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Abstract: In this paper, we first construct a contact wave for 1-dimensional
Jin-Xin relaxation system [15]. This wave serves as the relaxation version of
contact discontinuity of the corresponding hyperbolic system at equilibrium.
Such a contact wave is shown to be nonlinearly stable under small initial
perturbation. The time-decay rate is also obtained by weighted energy esti-
mates.

1 Introduction

The relaxation phenomena arise in many physical situations, such as the
kinetic theory, non-equilibrium gas dynamics, elasticity with memory, flood
flow with friction and magnetohydrodynamics etc; see [29]. Mathematically,
the investigation of the behavior of the solutions to the relaxation system is
an important subject. It also motivates effective numerical schemes for the
systems of nonlinear PDEs. A good survey in this direction is [26].

In this paper, we consider the initial value problem of 1-dimensional Jin-
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Xin relaxation system [15] which reads











ut + vx = 0,

vt + a2ux =
1

ε
(f(u) − v), x ∈ R

1, t ≥ 0,

(v, u)(x, t = 0) = (v0, u0)(x), x ∈ R
1,

(1.1)

where u = u(x, t), v = v(x, t) are vector-valued functions in R
n, f(u) is a

smooth function from R
n to R

n, a > 0 is a given constant satisfying the
sub-characteristic condition (1.5) below, and ε > 0 represents the relaxation
time.

Assume that the initial data satisfies

(v0(x), u0(x)) → (v±, u±), as x→ ±∞, (1.2)

where v±, u± are given constants subject to the constraints v± = f(u±).
As ε → 0, formally, the leading order approximation of the system (1.1)

is the following conservation laws:

ut + f(u)x = 0. (1.3)

The relaxation system (1.1) is designed by Jin-Xin in [15] to approximate
the conservation laws (1.3) for numerical purpose. The main advantage of
this scheme is its generality and simplicity since (1.1) is semi-linear.

As usual, we make the following assumptions throughout this paper.

(H): Assume that the system (1.3) is strictly hyperbolic. Namely, the Jaco-
bian matrix Df(u) of the flux f(u) has real and distinct eigenvalues

λ1(u) < λ2(u) < · · · < λn(u)

with corresponding left and right eigenvectors lj(u), rj(u) (j = 1, 2, · · · , n)
satisfying

L(u)Df(u)R(u) = diag(λ1(u), λ2(u), · · · , λn(u)) ≡ Λ(u),
L(u)R(u) = Id.,

(1.4)

where L(u) = (l1(u), · · · , ln(u))t, R(u) = (r1(u), · · · , rn(u)), Id. = Identity
matrix. We further assume that each i−field is either genuinely nonlinear

∇λi(u) · ri(u) 6= 0,
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or linearly degenerate

∇λi(u) · ri(u) ≡ 0.

Under the above assumptions, it is well-known that the hyperbolic conser-
vation laws (1.3) has rich wave phenomena. In the genuinely nonlinear field,
the nonlinear waves ( shock waves or rarefaction waves) may appear; and
contact discontinuities, which are the linear wave, may occur in the linearly
degenerate field.

To ensure the dissipative nature of the system (1.1), it is important to
impose the sub-characteristic condition ([1], [2], [15], [18], [29]):

−a < λi(u) < a, ∀ u, ∀ i = 1, 2, · · · , n. (1.5)

Although the dissipation of relaxation is not strong enough to smooth out
discontinuities, it does prevent the singularity formation from small smooth
initial data. The elementary hyperbolic waves of (1.3), i.e., shock waves,
rarefaction waves and contact discontinuities, have smooth correspondences
in the system (1.1). It is interesting to investigate the asymptotic stability of
these waves (relaxation versions of the hyperbolic waves) and the relations
to their correspondences of (1.3).

Liu [18] first considered a general 2 × 2 relaxation system in one spatial
dimension, and gave the stability criteria for the shock waves, rarefaction
waves and diffusion waves. Since then, many authors have stuided the sta-
bility of shock waves and rarefaction waves to the relaxation system in one or
several space dimensions; see [3], [4], [5], [6], [7], [8], [16], [17], [21], [22], [23],
[24], [25], [27], [31], [32], [33], [34] etc. However, as far as we know, there is
no result corresponding to contact discontinuities for the relaxation system
(1.1). We will pursue this issue in current paper.

The investigation of the asymptotic stability of contact discontinuity for
the viscous conservation laws dates back to Xin [30], which concerned with
the Euler system with uniform viscosity. It was first discovered in [30] that
the inviscid contact discontinuity can not be an asymptotic state for the
viscous system, but a viscous contact wave, which approximates the contact
discontinuity on any finite time interval as the viscosity tends to zero, is
nonlinearly stable. This phenomenon is called meta-stability [30].

In this paper, we study the meta-stability of contact discontinuities for
the relaxation system (1.1) under the assumptions (H) and (1.5). That is, we
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construct a contact wave, which approximates the contact discontinuity of
the corresponding hyperbolic system (1.3) on any finite time interval as the
relaxation time tends to zero, and prove that the contact wave is nonlinear
stable.

Our idea is as follows. We observed that the relaxation system (1.1) is
equivalent to the following perturbed viscous conservation laws:

ut + f(u)x = a2εuxx − εutt. (1.6)

The term utt is treated as a higher-order perturbation term in (1.6). We
thus expect that the long time behavior of the solutions to (1.6) is similar to
that for the viscous conservation laws

ut + f(u)x = a2εuxx. (1.7)

We remark that utt in (1.6) is of the same order as uxx due to the hyperbolic
nature of the system. The sub-charateristic condition (1.5) will play an
essential role in this paper.

For (1.7), Liu-Xin [20] showed that the inviscid contact discontinuity is
meta-stable by the pointwise estimates. Liu-Xin’s analysis is based on ap-
proximate Green’s function, which is very difficult to construct in many physi-
cal systems when viscosity matrix is only semi-definite, such as compressible
Navier-Stokes and Boltzmann equation. Recently, Huang-Matsumura-Xin
[10] and Huang-Xin-Yang [12] develop a new energy method to treat the sta-
bility of the contact discontinuity for the compressible Navier-Stokes equa-
tions. Such approach admits that the energy estimate involving the lower
order grows at the rate (1 + t)

1
2 . But it can be compensated by the decay in

the energy estimate for derivatives which is of the order of (1 + t)−
1
2 due to

the underlying properties of the viscous contact wave. Thus, these reciprocal
order of decay rates for the time evolution can close the a priori estimate con-
taining the uniform bounds of the L∞ norm in the lower order estimate due
to Hölder inequality. This method can be widely applied to many physical
systems, see [13] and [11]. In this paper, we shall adopt the ideas of [10] and
[12] to investigate the stability of the contact discontinuity for the relaxation
system (1.1).

