
CS 3510 Honors Algorithms
Solutions : Homework 5

Problem 1. [2-Universal Hash Functions]
We can manually inspect the sets and find out the probabilities of collision.
For every pair of inputs x 6= y, we can check when they get mapped to the
same hash value.

x y Colliding functions

1 2 h3

1 3 h2

1 4 h1

2 3 h1

2 4 h2

3 4 h3

For every pair of inputs x 6= y there is only one hashing function from
the family H which results in collision. Assuming each hi ∈ H is chosen
uniformly, the probability of collision is 1/3, which is less than 1/2. Hence
this is family is 2-Universal.

Problem 2. [More 2-Universal Hash Functions]

(a) Yes, this is a 2-Universal set of hash functions. Every h ∈ Ha is de-
termined by the choice of (a1, a2) ∈ [m]2. So we need 2 log m random
bits to sample from the family. Let (x1, x2), (y1, y2) ∈ [m]2 such that
(x1, x2) 6= (y1, y2). Let us see the cases when they collide ie., for what
values of (a1, a2) do we get h(x1, x2) = h(y1, y2).

Let h(x1, x2) = h(y1, y2). That means a1x1+a2x2 = a1y1+a2y2 mod m.
Equivalently, a1(x1 − y1) = a2(x2 − y2) mod m. We can consider two
cases.

Case 1: x1 6= y1. Then x1 − y1 6= 0 and will have an inverse modulo
m. So a1 = a2(x2 − y2)/(x1 − y1) mod m. So for every k ∈ [m] where
a2 = k, we have exactly one colliding value of a1. We can pick a2 in m
ways and that fixes the colliding a1. So number of hash functions that
will collide is m.

1



Case 2: x1 = y1. Then x2 6= y2 and we can make a similar argument to
that in Case 1 and conclude that there are m colliding hash functions.

Since the number of colliding hash functions is m in either case, and
there are m ways each to pick a1 and a2 (independently), there are a
total of m2 hash functions in Ha.

Pr[h(x1, x2) = h(y1, y2)] = m2/m = 1/m

So the set is 2-Universal.

(b) This is same as the previous problem, but here we have m a power
of 2, and not a prime number. The number of random bits needed to
represent the hash function is 2 log m = 2k.

This is not a 2-Universal hash family. As a counter example, look at
the pair of inputs (0, 0) and (0, 2k−1).

Clearly h(0, 0) = 0 for all pairs (a1, a2). Also h(0, 2k−1) = a22
k−1 mod

2k, which is equal to zero if and only if a2 is even. So there are m/2 hash
functions for which h(0, 0) = h(0, 2k−1). So Pr[h(0, 0) = h(0, 2k−1)] =
1/2 > 1/m. So this is not a 2-Universal family.

(c) Let us count the number of all functions from [m] to [m − 1]. Every
x ∈ [m] can choose any image in [m−1], that is m−1 possible options.
Each of the m elements in [m] have to choose an image to specify
the function. This can be done in (m − 1)m ways. So we require
log(m− 1)m = m log(m− 1) random bits to specify the hash function.

This is a 2-Universal function. Given any pair x, y ∈ [m], let us see
what the probability of collision is. Let f(x) = k ∈ [m− 1] for some k.
Then for choosing f(y), we have m − 1 options, one of which is k. So
Pr[f(x) = f(y)] = 1/(m− 1) for any pair x, y ∈ [m]. Hence the family
is 2-Universal.

Problem 3. [Hashing by Adversary]

2



(a) Here we can easily attack by picking O(m) elements, all of which are
mapped to the same hash value. Since size of U is large compared to m,
we can always do this. So all the elements would result in a collision,
and we can query one of those elements which we inserted. One would
have to look through O(m) elements on average to retrieve the queried
element.

(b) If the universe is big compared to m, there would always be elements
for which the k hash values would be some t1, t2, . . . , tk, where ti ∈
{1, 2, . . . ,m} according to our choice. Then we could pick elements
in such a way that each element covers a different set of k values in
{1, 2, . . . ,m}. Thus, after dm/ke insertions, all the m entries would be
1, and every query would return YES. So probability of false positive
would be 1.

(c) By an attack of this sort, the data structure gets far more heavily
loaded than it should be. The analysis of hashing/bloom filters assume
random inputs. We have shown in the preceding parts that if the inputs
are adversarial, things can be much worse.

Using these attacks, the attacker could aim for rendering some server
out of service by loading it by planned attacks. If I run my own server,
and I want more people to use my server, I can launch these Denial of
Service attacks to render my competitor out of service.

Problem 4. [Increasing Subsequences]

(a) Consider the sequence A = {6, 7, 3, 4}. Clearly the longest increasing
subsequence is of length 2 here. But the algorithm will compute as
follows. M [1] = 1, M [2] = 2, M [3] = 2, M [4] = 3. That is, according to
the algorithm, the length of the longest increasing subsequence is 3.

(b) Instead of using the naive algorithm in part (a), we can think of a
more sophisticated technique. Let entry M [i] contain the longest in-
creasing subsequence that has A[i] as its last element (note that this
subsequence must have A[i] in it). The array M is of length n. At the
end of the algorithm, maxi M [i] will be the length of longest increasing
subsequence.

3



As a base case, we have M [1] = 1. We can fill up M in the increasing
order of indices, using the recursive equation below.

M [i] = max
1≤k<i:A[k]≤A[i]

M [k] + 1

This is because the longest increasing subsequence containing A[i] will
have as its predecessor, an element A[k] which is not bigger than itself.
(Note: We assume that the max function returns 0 in the case when
the set is empty, ie., all the elements prior to A[i] are bigger than A[i])

To find the longest subsequence itself, we can have another array P ,
where P [i] contains the index to the predecessor of A[i] in the longest
increasing subsequence containing A[i] (in the case when all the previ-
ous elements are bigger than A[i], P [i] = 0. This P array can be used
to back track and print out the longest increasing subsequence.

