
CS 3510 Honors Algorithms
Solutions : Homework 6

Problem 1: The algorithm is very similar to the Huffman code that we have
seen in the class. Pick the smallest three frequencies, join them together and
create a node with the frequency equal to the sum of the three. Repeat.
However, notice that every contraction reduces the number of leaves by 2 –
we remove 3 nodes and add 1 back. So to make sure that we end up with
just one node, we have to have an odd number of nodes to start with. If not,
add a dummy node with 0 frequency to start with.

Correctness : We shall show that any optimal tree has the lowest three
frequencies at the lowest level. Suppose not. We could switch a leaf with a
higher frequency from the lowest level with one of the lowest 3 leaves, and
obtain a lower average length. Without any loss of generality, we can assume
that all the three lowest frequencies are the children of the same node. (if
they are at the same level, the average length does not change irrespective
of where the frequencies are)

Now, observe that we can treat the contracted leaves as a new character
with frequency equal to the sum of the frequencies of the three characters.
By a similar reasoning to what was given in the class for the binary Huffman
codes, we can see that the cost of the optimal tree is the sum of the tree
with the three symbols contracted and the eliminated mini tree which had
the nodes before contraction. Since it has been proved that the mini tree has
to be present in the final optimal tree, we can optimize on the tree with the
contracted node.

Problem 2: The optimal code for the given frequencies will be given by the
following tree.

54

/|

0 / | 1

/ |

h-21 |-- 33

/|

0 / | 1

1

/ |

g-13 |-- 20

/|

0 / | 1

/ |

f-8 |-- 12

/|

0 / | 1

/ |

e-5 |-- 7

/|

0 / | 1

/ |

d-3 |-- 4

/|

0 / | 1

/ |

c-2 |-- 2

/|

0 / | 1

/ |

b-1 |

a-1

Verify that the above tree is correct (Exercise). To generalize for the
first n Fibonacci numbers, notice that the sum of the first n − 2 Fibonacci
numbers is Fn − 1 where Fn denotes the nth Fibonacci number. (Exercise:
Prove that

∑n−2
i=0 Fi = Fn − 1 using induction).

So the tree for the first n Fibonacci numbers will be of the above form,
one long branch from the root to the lowest leaf, and branches of length 1
hanging from it. This is because, after we contract the first n − 2 numbers
into a node, the total frequency of that node will be Fn − 1 which is more
than Fn−1 (which is the least remaining) and less than Fn (the second least
remaining). So this node will combine with Fn−1 and a similar argument will
follow by induction for all n.

Problem 3:

(a) The decision version of the problem is the following.

2

Given graph G, does there exist a simple path from u to v of
length greater than or equal to k in G?

This decision problem is in NP. The proof is the path itself. Given
a simple path from u to v of length greater than or equal to k, one
can verify the decision problem in polynomial time. It is easy to test
if the given path is a valid path (check for the validity of all the edges
in the path), and if the path is simple (one can keep marking all the
vertices in the path, and check if all the vertices appear at most once)
in time O(|V |). The length of the path can also be checked in O(|V |)
very easily. Thus there is a polynomial time verifier and thus the above
problem is in NP.

(b) The decision problem is the following.

Given graph G, is there a way to color G with k or less colors
such that no adjacent nodes have the same color?

The proof is the coloring itself. The verification process, given the
coloring, will traverse each edge, and check if this is a valid coloring.
This verifier will run in time O(|E|) and hence is polynomial in the size
of the input. So the problem is in NP.

Problem 4: By defintion, if a problem A is in NP, then there exists a
polynomial time verification algorithm V () and a polynomial p(), such that
x is valid solution for A if and only if there exists a string y such that
|y| ≤ p(|x|) and V (x, y) accepts in polynomial time. If x is not a valid
solution, then for any y, where |y| ≤ p(|x|), V (x, y) does not accept.

Program A(x)

for all strings y with |y| <= p(|x|)

if (V(x,y) = yes), return yes

endfor

return no if never returned yes

end

The above program calls V , O(2p(|x|)) number of times. But V runs in
polynomial time. Since the exponential term dominates the polynomial term

3

in the O-notation, the above program runs in time O(2p(n)) where n is the
length of the input.

Note : The class of problems which can be solved in time O(2p(n)) where
n is the length of the input, are said to be in the explonential complexity
class, denoted by EXP.

Problem 5: This problem is NP-complete. Clearly MINIMUM-LEAF-
SPANNING-TREE is in NPbecause given a spanning tree with at most k
leaves, we can check in polynomial time if that is a spanning tree and if it
has at most k leaves.