Assume that p−field of system (1.3) is linearly degenerate for some p such
that 1 ≤ p ≤ n. Therefore,

∇λp(u) · rp(u) ≡ 0.
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Consider the hyperbolic system (1.3) with the following Reimann initial data

u(x, 0) =

{

u−, x < 0,
u+, x > 0,

(1.8)

where u+ and u− are chosen such that

f(u+) − f(u−) = s(u+ − u−), s = λp(u+) = λp(u−). (1.9)

Then (1.3) and (1.8) admit a p−contact discontinuity solution

Û(x, t) =

{

u−, x < st,

u+, x > st.
(1.10)

Without loss of generality, we assume that s ≡ 0 in (1.9).
Now we construct the p−contact wave for (1.1). Eliminating v(x, t), we

obtain from (1.1) a system for u(x, t) itself







ut + f(u)x = a2εuxx − εutt

u(x, 0) = u0(x),
ut(x, 0) = −v0x(x).

(1.11)

We first construct the contact wave for (1.11) following [20], and the v com-
ponent will be recovered through (1.1). With a non-singular parameter ρ
chosen below in (1.14), we define the p−contact wave curve by

Cp(u−) = {u|u = u(ρ),
du

dρ
= rp(u(ρ)), u(ρ−) = u−}. (1.12)

Along the curve Cp(u−), it holds that

dλp(u(ρ))

dρ
= ∇λp(u(ρ)) ·

du(ρ)

dρ
= ∇λp · rp ≡ 0.

So we have
λp(u(ρ)) = λp(u+) = λp(u−) ≡ 0. (1.13)

This means that the p−eigenvalue λp(u) is zero along the curve Cp(u−). The
non-singular parameter ρ is defined by

u(ρ−) = u−, u(ρ+) = u+,
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and






ρt − a2ερxx = 0, x ∈ R
1, t ≥ −1,

ρ(x, t = −1) =

{

ρ−, x < 0,
ρ+, x > 0.

(1.14)

Without loss of generality, we assume that 0 < ρ− < ρ+. With ρ(x, t) defined
in (1.14), we define the viscous p−contact wave Ū(x, t) by

Ū(x, t) ∈ Cp(u−), Ū(x, t) ≡ u(ρ(x, t)). (1.15)

From the construction of Ū(x, t), we have

Ūt(x, t) = rp(u(ρ))ρt, Ūx(x, t) = rp(u(ρ))ρx,

Ūxx(x, t) = rp(u(ρ))ρxx + ∇rp(u(ρ)) · rp(u(ρ))(ρx)
2.

(1.16)

Following [20], we impose the following structure condition

∇lp(u(ρ)) · rp(u(ρ)) ≡ 0, ∇rp(u(ρ)) · rp(u(ρ)) ≡ 0, ∀ u ∈ Cp(u−). (1.17)

We remark that physical systems such as compressible Euler equations do
satisfy (1.17). Under (1.17), the viscous contact wave Ū(x, t) defined in (1.15)
satisfies the system

Ūt + f(Ū)x − a2εŪxx = 0. (1.18)

The parameter ρ(x, t) in (1.14) has the following properties as x→ ±∞:

|ρ− ρ±| = O(1)(ρ+ − ρ−)e
− x2

8a2ε(1+t) ,

|ρx| = O(1)(ρ+ − ρ−)[ε(1 + t)]−
1
2 e

− x2

8a2ε(1+t) ,

|ρt, ερxx| = O(1)(ρ+ − ρ−)(1 + t)−1e
− x2

8a2ε(1+t) .

(1.19)

Consequently the contact wave Ū(x, t) satisfies the properties:

|Ū − u±| = O(δ)e
− x2

8a2ε(1+t) ,

|Ūx| = O(δ)[ε(1 + t)]−
1
2 e

− x2

8a2ε(1+t) ,

|Ūt, εŪxx| = O(δ)(1 + t)−1e
− x2

8a2ε(1+t) ,

(1.20)

as x→ ±∞, where δ = |u+ − u−| = O(1)(ρ+ − ρ−).
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Direct computations show that

‖Ū − Û‖Lq(R) = O(1)ε
1
2q (1 + t)

1
2q , q ≥ 1.

where Û is the inviscid contact discontinuity defined in (1.10). The above
property means that the viscous contact wave Ū(x, t) for (1.1) approximates
the inviscid contact discontinuity Û(x, t) to the system (1.3) in Lq norm,
q ≥ 1, on any finite time interval as the relaxation time ε→ 0.

In the following, we only consider the asymptotic behavior of the solutions
of the system (1.1) for fixed relaxation time ε with initial data that is a small
perturbation near Ū . Without loss of generality, we fix ε = 1.

Usually the integral
∫ +∞

−∞
(u(x, 0) − Ū(x, 0))dx

does not equal to zero. We shall introduce some linear diffusion waves to
carry the excessive initial mass. We remark that the nonlinear diffusion
waves are first introduced by [19] for the study on the nonlinear stability of
the viscous shock wave to. But in our case, as in [10], it is sufficient to use
the linear diffusion waves due to the different stability analysis.

For weak contact discontinuity, i.e. δ � 1, the vectors r1(u−), · · · , rp−1(u−),
u+ − u−, rp+1(u+), · · · , rn(u+) form a basis of R

n. We thus decompose the
excessive initial mass as

∫ +∞

−∞
(u(x, 0) − Ū(x, 0))dx =

∑

i6=p

αiri(ûi) + x0(u+ − u−), (1.21)

with the uniquely determined constants αi (i 6= p) and x0, where and in the
sequel, we use the notation

ûi =

{

u−, i < p,

u+, i > p.