Longestsub{
for i = 1 to n {

M[i] = 1

P[i] = 0

for k = 1 to i-1 {
if (A[k] ≤ A[i]) {

if (M[i] < M[k] + 1) {
M[i] = M[k] + 1

P[i] = k

}
}

}
}

}

Printlongest (A,M,P,n) {
t = argmax (M) // Takes O(n) time and returns the index of max in M

Printlongest (A,M,P,t-1)

Print number A[t]

}

The two for loops in Longestsub causes it to take O(n2) time. The
argmax in Printlongest will take O(n) time, and it recurses called at-
most O(n) times, giving a maximum running time of O(n2).

4



Problem 5. [Gasoline Refilling]
Let M i(g) be the minimum gas bill when leaving the gas station i with g
gallons of fuel in the tank, possibly after purchasing gas at staion i. The
variables range as 1 ≤ i ≤ n and 0 ≤ g ≤ C.

Let there be h gallons of fuel in the tank when leaving station i−1. Since
the car needs to have sufficient fuel to reach station i, (di−di−1)/m ≤ h ≤ C.
Also h ≤ (di − di−1)/m + g because the fuel at station i can be atmost
g, because we cannot purchase negative quantity of fuel. So the recursive
equation is

M i(g) = min
h

[M i−1(h) + (g + (di − di−1)/m− h)ci]

where h runs from (di−di−1)/m to min(C, (di−di−1)/m+ g). The base case
is given by

M1(g) = c1gwhere 0 ≤ g ≤ C

The answer will be minC
g=0 Mn(g). It is easy to see that the cheapest

solution will involve arriving at station n with 0 gallons, so the answer is
simply Mn(0). We can compute the matrices M i in the increasing order of
indices i. Since we need only M i−1 to compute M i, we can reuse the space.
The following pseudo code uses only two arrays M and N , and reuses the
space effectively, instead of a two dimensional array.

GasolineRefilling(n, d[], c[]) {
for g = 0 to C

M[g] = c[1] * g // base case

for i = 2 to n {
for g = 0 to C {

N[g] = infinity // N is temp array

for h = (d[i] - d[i-1])/m to min(C, (d[i] - d[i-1])/m + g) {
cost = M[h] + (g + (d[i] - d[i-1])/m - h) * c[i]

if (cost < N[g])

N[g] = cost

}
M[g] = N[g] //copy entries from temp array

}
}
return M[0]

}

5



There are 3 nested for loops, one ranging over n − 1 values, one ranging
over C+1 values and another one ranging over atmost C values. The running
time is O(nC2).

Note: Because the distances are divisible by m, one can argue that
we cannot achieve better by purchasing fractions of gallons, so the integer
solution found is indeed the best possible.

Problem 6. [Card Game]

(a) Consider the sequence of 4 cards 3, 10, 2, 1. If the first player takes
the biggest card available, ie. 3, then the opponent can take the card
of value 10 and win. Whereas if player 1 had taken card with value 1,
the opponent would have taken either 3 or 2, leaving the 10 open for
the first player and assuring him a win. So choosing the biggest card
on turn 1 is not the optimal strategy.

(b) Let M(i, j) be the maximal total value of the cards that can be chosen,
assuming one has the first move, in a subgame with cards si to sj,
where 1 ≤ i ≤ j ≤ n. We assume that the opponent uses the best
strategy and try to find the best that we can do in that case. The
recursive equation simply takes the maximum of the scores after the
two possible moves of the player with the turn, ie., taking card si or
card sj.

M(i, j) = max

(
si +

j∑
k=i+1

sk −M(i + 1, j), sj +

j−1∑
k=i

sk −M(i, j − 1)

)
which simplifies to

M(i, j) =

j∑
k=i

sk −min(M(i + 1, j), M(i, j − 1))

The base case is M(i, i) = si.

In order to meet the O(n2) requirement, we have to perform the follow-
ing trick, we can precompute the partial sums Si =

∑i
k=1 sk for i from

0 to n. This enables us to perform the summation
∑j

k=i sk in constant

time because
∑j

k=i sk = Sj − Si−1. We can evaluate the matrix M in
the increasing order of d = j − i.

6



Cardgame(n,s[]) {
S[0] = 0

for i = 1 to n

S[i] = S[i-1] + s[i] // compute partial sums

for i = 1 to n

M[i,i] = s[i] // base case

for d = 1 to n-1 {
for i = 1 to n-d {

j = i + d

M[i,j] = S[j] - S[i-1] - min (M[i+1,j], M[i,j-1])

}
}

}

During the game, the optimal move can be determined by looking at
which of the two parameters to min was actually the minimum. More
precisely, if i = j, there is only one move, else if i < j, then compare
M(i + 1, j) and M(i, j − 1). If M(i + 1, j) is smaller, then pick si, else
pick sj.

There are two nested for loops each ranging over at most n values,
so the running time is O(n2). As explained above, each move can be
calculated in O(1) time from the matrix M .

(c) Look at all the even numbered cards and the odd numbered cards at
the beginning. If you sum both of them, one of the two sums will be
greater than or equal to the other. Pick that set. If it is the even set,
player 1 can pick sn, leaving player 2 with two odd numbered cards.
Whatever player 2 picks, player 1 can pick the even numbered card
and leave player 2 with only odd numbered cards at each turn. By this
strategy, player 1 ensures that he picks the even numbered half and
player 2 gets the odd numbered half. This ensures that player 1 has a
sum atleast as much as player 2, if not more.

If it is the odd numbered set which is bigger, we can similarly argue
that player 1 has a strategy which ensure that he does not lose.

7


