtue of Cauchy inequality, Holder inequality and Sobolev inequality, we have

A2<0/ ][as + ¢+ |58))|B|dxdr
< O (to, 1) / |@A2dr +C / B4 18t ekt + ICH P ICA 19,

to

< O, (to, 1) / |Bdi2dr + Ca / |6l

to to

1M
vy [ Wt [ G optar

to

< N\ (to, 1) / |GA2dr + Ca / |3l

to to
t1

v | 16 Cotar 4 ONdto ) 7166,

to to

Therefore,

Ay <CE+ N ) [ 1@ Ot +Ca [ otar

to to

HONlto,t0) + 5) [ IGus '+ A5 (6.35)

to
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Similarly, we have

Ay <O+ Nto,t) / 16, O¥2dr + Ca / | B2dr

to to

+(CN1(t0,t1) +Co+ %) / ' ||§$_|+2d7 — C/ [QQRC]( )d’T

to

Using Cauchy inequality, we obtain

B . 1 ) 1 1 5
A <ONH(to.t) [ 16O dr + (CNittot) + 5) [ 10k

to to

Finally, we deal with the boundary integral term arising from the jump discontinuous.

Theorem 1.2 in [10], (6.33) and (6.34) and making direct computation, we obtain

/ [—é¢ + %wé - %w% wygcx ~2 = ch + Masw Q1Y — Qs C]( 7) = 0.
Combining the above relations (6.35)-(6.41), we conclude
s 165K+ [ e
< OB, 5. taH® + €6 + Ni(to, 1)) / (5.5 Y2

t1
+Ca / @A dr + C6.

to

t1 _
Next, we estimate the term / | @At dr. Using (6.32);, we can rewrite (6.32), as
to

1. - - R p - R N -
5¢xt - wt + 5(251 - ggx - (5)x¢ + (E)xc - (5)90% + ( ) + Rl T Ql,x-
Multiplying (6.43) by ¢,, we have
1- - I D - R D, - R 1, - sz(lg

Since
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(6.39)

(6.40)

Using

(6.41)

(6.42)

(6.43)

. (6.44)

(6.45)



we obtain

sup |Gl® + / |Gl 2dr

to<t<t1 to

<Ol sup 101 + 18a (o) + / N, )P

to<7T<t1 to
t1

™ / 1@, O + / Rl + 1102 + / B0, 7)|dr.  (6.46)

to to to

From (5.7), it is easy to see

t1 B
/ | Ry 0||?dr < C6. (6.47)

to

By virtue of (6.33) and the a priori assumptions, we have

Q1o = O()(@" + ¢* + [allg] + [Valldal + ¢ + [Wuoll@])- (6.48)

Applying the similar arguments used in obtaining (6.38) and (6.48), we can get

t1

/ 0L < ON(to, 1) / 1B, O 2dr + CN, (fo, 1) / N (o Cor 2l

to to to

HOMlto,t) + ) [ 1w G (6.49

to

From Theorem 1.2 in [10], we have

[ 10 = [0 <0 [ 1o I 0 )l ar

to to to
t1 _ _ o, 4 t1
<c / |G.2dr +C sup (|08 [[ua (0, £0)] / et gy
to to<t<t1 to
t1
<C / bt >dr + C6. (6.50)
to

Inserting the estimates (6.47), (6.49) and (6.50) into (6.46), we obtain

t1 B
sup |G + / |Gl 2dr

to<t<t1 to

<Cl sup [0+ Wl + [ (s CIPdr

to<t<ty to
t1

(0 + Ni(to, 1)) / (@, O2dr + N (fo, 1) / |(Boes Corli?dr + 6] (651)

to to
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Combining (6.42) with (6.51), we have

sup (165, W+ 16:HD) + [ 16 s G

to<T<t; to

< Ol 5 O + 1.l + 6+ Mo [ I

to

¢, 0, O dr

+N1(t07t1)/1 H(&xwaéﬂxx)%sz—*—é‘]

to

(6.52)

Finally, we estimate the term || (., ¢ HE. Multiplying (6.32)s by —tus, (6.32)3 by —Cua, respec-

tively and adding and integrating, we have

_ o
sup || (e, GO + / (B Con W2

to<t<t1 to

<l +¢ [ f{1Za+ 1 Eal+1E1d+ D

1 R. - o - . » 1 ,-
1€+ 1000+ 1Dl + 521+ 1 — el + | 2
10,6

2”}2

2  _ - - _
0l +1(5)2Gal + 120l lGeal + (Bral + 1Qr Dl

B B 7,2
Hotal + el + 1+ (0= 900+ 1)l

+C/t 1(\[%1@“ + 1660, T)dT =: Ol (¢, G) (b + Z B;.

Using Cauchy inequality, we have

1

Bt B <O [ GO +C [ @i GHdr 5

Applying the similar arguments used in getting the estimates (6.38)-(6.40), we have

t1

B+ B < ONMto.ta) / @O+ © / (6o, N2

to to

G+ CNito:t) [ (GGl + €5

to

The boundary term Bs can be estimated in the similar way as (6.50). In fact, we have

Bs < (6.

o1

[ 1 oo

(6.53)

(6.54)

(6.55)

(6.56)



Combining the above relations (6.53)-(6.56), we conclude

sup || (o, CoM® + / N e Cor Wl

to<t<t1 to

< s G + G-+ Nito,1) [ 16,

to

t1 B _
+0 [ 16 s M + 5. (6.57)
to
Therefore, (6.8) follows from (6.52), (6.57) and 7, = C63 immediately.
This conculdes the proof of Lemma 6.1.