Define the linear diffusion waves by
{

θit + λi(ûi)θix = a2θixx, x ∈ R, t ≥ −1, i 6= p,

θi(x, t = −1) = αiδ(x),

where δ(x) is the Dirac function satisfying
∫ +∞

−∞
δ(x)dx = 1.
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Then we have

θi(x, t) =
αi

√

4πa2(1 + t)
e
− |x−λi(ûi)(1+t)|2

4a2(1+t) ,

∫ +∞

−∞
θi(x, t)dx = αi. (1.22)

Now we define the ansantz Ũ(x, t) by

Ũ(x, t) = Ū(x + x0, t) + θ(x, t) (1.23)

with θ(x, t) =
∑

i6=p θi(x, t)ri(ûi). Thus we have

∫ +∞

−∞
(u(x, 0) − Ũ(x, 0))dx = 0. (1.24)

A direct computation gives

Ũt + Ũtt + f(Ũ)x − a2Ũxx = Rx, (1.25)

with the error term

R(x, t) = [f(Ũ) − f(Ū) −
∑

i6=p

λi(ûi)θiri(ûi)]

+[−f(Ū)t + a2Ũxt −
∑

i6=p

λi(ûi)θitri(ûi)]

= O(δ̄)(1 + t)−1
n

∑

i=1

e
− |x−λi(ûi)(1+t)|2

8a2(1+t) ,

(1.26)

where we have used the fact

f(Ũ) − f(Ū) −
∑

i6=p

λi(ûi)θiri(ûi)

= Df(Ū)θ −
∑

i6=p

λi(ûi)θiri(ûi) +O(1)|θ|2

=
∑

i6=p

[Df(Ū) −Df(ûi)]θiri(ûi) +O(1)|θ|2

= O(1)(δ|α|+ |α|2)(1 + t)−1
n

∑

i=1

e
− |x−λi(ûi)(1+t)|2

8a2(1+t)

= O(δ̄)(1 + t)−1
n

∑

i=1

e
− |x−λi(ûi)(1+t)|2

8a2(1+t) ,
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with the diffusion wave strength |α| =
∑

i6=p

|αi| and δ̄ = δ + |α|.

Without loss of generality, we assume that x0 = 0 from now on. Set

H(t) =

∫ +∞

−∞
(u(x, t) − Ũ(x, t))dx.

It follows from the equation (1.11) for u(x, t), and (1.25) for Ũ(x, t), that

d

dt
H(t) +

d2

dt2
H(t) = 0.

We know H(0) = 0 from (1.24), and

H ′(0) =

∫ +∞

−∞
(ut(x, 0) − Ũt(x, 0))dx

=

∫ +∞

−∞
(−vx(x, 0) − Ūt(x, 0) −

∑

i6=p

θit(x, 0)ri(ûi))dx

= −(v+ − v−) + (f(u+) − f(u−)) = 0.

Thus we have, for all t ≥ 0,

H(t) =

∫ +∞

−∞
(u(x, t) − Ũ(x, t))dx = 0. (1.27)

Set the perturbation by

φ(x, t) = u(x, t) − Ũ(x, t)

and introduce the anti-derivative variable

Φ(x, t) =

∫ x

−∞
φ(y, t)dy.

The equation (1.27) ensures that the anti-derivative variable Φ(x, t) is well-
defined in some Soblev spaces like L2(R1), H1(R1) etc.

Now we construct the ansatz Ṽ (x, t) for v(x, t). From the conservative
part in (1.1), we set

Ṽ (x, t) = f(Ũ) − a2Ũx +

∫ x

−∞
Ũttdx− R, (1.28)
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then we have
Ũt + Ṽx = 0. (1.29)

Set
ψ(x, t) = v(x, t) − Ṽ (x, t).

From (1.1) and (1.29), we have

φt + ψx = 0

and
Φt = −ψ, Φx = φ. (1.30)

We now state our main result:

Theorem 1.1. Fix ε = 1. Under (H) and the sub-characteristic condition
(1.5), assume p−characteristic field is linearly degenerate (1 ≤ p ≤ n) and
the structure condition (1.17) holds. Let Ũ(x, t) be the ansatz in (1.23). Then
there exists a small positive constant δ0 such that if the wave strength δ̄ and
the initial values (v0(x), u0(x)) satisfy

δ̄ + ‖Φ(x, 0)‖2
H3 + ‖ψ(x, 0)‖2

H2 ≤ δ2
0, (1.31)

then the problem (1.1)-(1.2) admits a unique global solution (v(x, t), u(x, t))
satisfying

u(x, t) ∈ C([0,+∞);H2) ∩ L2(0,+∞;H3),

v(x, t) ∈ C([0,+∞);H1) ∩ L2(0,+∞;H2),

and
‖(u− Ũ , v − Ṽ )(·, t)‖L∞ ≤ Cδ0(1 + t)−

1
4 , (1.32)

where C is a positive constant independent of t.

This theorem will be proved in next two sections. In Section 2, we will
derive the desired a priori energy estimates. The estimates will be closed and
decay rates will be given in Sections 3.

2 Energy Estimate

From (1.11) and (1.25), we obtain a system for φ(x, t)

φt + φtt + (f(u) − f(Ũ))x − a2φxx = −Rx, (2.1)
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Integrating the system (2.1) over (−∞, x), one yields

Φt + Φtt + (f(u) − f(Ũ)) − a2Φxx = R.

Linearizing the above system, one has

Φt + Φtt +Df(Ū)Φx − a2Φxx

= −[f(u) − f(Ũ) −Df(Ũ)(u− Ũ)] − [Df(Ũ) −Df(Ū)]Φx +R

=: R1,

(2.2)

where
|R1| ≤ O(1)(|Φx|2 + |θ|2 + |R|). (2.3)

From now on, we will work on the Cauchy problem of (2.2) with the initial
data

Φ(x, 0) =

∫ x

−∞
(u(y, t) − Ũ(y, t)) dy, Φt(x, 0) = v(x, 0) − Ṽ (x, 0). (2.4)

We note that (2.2) is a system of semi-linear wave equations with damping
and source terms. Standard theory gives the local existence and uniqueness
of classical solution for a short time T ∗ for smooth initial data. In order to
prove the global existence and further to study the large time asymptotic
behavior, we need to derive some uniform estimates under the condition
(1.31). For technical reason, we will perform weighted energy estimates under
the following a priori assumption:

(H1) The smooth solution of (2.2)–(2.4) exits on time interval [0, T ] for
some T > 0 and satisfies

N(T ) = sup
t∈[0,T ]

(‖Φ‖L∞ + ‖φ‖H2 + ‖Φt‖H1 + (1 + t)
1
4‖φ‖L2) ≤ ε0, (2.5)

where the small positive constant ε0 is only depending on the initial values
and the wave strength δ̄.

