
CS 3510 - Honors Algorithms

Homework 5

Assigned March 1

Due Tuesday, March 14

1. Consider the following family H of hash functions mapping {1, 2, 3, 4} into
{0, 1}. The family H contains the three functions h1, h2, h3 defined below. Is
H a family of 2-universal hash functions?

h1(1) = 0, h2(1) = 1, h3(1) = 1,

h1(2) = 1, h2(2) = 0, h3(2) = 1,

h1(3) = 1, h2(3) = 1, h3(3) = 0,

h1(4) = 0, h2(4) = 0, h3(4) = 0.

2. Let [m] denote the set {0, 1, . . . , m − 1}. For each of the following families of
hash functions, say whether it is 2-universal or not, specify how many random
bits are needed to sample from the family, and then justify your answer.

a) Ha = {h(x1, x2) = a1x1 + a2x2((mod m))|a1, a2 ∈ [m]}, where m is some
fixed prime. (Note that each h ∈ Ha has signature h : [m]2 → [m], i.e., it maps
a pair of integers in [m] to a single integer in [m].)

b) Hb = {h(x1, x2) = a1, x1 + a2x2((mod m))} : a1, a2 ∈ [m]}, where m = 2k is
some fixed power of two.

c) the set of all functions f : [m] → [m − 1].

3. Here we explore problems with hashing by being an adversary who controls
what the input looks like. Our analysis that universal families of hash functions
is good relies on the fact that the input and the choice of hash function from
our family are independent of each other.

a) Suppose you want to slow down an application’s performance. You know the
application has a hash table with m buckets and you know the hash function
h. How many insertions of elements of your choice do you need to degrade the
lookup performance to O(m) on queries of your choice? Assume that you can
efficiently find hash collisions, i.e., x and y such that x 6= y but h(x) = h(y).
Also assume that your universe U is very large compared to m.

b) The application designer has come out with a new version of her application.
This one uses a Bloom filter instead of a hash table. Unfortunately, one of her

1

friends told you the hash functions h1, ..., hk that the Bloom filter uses, and
these functions are static for all copies of the application.

This time you want to increase the false positive probability of the Bloom filter.
If there are m buckets in the Bloom filter array, how many insertions of your
choice do you need before the probability of a false positive is 1? Assume
the Bloom filter has just been initialized and no legitimate elements have been
inserted. You may also assume that for any hash function hi you can efficiently
find collisions on targeted elements for all hashes simultaneously, i.e., for all i,
given a value t, you can find an x such that hi(x) = t. Also assume that your
universe U is very large compared to m.

c) Why would you want to perform this kind of adversarial hashing? (Hint:
Google’s “algorithmic complexity for denial of service.”) Give a short (1 para-
graph or less) description of a plausible scenario.

4. Given an array A of n integers a1, a2, . . . , an in unsorted order, we say that
aj1, . . . , ajt

is an increasing subsequence of A of length t if the following condi-
tions are met:

(a) j1 < j2 < . . . < jt

(b) aj1 ≤ aj2 ≤ . . . ≤ ajt

For example, given the array [1, 4, 7, 3, 11, 2, 5, 13, 6], the sequence [3, 5] is one
possible increasing subsequence of length 2, while [1, 4, 7, 11, 13] is an increasing
subsequence of length 5.

We want to find an algorithm that, given A, finds in polynomial time the longest
increasing subsequence of A.

a) Consider the following attempt at a dynamic programming solution. We use
a vector M [1 . . . n], with the intended meaning that M [k] contains the length of
the longest increasing subsequence of a1, . . . , ak. After that vector is filled, the
solution to our problem is contained in M [n]. We give the following recursive
formula for M . We set the base case to be M [1] = 1. Then M [i] = M [i − 1] if
ai−1 > ai and M [i] = M [i − 1] + 1 otherwise.

Prove that this algorithm is wrong by describing a counter-example. That is,
describe an input instance A such that the above recursive rules construct a
vector M that does not contain the right entries and such that the last entry of
M is not the length of the longest increasing subsequence of A.

(Hint: it is possible to find such a counter-example where A has 4 entries, the
longest subsequence has length 2 but the output of the incorrect program gives
3.)

2

b) Describe a dynamic programming algorithm that correctly computes the
length of the longest increasing subsequence of A. Find a polynomial time
algorithm (running time O(n2) will do).

Specify: what the dynamic programming matrix (or vector) contains, how big
it is, how to retrieve the final answer, what one fills in first, and finally give a
recursive formula for the other entries. The total time should be the number of
entries times the time it takes to fill in each entry in the table.

5. Suppose you want to drive from Atlanta to Los Angeles on I-40. Your car holds
C gallons of gas and gets m miles to the gallon. You are handed a list of the
n gas stations that are on I-40 and the price for gas at each. Let di be the
distance of the ith gas station from Atlanta, and let ci be the cost of gasoline at
the ith station. You man assume that for any two stations i and j, the distance
|di − dj| between them is divisible by m. You start out with an empty tank
at station 1. Your final destination is gas station n. You may not run out of
gas between stations, but you need not fill up when you stop at a station. (For
example, you might decide to purchase only 1 gallon at a given station.)

Find a polynomial-time dynamic programming algorithm to output the mini-
mum gas bill to cross the country. Analyze the running time of your algorithm
in terms of n and C. You do not need to find the most efficient algorithm.

6. Consider the following card game. A dealer produces a sequence s1, . . . , sn of
cards, face up, where si has a positive value vi and n is even. Then two players
take turns taking a card from the sequence, but each player can only take the
first or last card of the remaining sequence of cards. The goal is to collect cards
of maximal total value.

a) Find a sequence of cards such that it is not optimal for the first player to
start by choosing the available card of largest value.

b) Give an O(n2) algorithm that computes an optimal strategy for the first
player. Given the initial sequence, your algorithm should pre-compute in O(n2)
time some information, and then the first player should be able to make each
move optimally in O(1) time by looking up the pre-computed information.

c) Show that the first player always has a non-losing strategy. Notice that
just because he has an optimal means of play (part (b)) does not mean that
he can always win. I want you to give an argument, not based on dynamic
programming, that convinces me that player 1 has a strategy which will always
tie or win. The optimal strategy has to be at least this good, so the optimal
strategy will also guarantee that player 1 cannot lose.

3

