
CS 3510 Honors Algorithms
Solutions : Homework I

1. (a) For a function f(n) which satisfies
∑n

i=1 f(i) = Θ(f(n)), consider
f(n) = 2n. Clearly,

∑n
i=1 f(i) =

∑n
i=1 2i = 2n+1 − 1. We can say

that

0 ≤ 1 · 2n ≤ 2n+1 − 1 ≤ 2 · 2n

Hence
∑n

i=1 2i = Θ(2n).

For a function which does not satisfy the above, consider f(n) = n.
We know that

∑n
i=1 f(i) = n(n + 1)/2 = Θ(n2) 6= Θ(n). Hence∑n

i=1 i 6= Θ(n)

(b) We know that log(n!) ≤ log(nn) = n log n. Also, log(n!) ≥ log(n ·
(n−1) ·(n−2) · · · (n

2
+1)) ≥ log(n

2

n
2) = n

2
log(n

2
) = n

2
log n− n

2
. By

picking for example c = 1/3, we can ensure that log(n!) ≥ cn log n,
for large enough n. Now that we have proved inequalities for both
sides, we can say that log(n!) = Θ(n log n).

2. (a) T (n) = T (
√

n)+1. Substitute n = 2m. We get T (2m) = T (2
m
2)+1.

Writing T (2m) = S(m), we get S(m) = S(m
2
)+1. It is easy to see

that S(m) = Θ(log m) works. That is, T (n) = Θ(log log n).

On substitution, one can verify that

Θ(log log
√

n) + 1 = Θ(log(1/2 log n)) + 1

= Θ(log log n) − log 2 + 1

= Θ(log log n)

(b)

T (n) = 1 + 2T (n − 1)

= 1 + 2(1 + 2T (n − 2))

= 1 + 2 + 4 + 8T (n − 3)
...

= 1 + 2 + 4 + · · · + 2n−1T (1)

= 2n − 1 = Θ(2n)

1

(c) T (n) = 2T (n/3) + 1. Substitute n = 3m. We get T (3m) =
2T (3m−1)+1. Using S(m) = T (3m), we get S(m) = 2S(m−1)+1,
which is same as the part (b) of this question. The solution is
T (n) = Θ(2m) = Θ(2log3 n = Θ(n1/ log 3).

(d)

T (n) = 49T (n/25) + (
√

n)3 log n

= (
√

n)3 log n + 49(

√
n

25

3

log
n

25
+ 49T (

n

252
))

= (
√

n)3 log n +
49

125

√
n

3
log n − 49

125

√
n

3
log 25 + 492T (

n

252
)

Ignoring constants, we get T (n) = Θ((
√

n)3 log n).

(e) T (n) = 9T (n/3) + n2 log n. Substitute n = 3m. We get T (3m) =
9T (3m−1) + 32mm log 3. Using S(m) = T (3m), we get

S(m) = 9S(m − 1) + m9m log 3

= m9m log 3 + 9((m − 1)9m−1 log 3 + 9S(m − 2))

= 9m log 3(m + (m − 1) + (m − 2) + · · · + 1)

= Θ(9mm2)

T (n) = Θ(n2 log2
3 n)

= Θ(n2 log2 n)

(f)

T (n) = 8T (n/2) + n3

= n3 + 8((
n

2
)3 + 8T (n/4))

= n3 + n3 + 82T (n/4)

= Θ(n3 log n)

3. (a) The recursion tree is as given below.

2

cn

/ |

/ |

1 c(n-d)

/ | depth = (n/d)

/ |

1 c(n-2d)

/ |

/ |

1 c(n-3d)

So the T (n) is given by,

T (n) = 1 · dn/de+ (cn + c(n− d) + c(n− 2d) + · · · c(n− bn/dcd))

This can be written as T (n) = O(n2). Now let us prove this using
induction. Say T (n) ≤ kn2, for a constant k > 0.

T (n) ≤ T (n − d) + T (d) + cn

≤ k(n − d)2 + cn + 1

≤ k(n2 − 2dn + d2) + cn + 1

≤ kn2 + n(c − 2kd) + (kd2 + 1)

≤ kn2

when k is chosen such that k < c/2d. Thus we have proved by
induction that T (n) = O(n2).

(b) We can draw the recursion tree as follows. Note that a denotes
α, and the depth of the tree is logα n where without any loss of
generality, we can assume that α ≥ 1/2. Note that the depth is the
longest path from the root to any leaf, which will be determined
by α.

cn

/ |

/ |

/ |

can c(1-a)n

3

/ | / |

/ | / |

/ | / |

c(a.a)n c(1-a)(1-a)n

Summing all levels up, we get the sum as T (n) = cn · logα n. This
is of the form T (n) = O(n log n). Now let us try to prove the same
by induction. Let T (n) = kn log n.