Clearly, (H1) is true for a short time if we choose δ0 small, due to local
theory. We will prove that T = +∞ with the help of uniform estimates and
continuity argument.

To diagonalize the system (2.2), we introduce the new variable

W (x, t) = L(Ū)Φ(x, t), Φ(x, t) = R(Ū)W (x, t), (2.6)
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where L(Ū) and R(Ū) are defined in (1.4). Substitute Φ = R(Ū)W into
(2.2), we have

R(Ū)Wt + R(Ū)Wtt +Df(Ū)R(Ū)Wx − a2R(Ū)Wxx

= −R(Ū)tW − 2R(Ū)tWt −R(Ū)ttW −Df(Ū)R(Ū)xW

+2a2R(Ū)xWx + a2R(Ū)xxW +R1

=: −Df(Ū)R(Ū)xW +R2.

Multiplying the above system by L(Ū) to the left, we get

Wt +Wtt + Λ(Ū)Wx − a2Wxx = −Λ(Ū)L(Ū)R(ū)xW + L(Ū)R2, (2.7)

where

L(Ū)R2 = O(1)(ρtW + ρtWt + ρttW + ρxWx + ρxxW +R1). (2.8)

Let
W = (W1,W2, · · · ,Wp−1,Wp,Wp+1, · · · ,Wn)t, (2.9)

where and in the sequel the notation ()t represents the matrix transpose.
Introduce a weight function

η(x, t) =
ρ(x, t)

ρ+
, (2.10)

where ρ(x, t), ρ+ are defined in (1.12). Clearly |η(x, t) − 1| ≤ Cδ. Here and
after, we will use C and Ci (i = 1, 2, · · · ) for generic positive constants which
are independent of δ̄, ε0 and time t. Note that 0 < ρ− < ρ+, thus ρx > 0.
Set

W̄ = (ηNW1, η
NW2, · · · , ηNWp−1,Wp, η

−NWp+1, · · · , η−NWn)t,

where N = max{2, 1√
δ
}. If δ is small enough, we have

1 − C1

√
δ ≤ ηN ≤ 1 ≤ η−N ≤ 1 + C1

√
δ. (2.11)
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Multiplying the system (2.7) by W̄ t, we have

(
1

2
W̄ tW + W̄ tWt)t − (ηN

p−1
∑

i=1

W 2
it +W 2

pt + η−N

n
∑

i=p+1

W 2
it)

+a2(ηN

p−1
∑

i=1

W 2
ix +W 2

px + η−N

n
∑

i=p+1

W 2
ix)

−
p−1
∑

i=1

[(ηN)xλi(Ū) + ηNλi(Ū)x]
W 2

i

2

−
n

∑

i=p+1

[(η−N)xλi(Ū) + η−Nλi(Ū)x]
W 2

i

2

+a2(ηN)x

p−1
∑

i=1

WiWix + a2(η−N)x

n
∑

i=p+1

WiWix

−(ηN)t

p−1
∑

i=1

(
W 2

i

2
+WiWit) − (η−N)t

n
∑

i=p+1

(
W 2

i

2
+WiWit)

= −W̄ tΛ(Ū)L(Ū)R(Ū)xW + W̄ tL(Ū)R2 + (· · · )x,

(2.12)

which is equivalent to

(
1

2
W̄ tW + W̄ tWt)t − (ηN

p−1
∑

i=1

W 2
it +W 2

pt + η−N

n
∑

i=p+1

W 2
it)

+a2(ηN

p−1
∑

i=1

W 2
ix +W 2

px + η−N

n
∑

i=p+1

W 2
ix) +Q1

= R3 + (· · · )x,

(2.13)

where

Q1 = −
p−1
∑

i=1

[(ηN)xλi(Ū) + ηNλi(Ū)x]
W 2

i

2

−
n

∑

i=p+1

[(η−N)xλi(Ū) + η−Nλi(Ū)x]
W 2

i

2

+W̄ tΛ(Ū)L(Ū)R(Ū)xW,

R3 = O(1)N
∑

i6=p

[ρxWiWix + ρt(W
2
i +WiWit)] + W̄ tL(Ū)R2.

(2.14)
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We now claim that if δ is small enough, it holds that

Q1 ≥ C2Nρx

∑

i6=p

W 2
i . (2.15)

To prove this claim, we note that |λi(Ū)x| ≤ C3ρx, and

|W̄ tΛ(Ū)L(Ū)R(Ū)xW |

= |ηN

p−1
∑

i=1

λi(Ū)Wi

n
∑

j=1

lti(Ū)rj(Ū)xWj + η−N

n
∑

i=p+1

λi(Ū)Wi

n
∑

j=1

lti(Ū)rj(Ū)xWj|

= |ηN

p−1
∑

i=1

λi(Ū)Wi

∑

j 6=p

lti(Ū)rj(Ū)xWj + η−N

n
∑

i=p+1

λi(Ū)Wi

∑

j 6=p

lti(Ū)rj(Ū)xWj|

≤ C4ρx

∑

i6=p

W 2
i .

Here we have used the structure condition (1.17), which implies

rp(Ū)x = ∇rp(Ū) · rp(Ū)ρx = 0.

Therefore, noting that N = 1√
δ
,

Q1 ≥ −ηN−1

p−1
∑

i=1

(Nηxλi(Ū) + ηλi(Ū)x)
W 2

i

2

+η−N−1
n

∑

i=p+1

(Nηxλi(Ū) − ηλi(Ū)x)
W 2

i

2
− C2ρx

∑

i6=p

W 2
i

≥ (C5N − C4)ρx

∑

i6=p

W 2
i

≥ 1

2
C5Nρx

∑

i6=p

W 2
i ,

if we choose δ small enough. This proves (2.15).
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Integrating (2.13) over (−∞,∞), we have

[

∫

(
1

2
W̄ tW + W̄ tWt) dx]t

−
∫

(ηN

p−1
∑

i=1

W 2
it +W 2

pt + η−N

n
∑

i=p+1

W 2
it) dx

+a2

∫

(ηN

p−1
∑

i=1

W 2
ix +W 2

px + η−N

n
∑

i=p+1

W 2
ix +Q1) dx

≤
∫

R3 dx.

