CS 3510 - Honors Algorithms Homework 1 Assigned January 18 Due <u>Thursday</u>, January 25

1. a) Give two functions f_1 and f_2 so that the following equation is true for f_1 and false for f_2 :

$$\sum_{i=1}^{n} f(i) = \Theta(f(n)).$$

Prove your answers.

b) Prove that

$$\log(n!) = \Theta(n \log n)$$

from the basics (i.e., no not use Stirling's approximation of the factorial function, if you know this).

2. Solve the following recurrence relations. Give a Θ bound for each problem. Justify your answers (a few lines should suffice). You may assume in each case that T(1) = O(1). Consider a change of variables if this helps.

a)
$$T(n) = T(\sqrt{n}) + 1$$

b)
$$T(n) = 2T(n-1) + 1$$

c)
$$T(n) = 2T(n/3) + 1$$

d)
$$T(n) = 49T(n/25) + (\sqrt{n})^3 \log n$$

e)
$$T(n) = 9T(n/3) + n^2 \log n$$

f)
$$T(n) = 8T(n/2) + n^3$$

3. a) Use a recursion tree (CLRS Exercise 4.2-4) to guess a solution and prove your answer by induction:

$$T(n) = T(n-d) + T(d) + cn$$

for constants $d \ge 1$ and c > 0. Assume that $T(n) = \Theta(1)$ for $n \le d$.

b) Use a recursion tree (CLRS Excercise 4.2-5) to guess a solution, and prove your guess by induction:

$$T(n) = T(\alpha n) + T(1 - \alpha)n) + cn$$

for constants $0 < \alpha < 1$ and c > 0.

- 4. a) You are given n > 1 coins. One of the coins is lighter than the others, but otherwise indistinguishable. You have a scale and can put, in a weighing, *one* coin on each side of the scale. How many weightings do you need to find the fake coin? Give an upper-bound and a lower-bound argument.
 - b) Same as part (a), only now you can but *any number* of coins on each side of the scale in a single weighing.
 - c) Same as part (a), only now you can put up to k coins on each side of the scale in one weighing, for some constant $k \geq 1$.
- 5. Extra credit: Optional! You are given an array A[1..n] of pairwise distinct integers.

The median of A is the n/2-th largest integer (define the rounding as you like) in the array.

A γ -approximate median for A is one of the integers that is at least as large as $\gamma n-1$ of the numbers and no larger than $\gamma n-1$ of the numbers in the array. (I.e., the true median is basically a 1/2-approximate median.) You may assume $0 < \gamma \le 1/2$.

- a) Given a linear time algorithms for finding a γ -approximate median, given a linear time algorithm for finding the median. (I.e., use the linear time algorithm for the γ -approximate median as a subroutine. Assume each call takes linear time in the size of the array when you analyze the overall time of your algorithm.)
- b) Give a linear time algorithm for finding the median. (Hint: what is the median of the medians of n/7 disjoint groups of 7 elements each? Is it a γ -approximate median for some γ ? If so, then you can use your solution to part (a) to solve part (b).)