T (n) ≤ T (αn) + T ((1 − α)n) + cn

≤ kαn log(αn) + k(1 − α)n log((1 − α)n) + cn

= kαn log n + kαn log α + k(1 − α)n log n + k(1 − α)n log(1 − α) + cn

= kn log n + k(α log α + (1 − α)log(1 − α))n + cn

≤ kn log n

This inequality holds provided we choose a k such that k(α log α+
(1 − α)log(1 − α)) + c ≥ 0 which we can choose.

4. (a) We can start off weighing two coins against each other. If they bal-
ance, then none of them are the fake coin. Else, we know for sure
that the lighter one is the fake one. After we weigh two coins and
found that they balance, then we need to check only the remain-
ing coins. So in the best case (lower bound), we might find the
fake coin in the first weighing. In the worst case (upper bound),
the fake coin might elude us till the last weighing, which will be
bn/2cth weighing. In the worst case we make O(n) weighings.

(b) Here we can reduce the number of weighings by a great deal be-
cause we can weigh any number of coins. First we shall divide the
coins into three equal heaps (if we have any leftover, leave one or
coins more in the third heap) and balance heap one against heap
two. If the two heaps balance, the third heap has the fake coin.
Else the lighter set contains the lighter fake coin. Now on, we can
take the lighter set and recursively do the same operation. It is
easy to see that (if we have n is power of 3 to start with) we will
find the fake coin at the last weighing which is log3 nth weighing.

4

This is the upper bound. The lower bound is also same if n is a
power of 3.

(c) Here we can first divide the whole set of coins into heaps of k coins
each. Take one such heap on each side to start, and then weigh
them against each other. First we will find out which of the k
piles contain the fake coin. This requires (by an argument similar
to part (a)) a maximum of bn/2kc weighings. If we are lucky,
we might find the fake heap in the first weighing itself. After we
have isolated the heap containing the fake coin, we can go on and
split it into halves as in part (b). Here we would require log3 k
weighings. Here the upper bound is bn/2kc+log3 k weighings and
lower bound is 1 + log3 k weighings.

5. (a) We could try the following strategy. Assume that we run the algo-
rithm for finding the γ approximate median. We can go through
the set and divide the remaining set into numbers less than the
returned approximate median, say S1, and the numbers greater
than the returned median S2 (Think and convince yourself that
this division can be done in linear time). Because of the γ approx-
imation guarantee, we are sure that |S1|, |S2| > γn−1. Depending
on which of |S1| and |S2| is bigger, we can discard the other set,
since we know for sure that the exact median would be in the
bigger set. The remaining set would have size atmost (1 − γ) of
the original set. We can recursively do the same procedure for a
linear time algorithm.

For the running time analysis, assume the approximate median
algorithm, and the splitting of the sets take cn time. Now we
have T (n) ≤ T ((1 − γ)n) + cn

T (n) ≤ T ((1 − γ)n) + cn

≤ cn + c(1 − γ)n + T ((1 − γ)2n)

≤ cn + c(1 − γ)n + c(1 − γ)2n + · · ·

= cn
1

γ

= O(n)

5

Hence this algorithm has linear running time on the size of the
input.

(b) We could complete the algorithm in part (a) if we can construct
the algorithm which can find the γ approximate median in linear
time. We can divide the input into sets of 7 elements each, there
would be n/7 such sets. If we take the median of each of these sets,
and then the median of these medians, then we know for certain
that this median is greater than half (n/14) of the other medians.
Since all these are respective medians, they must be in turn greater
than 3 other elements in their set. Thus, the median of medians
is greater than at least n

14
· 4 (n/14 medians and the other three

elements of those sets) elements of the original set. Similarly it is
smaller than n

14
· 4 elements of the original set. Hence this would

be a γ approximate median, where γ = 4/14 = 2/7.

Now we have to argue that this can be done in linear time. For a 7
element set, we can do the sorting in constant time and thus find
the median. So we need O(n) time to find out all the medians.
To find out the median of this group, we know that the set is 1/7
the size of the original set and we can recursively do the same
procedure. By an analysis similar to that in part (a), we can
see that this will be a geometric series summation with ratio 1/7
and thus we get linear time algorithm for finding a γ approximate
median.

6