(2.16)

Multiplying the system (2.7) by 2(Wt)
t, then integrating over (−∞,∞), we

obtain

[

∫

(W 2
t + a2W 2

x ) dx]t +

∫

(2W 2
t + 2

n
∑

i=1

λi(Ū)WixWit) dx

≤ −2

∫

(Wt)
tΛ(Ū)L(Ū)R(Ū)xW dx + 2

∫

(Wt)
tL(Ū)R2 dx.

(2.17)

Adding (2.16) to (2.17), one has

[

∫

(
1

2
W̄ tW + W̄ tWt +W 2

t ) + a2W 2
x dx]t

+

∫ p−1
∑

i=1

(a2ηNW 2
ix + 2λi(Ū)WixWit + (2 − ηN)W 2

it) dx

+

∫ n
∑

i=p+1

(a2η−NW 2
ix + 2λi(Ū)WixWit + (2 − η−N)W 2

it) dx

+

∫

(a2W 2
px +W 2

pt) dx+

∫

Q1 dx

≤
∫

[−2(Wt)
tΛ(Ū)L(Ū)R(Ū)xW + 2(Wt)

tL(Ū)R2 +R3] dx.

(2.18)

Using the sub-characteristic condition (1.5), the estimate (2.11) and the
smallness of δ, it is clear that there is C6 such that

min{a2, 1} > C6 > 0

15



and the following hold

(
1

2
W̄ tW + W̄ tWt +W 2

t ) ≥ C6(W
2 +W 2

t ),
p−1
∑

i=1

(a2ηNW 2
ix + 2λi(Ū)WixWit + (2 − ηN)W 2

it) ≥ C6

p−1
∑

i=1

(W 2
ix +W 2

it),

n
∑

i=p+1

(a2ηNW 2
ix + 2λi(Ū)WixWit + (2 − ηN)W 2

it) ≥ C6

n
∑

i=p+1

(W 2
ix +W 2

it).

Define

E1(t) =

∫

(
1

2
W̄ tW + W̄ tWt +W 2

t ) + a2W 2
x dx,

K1(t) = C6

∫

(W 2
x +W 2

t ) dx.
(2.19)

(2.18) reduces to

E1t +K1 +

∫

Q1 dx

≤
∫

[−2(Wt)
tΛ(Ū)L(Ū)R(Ū)xW + 2(Wt)

tL(Ū)R2 +R3] dx.
(2.20)

We now work on the right hand side of (2.20). First, we observe that

∫

[−2(Wt)
tΛ(Ū)L(Ū)R(Ū)xW ] dx

≤ C7

∫

|ρx(Wt)
tW | dx

≤ C7δ

∫

W 2
t dx+ C7(1 + t)−1δ

∫

W 2 dx,

(2.21)

and
∫

2(Wt)
tL(Ū)R2 dx

≤ 1

8
C6

∫

W 2
t dx + C8

∫

(L(Ū)R2)
2 dx

≤ C9(1 + t)−
3
2 +

1

4
C6

∫

(W 2
t +W 2

x ) dx

+C8(1 + t)−1δ2

∫

W 2 dx,

(2.22)

where we have used the a priori assumption (H1) and Cauchy-Shwartz in-
equality. We now work on R3. In view of (2.14) and (2.15), we have
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O(1)N

∫

∑

i6=p

[ρxWiWix + ρt(W
2
i +WiWit)] dx

≤ 1

2

∫

Q1 dx + C10

√
δ

∫

(W 2
x +W 2

t ) dx

+C10

√
δ(1 + t)−1

∫

W 2 dx,

(2.23)

and
∫

W̄ tL(Ū)R2 dx

≤ C11δ(1 + t)−1

∫

(W 2 +W 2
t ) dx+ C11δ

∫

W 2
x + C11

∫

|W̄ tR1| dx.
(2.24)

However, using (2.3), (H1) and (1.26), we have

∫

|W̄ tR1| dx

≤ C

∫

(|W t|(Φ2
x + θ2 + |R|) dx

≤ C12

∫

|W t|(ρ2
xW

2 +W 2
x ) dx+ C12

∫

|W t|(θ2 + |R|) dx

≤ C12δ̄(1 + t)−1

∫

W 2 dx+ C12ε0

∫

W 2
x dx + C12δ̄(1 + t)−

1
2 .

(2.25)

Choosing δ̄ and ε0 small, we conclude from (2.20)–(2.25) the following
lower order estimate:

Lemma 2.1. Let E1 and K1 be defined in (2.19). Assume (H1) holds. There
exits a small positive constant δ1 such that if δ̄ < δ1 and ε0 ≤ δ1 then

E1t +
1

2
K1 ≤ C13

√

δ̄(1 + t)−1E1 + C13δ̄(1 + t)−
1
2 , (2.26)

holds for any t ∈ [0, T ].

Now we estimate Φx = φ. Let

Z(x, t) = L(Ū)φ(x, t),

then
φ(x, t) = R(Ū)Z(x, t).

17



Applying ∂x to the system (2.2), we have the system for φ(x, t)

φt + φtt + (Df(Ū)φ)x − a2φxx = R1x. (2.27)

Substituting φ(x, t) = R(Ū)Z(x, t) into (2.27), then multiplying by L(Ū) to
the left, we get the following system for Z(x, t),

Zt + Ztt + (Λ(Ū)Z)x − a2Zxx − L(Ū)xR(Ū)Λ(Ū)Z
= [−L(Ū )R(Ū)t + L(Ū)R(Ū)tt + a2L(Ū)R(Ū)xx]Z
−2L(Ū )R(Ū)tZt + 2a2L(Ū)R(Ū)xZx + L(Ū)R1x.

(2.28)

Let
Z̄ = (ηNZ1, · · · , ηNZp−1, Zp, η

−NZp+1, · · · , η−NZn)t,

with η(x, t) defined in (2.10) and N = max{2, 1√
δ
}. Multiplying (Z̄)t to

(2.28), similar to (2.13), one has

(
1

2
Z̄tZ + Z̄tZt)t − (ηN

p−1
∑

i=1

Z2
it + Z2

pt + η−N

n
∑

i=p+1

Z2
it)

+a2(ηN

p−1
∑

i=1

Z2
ix + Z2

px + η−N

n
∑

i=p+1

Z2
ix) +Q2

= R4 + (· · · )x,

(2.29)

where

Q2 = −
p−1
∑

i=1

[(ηN)xλi(Ū) − ηNλi(Ū)x]
Z2

i

2

−
n

∑

i=p+1

[(η−N)xλi(Ū) − η−Nλi(Ū)x]
Z2

i

2

+Z̄tL(Ū)xR(Ū)Λ(Ū)Z,

R4 = O(1)N
∑

i6=p

[ρxZiZix + ρt(Z
2
i + ZiZit)] + Z̄tL(Ū)R1x

+O(1)δ(1 + t)−1(Z2 + ZtZt + Z2
t ).