In the following theorem, we apply the a priori estimates above to obtain global existence:

Theorem 6.3. Given U_ = | v |, there is a small constant gy depending only on U_ such
Ut
that , if § = |Uy — U_| < g, then the Cauchy problem (2.1)-(1.5) has a unique global solution U

defined for all positive time and satisfying

sup (8,8, 2)(0)[7 + [ (8, W Zof
t

t<rt

. { gg—ji)ﬂ + 6t + 5 Le(="0/C], tt;t;f?, (6.58)
and
R CRROTC T [CMSIETY
U0 B G 4 1P G W < €512 (6.59)

where to = Md2logd—t, M and B are positive constants depending only on U_.
Proof. We take t, as indicated above, so that the estimates (5.22) and (5.23) hold. Adding a
small multiple of (6.8) to § times (6.7), we see that, for ¢ > t,

t1
sup 3(®, 8, Z)(7)|? + / |8y, B, Z, W 2dr

to<t<t1 to

+ sup [[(&, 9, QI + (e Yos Ca) (TH]

to<T<t1

b [N GHE + s Guolr < O,

to

(6.60)

Separating terms out, we then conclude that (6.58) and (6.59) hold for all ¢ > t, as a priori
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bounds, that is, provided that Ny(to,t) < mo and Ni(to,t) < 1. On the other hand, (6.58),
(6.59) and the relation (6.6) imply that

(@, 9, Z)[3~ < CI(@, T, 2)P(6, ¢, ) (T
< OB « 1,

if 1 and ¢ are small. Therefore,
N()(fg,lf) < 1.

Again from (6.59), we have

i 7 1_9B
H(¢:¢7C)H + "((bxawx,Cx)‘H‘ < (o3 02 <M,
if 1 and § are small. Therefore, we have
N1<t0,t> < 1.

These observations, together with the local existence result, the Theorem 1.2 in [10], and the
intermediate-time result, Theorem 3.2, prove the global existence of U, and show that (6.58) and
(6.59) hold for all t > ty. From (5.20), (5.21) and Triangle inequality, it is easy to see that (6.58)
and (6.59) hold for all t < ¢,.

Therefore, (6.58) and (6.59) hold for all ¢ > 0, and the proof of Theorem 6.3 is completed.

Proof of Theorem 1.1. First, it is easy to see that, if U¢ and U are the solutions of
(1.1)-(1.3) and (2.1)-(1.3), respectively, then
r t
U(z,t) =U(—,-). (6.61)
€' €
The global existence of U€, its regularity and the information (1.20) concerning the jump dis-
continuities in U€ then follow directly from Theorem 1.2 in [10] and Theorem 6.3. To prove
Theorem 1.1, it is sufficient to prove the convergence results (1.21)- (1.23). Setting G(t) =
(U = Ugya) (-, tHF and using (6.58)-(6.59), (5.18), the relation (6.6) and the equations (1.1),

we have - J
/ {G(t) + —G(t)‘} dt < oo.

lim ||<U - Ua1,0é3)('7t)“+2 =0,

t—o0

This yields
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from which and Sobolev’s inequality it follows

lim sup |U(x,t) — Ug, as(x, )] = 0. (6.62)

t—o0 T£0

This together with the estimate (1.20) gives

lim sup |U(x,t) — Uq, as(x, )] = 0. (6.63)

t—o00 z€R

Noting (1.14)-(1.15), (1.19) and the definitions of Uy, Us and U,, o, (see Lemma 4.1), we have

1,03

ngi,ag (x,t) TS (2 — 1t + aq€) + Us(x — sst + aze) — Uy,

T — 51t + €

T — s3t + age

— Oy () 4 Oy ) = Un
_x — sit __x — 83t
= Ty( - S o) 4 UL 4 ag) = U,
— x t
= 0617043(_) _)' (664)
€ €

Then, (1.21) follows from (6.61), (6.63) and (6.64) immediately. By using (6.61) and (6.64), one

can write

Ue(xut) - UO(ZL',t) = Ue([L’,t) - erzi,ag(xut) + Uee,ag(xut) - UO(.Tﬂf)

o1
r t -~ r t = r t 0
— (VD - a5+ (a5 = 0)) . (669
From (6.63), it is easy to see that
x t = x t
li U(=,-) = Usas(=, =) =0. 6.66
fig s (=5 2) = Va2 6)‘ (6.66)
By virtue of (1.21) and Lemma 4.1, we have
. -~ x t 0
lim sup Usiyos (=, =) = U"(z,t)| = 0. (6.67)
€20 |3 s;¢|>h,i=1,3 € €
Then, (1.22) follows from (6.65)-(6.67) immediately.
From (1.9), it is clear that
t
U%z,t) = UO(Z, D). (6.68)
€ €

By (6.65) and (6.68), (1.23) follows directly from (6.59), Lemma 4.1 and Sobolev inequality.
Therefore, the proof of Theorem 1.1 is completed.
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Appendix

< (1.14)
e, (1.15)
me, m (1.16)
% (1.17)
Uss s (1.19)
Ur (2.18)
Urw (2.25)
U (2.48)
(), 0, 2) (3.1) and (3.3)
(@, 0, W) (3.16)
Uy, Us, Ualm Lemma 4.1
U (5.2)
(P, W, Z) (6.1) and the equality below (6.2)
(6.4, (6.6)
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