CS 3510 - Honors Algorithms
 Homework 1
 Assigned January 18
 Due Thursday, January 25

1. a) Give two functions f_{1} and f_{2} so that the following equation is true for f_{1} and false for f_{2} :

$$
\sum_{i=1}^{n} f(i)=\Theta(f(n)) .
$$

Prove your answers.
b) Prove that

$$
\log (n!)=\Theta(n \log n)
$$

from the basics (i.e., no not use Stirling's approximation of the factorial function, if you know this).
2. Solve the following recurrence relations. Give a Θ bound for each problem. Justify your answers (a few lines should suffice). You may assume in each case that $T(1)=O(1)$. Consider a change of variables if this helps.
a) $T(n)=T(\sqrt{n})+1$
b) $T(n)=2 T(n-1)+1$
c) $T(n)=2 T(n / 3)+1$
d) $T(n)=49 T(n / 25)+(\sqrt{n})^{3} \log n$
e) $T(n)=9 T(n / 3)+n^{2} \log n$
f) $T(n)=8 T(n / 2)+n^{3}$
3. a) Use a recursion tree (CLRS Exercise 4.2-4) to guess a solution and prove your answer by induction:

$$
T(n)=T(n-d)+T(d)+c n
$$

for constants $d \geq 1$ and $c>0$. Assume that $T(n)=\Theta(1)$ for $n \leq d$.
b) Use a recursion tree (CLRS Excercise 4.2-5) to guess a solution, and prove your guess by induction:

$$
T(n)=T(\alpha n)+T(1-\alpha) n)+c n
$$

for constants $0<\alpha<1$ and $c>0$.
4. a) You are given $n>1$ coins. One of the coins is lighter than the others, but otherwise indistinguishable. You have a scale and can put, in a weighing, one coin on each side of the scale. How many weightings do you need to find the fake coin? Give an upper-bound and a lowerbound argument.
b) Same as part (a), only now you can but any number of coins on each side of the scale in a single weighing.
c) Same as part (a), only now you can put up to k coins on each side of the scale in one weighing, for some constant $k \geq 1$.
5. Extra credit: Optional! You are given an array $A[1 . . n]$ of pairwise distinct integers.
The median of A is the $n / 2$-th largest integer (define the rounding as you like) in the array.

A γ-approximate median for A is one of the integers that is at least as large as $\gamma n-1$ of the numbers and no larger than $\gamma n-1$ of the numbers in the array. (I.e., the true median is basically a $1 / 2$-approximate median.) You may assume $0<\gamma \leq 1 / 2$.
a) Given a linear time algorithms for finding a γ-approximate median, given a linear time algoirthm for finding the median. (I.e., use the linear time algorithm for the γ-approximate median as a subroutine. Assume each call takes linear time in the size of the array when you analyze the overall time of your algorithm.)
b) Give a linear time algorithm for finding the median. (Hint: what is the median of the medians of $n / 7$ disjoint groups of 7 elements each? Is it a γ-approximate median for some γ ? If so, then you can use your solution to part (a) to solve part (b).)