(2.30)

Here, we have used the following fact

2a2Z̄tL(Ū)R(Ū)xZx = (· · · )x + O(1)(Nρ2
x + |ρxx|)Z2.
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Due to the structure condition (1.17), we know

lp(Ū)x = ∇lp(Ū) · rp(Ū)ρx = 0.

Therefore,

|Z̄tL(Ū)xR(Ū)Λ(Ū)Z|

= |ηN

p−1
∑

i=1

λi(Ū)Zi

n
∑

j 6=p

lti(Ū)xrj(Ū)Zj + η−N

n
∑

i=p+1

λi(Ū)Zi

n
∑

j 6=p

lti(Ū)xrj(Ū)Zj|

≤ O(1)ρx

∑

i6=p

Z2
i .

Similar to (2.15), if δ is small, there is a positive constant C14 such that

Q2 ≥ C14Nρx

∑

i6=p

Z2
i . (2.31)

We now integrate (2.29) over (−∞,+∞) to obtain

[

∫

(
1

2
Z̄tZ + Z̄tZt) dx]t −

∫

(ηN

p−1
∑

i=1

Z2
it + Z2

pt + η−N

n
∑

i=p+1

Z2
it) dx

+

∫

a2(ηN

p−1
∑

i=1

Z2
ix + Z2

px + η−N

n
∑

i=p+1

Z2
ix) dx+

∫

Q2 dx

≤
∫

R4 dx.

(2.32)

Multiplying (2.28) by 2(Zt)
t, it gives

(Z2
t + a2Z2

x)t + 2Z2
t +

n
∑

i=1

λi(Ū)ZixZit = R5 + (· · · )x, (2.33)

where

R5 = O(1)(ρx + ρt + ρtt + ρxx)(Z
t
tZ + Z2

t + Zt
tZx) + Zt

tL(Ū)R1x. (2.34)

Integrating (2.33) over (−∞,+∞) yields

[

∫

(Z2
t + a2Z2

x) dx]t +

∫

(2Z2
t +

n
∑

i=1

λi(Ū)ZixZit) dx

≤
∫

R5 dx,

(2.35)
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Add (2.35) to (2.32), we have

[

∫

(
1

2
Z̄tZ + Z̄tZt + Z2

t ) + a2Z2
x dx]t

+

∫ p−1
∑

i=1

(a2ηNZ2
ix + 2λi(Ū)ZixZit + (2 − ηN)Z2

it) dx

+

∫ n
∑

i=p+1

(a2η−NZ2
ix + 2λi(Ū)ZixZit + (2 − η−N)Z2

it) dx

+

∫

(a2Z2
px + Z2

pt) dx+

∫

Q2 dx

≤
∫

[R4 +R5] dx.

(2.36)

Define

E2(t) =

∫

(
1

2
Z̄tZ + Z̄tZt + Z2

t ) + a2Z2
x dx,

K2(t) = C6

∫

(Z2
x + Z2

t ) dx.
(2.37)

(2.36) reduces to

E2t +K2 +

∫

Q2 dx ≤
∫

[R4 +R5] dx, (2.38)

where we have used the following fact

(
1

2
Z̄tZ + Z̄tZt + Z2

t ) ≥ C6(Z
2 + Z2

t ),
p−1
∑

i=1

(a2ηNZ2
ix + 2λi(Ū)ZixZit + (2 − ηN)Z2

it) ≥ C6

p−1
∑

i=1

(Z2
ix + Z2

it),

n
∑

i=p+1

(a2ηNZ2
ix + 2λi(Ū)ZixZit + (2 − ηN)Z2

it) ≥ C6

n
∑

i=p+1

(Z2
ix + Z2

it).

We now estimate the right hand side of (2.38). By (2.30) and (2.34), it
is clear that

R4 +R5 ≤ C15

√
δ(1 + t)−1Z2 +

√
δ(Z2

x + Z2
t ) + (Z̄t + Zt

t )L(Ū)R1x. (2.39)
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On the other hand, we have
∫

Z̄tL(Ū)R1x dx = −
∫

(Z̄t
xR1 + Z̄tL(Ū)xR1) dx

≤ C

∫

R2
1 dx + Cδ(1 + t)−1

∫

Z2 dx+
1

4
C6

∫

Z2
x dx.

(2.40)

and
∫

Zt
tL(Ū)R1x dx ≤ 1

4
C6

∫

Z2
t dx+ C

∫

R2
1x dx (2.41)

It remains to estimate the terms with R1. From (2.3) we know that
∫

R2
1 dx ≤ C

∫

(Z4 + θ4 +R2) dx

≤ Cδ̄2(1 + t)−
3
2 + C‖Z‖2

L∞‖Z‖2
L2

≤ Cδ̄2(1 + t)−
3
2 + C‖Z‖L2‖Zx‖L2‖Z‖2

L2

≤ Cδ̄2(1 + t)−
3
2 + C16‖Z‖6

L2 +
1

8
C6‖Zx‖2

L2.

(2.42)

Recall

R1 = −[f(u) − f(Ũ) −Df(Ũ)(u− Ũ)] + [Df(Ũ) −Df(Ū)]Φx +R.

We have
∫

R2
x dx ≤ Cδ̄(1 + t)−

3
2 , (2.43)

and

|[f(u) − f(Ū) −Df(Ū)(u− Ũ)]x|
= |[1

2
φt∇2f(Ũ , φ)φ]x|

= O(1)(|φx| + ρx + |θx|)φ2 +O(1)|φ||φx|,
|[Df(Ũ) −Df(Ū)]Φx]x| = |[θt∇2f(Ū , θ)φ]x|

= O(1)(ρx + |θx|)|θ||φ| +O(1)(|θx||φ| + |θ||φx|).

(2.44)

Hence,
∫

R2
1x dx

≤ Cδ̄(1 + t)−
3
2 + C

∫

(ρ2
x + θ2

x)φ
2 + (φ2 + θ2

x)φ
2
x) dx

≤ Cδ̄(1 + t)−
3
2 + Cδ̄(1 + t)−1

∫

Z2 dx + C(δ̄ + ε0)

∫

Z2
x dx.

(2.45)
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Due to a priori assumption (H1), one has

‖Z‖6
L2 ≤ ε4

0

∫

Z2 dx.

We thus conclude from (2.38)—(2.45) the following estimates

Lemma 2.2. Let E2 and K2 be defined in (2.37). Assume (H1) holds. There
is small positive constant δ1 such that if δ̄ < δ1 and ε0 < δ1 then

E2t +
1

2
K2 ≤ C17(

√

δ̄ + ε4
0)(1 + t)−1‖Z‖2 + C17δ̄(1 + t)−

3
2 , (2.46)

holds for any t ∈ [0, T ].

In order to obtain the uniform estimates and close the argument with the
a priori assumption (H1), we need to work on higher order derivatives. For
this purpose, we apply ∂x to the system (2.28) to obtain

Zxt + Zxtt + (Λ(Ū)Z)xx − a2Zxxx = R6x (2.47)

where

R6 = L(Ū)R1x + [L(Ū)xR(Ū)Λ(Ū) − L(Ū)R(Ū)t + L(Ū)R(Ū)tt

+a2L(Ū)R(Ū)xx]Z − 2L(Ū)R(Ū)tZt + 2a2L(Ū)R(Ū)xZx.
(2.48)

Multiplying (2.47) with (Z t
x + 2Zt

xt) and integrating over (−∞,+∞), in-
tegrating by parts, we arrive at

E3t +K3 ≤
∫

R7 dx, (2.49)

where

E3(t) =

∫

(
1

2
Z2

x + ZxZxt + Z2
xt) + a2Z2

xx dx,

K3(t) = C6

∫

(Z2
xx + Z2

xt) dx,
(2.50)

R7 = (Zt
x + 2Zt

xt)R6x −Zt
x(Λ(Ū)Z)xx − 2Zt

xt(Λ(Ū)xxZ + 2Λ(Ū)xZx), (2.51)

and we have used the following fact

(
1

2
Z2

x + ZxZxt + Z2
xt) ≥ C6(Z

2
x + Z2

xt),

(a2Z2
xx + 2Zt

xtΛ(Ū)Zxx + Z2
xt) ≥ C6(Z

2
xx + Z2

xt).
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We now estimate

∫

R7 dx term by term. First of all, one has

|
∫

−2Zt
xt(Λ(Ū)xxZ + 2Λ(Ū)xZx) dx|

≤ Cδ(1 + t)−1

∫

(Z2 + Z2
x) dx+ Cδ

∫

Z2
xt dx,

(2.52)

and

|
∫

Zt
x(Λ(Ū)Z)xx dx| = |

∫

Zt
xx(Λ(Ū)Z)x dx|

= |
∫

Zt
xx(Λ(Ū)xZ + Λ(Ū)Zx) dx|

≤ Cδ(1 + t)−1

∫

Z2 dx+ Cδ

∫

Z2
xx dx + |

∫

1

2
Zt

xΛ(Ū)xZx dx|

≤ Cδ(1 + t)−1

∫

Z2 dx+ Cδ

∫

(Z2
xx + Z2

x) dx.

(2.53)

Then, we note that

|
∫

Zt
xR6x dx| = |

∫

Zt
xxR6 dx|

≤ 1

4
C6

∫

Z2
xx dx+ C

∫

R2
6 dx

≤ Cδ̄(1 + t)−1

∫

(Z2 + Z2
x + Z2

t ) dx

+Cδ̄(1 + t)−
3
2 +

1

4
C6

∫

Z2
xx dx.

(2.54)

Finally, we have

|
∫

Zt
xtR6x dx| ≤ C|

∫

Zt
xtR1xx dx|

+Cδ̄(1 + t)−
1
2

∫

(|Z| + |Zx| + |Zt| + |Zxt| + |Zxx| + |R1x|)|Zxt| dx,
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which implies that

|
∫

Zt
xtR6x dx|

≤ C|
∫

Zt
xtR1xx dx| + Cδ̄(1 + t)−1

∫

(Z2 + Z2
x + Z2

t ) dx

+Cδ̄

∫

(Z2
xt + Z2

xx) +R2
1x dx

≤ Cδ̄(1 + t)−1

∫

Z2 dx + Cδ̄(1 + t)−
3
2

+C(δ̄ + ε0)

∫

(Z2
x + Z2

t + Z2
xt + Z2

xx) dx + C|
∫

Zt
xtR1xx dx|.

(2.55)

Furthermore, from the expression of R1, a standard calculation gives

|
∫

Zt
xtR1xx dx| ≤ Cδ̄(1 + t)−

3
2

+C(δ̄ + ε0)

∫

(Z2
x + Z2

xx + Z2
xt) dx+ Cδ̄(1 + t)−1

∫

Z2 dx.
(2.56)

With the help of Lemma 2, we collect the estimates in (2.49)–(2.56) and
conclude the following lemma.

Lemma 2.3. Let E3 and K3 be defined in (2.50). Assume (H1) holds. There
is a small positive constant δ1 such that if δ̄ < δ1 and ε0 < δ1 then

E3t +
1

4
K3 ≤ C18(

√

δ̄ + ε4
0)(1 + t)−1‖Z‖2 + C18δ̄(1 + t)−

3
2 , (2.57)

holds for any t ∈ [0, T ].

In order to get the decay rate of ψ = −Φt, we need the estimate on Φtt.
To this end, we apply ∂t to the system (2.2),

Φtt + Φttt + (f(Ū))tΦx +Df(Ū)Φxt − a2Φxxt = R1t. (2.58)

Multiplying (2.58) by 2Φt
tt, integrating it over (−∞,+∞) and integrating by

parts, we have

(

∫

(Φ2
tt + a2Φ2

xt) dx)t + 2

∫

Φ2
tt dx

≤ 2

∫

(|Φt
tt(Df(Ū))tΦx| + |Φt

ttDf(Ū)Φxt| + 2|Φt
ttR1t|) dx

≤ Cδ̄(1 + t)−1‖Φx‖2 +

∫

Φ2
tt dx + C̄

∫

Φ2
xt dx+

∫

|R1t|2 dx.

(2.59)
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Recall Φx = φ. With the help of the expression of R1 and a straightforward
computation, (2.59) and Lemma 2.2, lead to

(

∫

(Φ2
tt + a2Φ2

xt) dx)t +

∫

Φ2
tt dx

≤ C(
√

δ̄ + ε4
0)(1 + t)−1‖Z‖2 + Cδ̄(1 + t)−

3
2 ,

(2.60)

We now set

E4 = E3 +

∫

(Φ2
tt + a2Φ2

xt) dx, K4 =
1

4
K3 +

∫

Φ2
tt dx. (2.61)

Note that
∫

|Z|2dx =

∫

|L(Ū)Φx|2dx =

∫

|L(Ū)(R(Ū)W )x|2dx

≤ Cδ̄(1 + t)−1

∫

|W |2dx + C

∫

|Wx|2dx
≤ Cδ̄(1 + t)−1E1 + CK1.

(2.62)

We conclude from Lemma 2.3, and (2.60)–(2.62) our desired estimate

Lemma 2.4. Let E4 and K4 be defined in (2.61). Assume (H1) holds. There
is a small positive constant δ1 such that if δ̄ < δ1 and ε0 < δ1 then

E4t+K4 ≤ C19δ̄(1+t)−2E1+C19(
√

δ̄+ε4
0)(1+t)−1K1+C19δ̄(1+t)−

3
2 , (2.63)

holds for any t ∈ [0, T ].

3 Time decay rate

In this section, we are going to complete the proof of Theorem 1 based on
estimates stated in Lemma 2.1–2.4. Lemma 2.1 implies that

E1 ≤ C(E1(0) + δ̄)(1 + t)
1
2 . (3.1)

Set

E5 = E1 + E2 + E4, K5 = K1 +
1

2
K2 +K4. (3.2)

For δ̄ and ε0 small, we conclude from Lemmas 2.1–2.4 and (2.62) that

E5t +K5 ≤ Cδ̄(1 + t)−1E5 + Cδ̄(1 + t)−
1
2 . (3.3)
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Since K5 ≥ 0, we thus have

d

dt
[(1 + t)−Cδ̄E5] + (1 + t)−Cδ̄K5 ≤ Cδ̄(1 + t)−

1
2
−Cδ̄, (3.4)

which gives
E5 ≤ C(E5(0) + δ̄)(1 + t)

1
2 , (3.5)

and

∫ t

0

K5dτ ≤ C(E5(0) + δ̄)(1 + t)
1
2 . (3.6)

Now set

E6 = E2 + E4, K6 =
1

2
K2 +K4. (3.7)

By Lemma 2.2, Lemma 2.4 and (2.62), we have

E6t +K6 ≤ C20δ̄(1+t)−2E1 +C20(
√

δ̄+ε4
0)(1+t)−1K1 +C20δ̄(1+t)−

3
2 . (3.8)

Then we compute

[(1 + t)E6]t = E6 + (1 + t)E6t

≤ E6 + Cδ̄(1 + t)−1E1 + C(δ̄ + ε4
0)K1 + Cδ̄(1 + t)−

1
2

≤ CK5 + Cδ̄(1 + t)−
1
2 .

(3.9)

Integrating the above inequality in t yields

E6 ≤ C(E5(0) + δ̄)(1 + t)−
1
2 . (3.10)

We collect all estimates we obtained in (3.1)–(3.10) in the following Lemma.

Lemma 3.1. Let E5 be defined in (3.2) and E6 in (3.7). Assume (H1) holds.
There is a small positive constant δ1 such that if δ̄ < δ1 and ε0 < δ1 then

E5 ≤ C(E5(0) + δ̄)(1 + t)
1
2 , E6 ≤ C(E5(0) + δ̄)(1 + t)−

1
2 , (3.11)

hold for any t ∈ [0, T ].

We remark that all estimates we obtained up to now are based on the
a priori assumption (H1). Now, we are able to show that if we choose δ0
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(in Theorem 1) small, (H1) is true in the time range where smooth solution
exists.

First of all, since φ = R(Ū)Z, we have

‖φ‖2
H2 ≤ CE6 ≤ C(E5(0) + δ̄)(1 + t)−

1
2 , (3.12)

which also implies

(1 + t)
1
4‖φ‖L2 ≤ C

√

(E5(0) + δ̄). (3.13)

Furthermore,

‖Φ‖2
L∞

≤ C‖Φ‖L2‖φ‖L2 ≤ C‖W‖L2‖Z‖L2

≤ CE
1
2
1 E

1
2
6 ≤ C(E5(0) + δ̄),

(3.14)

For ψ = −Φt, we know from the system (2.2) that

Φt = −Φtt −Df(Ū)Φx + a2Φxx +R. (3.15)

Thus

‖Φt‖L2 ≤ C(‖Φtt‖L2 + ‖Φx‖L2 + ‖Φxx‖L2 + ‖R‖L2)

≤ CE
1
2
4 + Cδ̄(1 + t)−

1
4

≤ C(E5(0) + δ̄)
1
2 (1 + t)−

1
4 .

(3.16)

We conclude from (3.10)–(3.16) that, there is a positive constants C21,
and C22 such that

N(T ) ≤ C21(E5(0) + δ̄)
1
2 ≤ C22δ0. (3.17)

Therefore, if we choose δ0 small enough such that

C22δ0 ≤
1

2
ε0, (3.18)

the a priori assumption (H1) is true as long as the smooth solution exists.
On the other hand, the uniform estimate (3.17), together with the local well-
posedness theory, gives the global existence of unique smooth solution. We
thus proved the first part of Theorem 1.

We now show that (3.11)–(3.16) also give the decay estimate (1.32). In
fact, we have
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‖(φ, φx)‖L∞ ≤ C‖φ‖H2 ≤ C(E5(0) + δ̄)
1
2 (1 + t)−

1
4 . (3.19)

and

‖ψ‖L∞ = ‖Φt‖L∞ ≤ C‖Φt‖
1
2
L2
‖Φxt‖

1
2
L2

≤ C(E5(0) + δ̄)
1
2 (1 + t)−

1
4 . (3.20)

Therefore, the proof of Theorem 1 is complete.
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