Now we shall show that this is NP-complete, by reduction from HAMIL-
TONIAN CYCLE. Given graph G, for which we wish to check if a Hamil-
tonian cycle exists, we a construct a MINIMUM LEAF-SPANNING-TREE
problem that asks if a spanning tree with k = 2 or fewer leaves exists in a
modified graph G′. G′ is constructed as follows : G′ will have all the nodes
and edges that G has, but we will also choose an arbitrary node v in G, and
create a duplicate v′. v′ is a duplicate of v in the sense that for every edge
{v, u} in G, {v′, u} will be an edge in G′. We also add two extra nodes w and
w′ with edges {w, v} and {w′, v′} that connect them to v and v′ respectively.
Note that the reduction is polynomial time.

We have to show that G has a Hamiltonian cycle if and only if G′ has a
spanning tree with 2 or fewer leaves. To see the if part, notice that is G has
a Hamiltonian cycle, then there exists a path from v to v that covers all the
vertices. Since v′ is a duplciate of v, this implies a path from v to v′ in G′,
and we can add the two additional edges to make a path from w to w′ that
visits all the nodes in the graph G′. This path is a spanning tree with only
2 leaves, w and w′. So a Hamiltonian cycle in G implies a spanning tree in
G′ with 2 leaves.

To see the other direction, assume that G′ has a spanning tree T with 2
or fewer leaves. Assume that (we will show later) T has a simple path from
w to w′ that covers all the vertices in G′. From this path, we can remove the
starting edge {w, v} and the ending edge {v′, w′}, then we have a simple path
from v to v′. Since v′ is a duplicate of v, this implies a simple path which
starts and ends in v and visits all the vertices in G. This is a Hamiltonian
cycle in G.

The only thing that is left to be proven is that, if G′ has a spanning tree
T , then there must be a simple path from w to w′ that visits all the vertices
in G′. If T is a spanning tree, then there must be a unique path from w to

4

w′ in T . We can show that if this path does not include all the vertices in
G′ then T must have atleast 3 leaves. Suppose that there is a node z that
is not in the path from w to w′ in T . The path from w to w′ must diverge
from the path from w to z in T . Let it diverge at x. Clearly, x has degree
atleast 3 in T , and if we remove x, then we get 3 distinct components of T ,
and hence 3 leaves. This contradicts the fact that T has only 2 leaves, and
hence there is no such z which the path from w to w′ does not include.

Problem 6: Clearly, this problem is in NP, once given a valid set of k paths,
we can verify in polynomial time that they are vertex disjoint, and are valid
paths from each pair (si, ti).

To show that this is NP-complete, we can do a reduction from 3-SAT.
Given an arbitrary 3-SAT formula, we can construct a network routing prob-
lem, such that the formula is satisfiable if and only if the routing problem
has a solution. For each clause Ci in the formula, we create a source/sink
pair (si, ti), and a node xi

j for each literal xj in the clause (for a negated
literal x̄j, we add a node x̄i

j. We add an edge from si to each literal node xi
j

in the clause Ci, and an edge from each literal node xi
j to ti. In addition, we

create source/sink pair (sj, tj) for each variable xj, we get a total of k = q+n
source/sink pairs, where q is the number of clauses and n is the number of
literals. For each (sj, tj), we will create two paths from sj to tj. One will
travel through all nodes x̄i

j, which correspond to the positive literal of xj,
and another path which travels through all the literal nodes x̄i

j, which corre-
spond to the negative literal of xj. This routing problem can be constructed
in polynomial time.

The idea is the following : to send a flow from si to ti, it must travel
through some literal node, this will correspond to a literal in the original
3-SAT formula that should be set to TRUE to satisfy the clause Ci. The
pairs (sj, tj) for the variable xj ensures that a literal and its negation are
never both set to true.

We shall now show that if the formula is satisfiable, then there are k =
q + n disjoint paths that travel between source and sink pairs. Given the
assignment that satisfies the original 3-SAT formula, we can construct the
k paths as follows. For each (sj, tj) pair that representing a variable xj, we
choose the path that corresponds to the literal that is not set to true in the
satisfying assignment (if xj is set to TRUE, then we use the (sj, tj) path
that travels through x̄i

j nodes and if xj is FALSE, then we use the (sj, tj)
path that travels through xi

j nodes). In this way, all the literal nodes, set

5

to TRUE will still be available for the q (si, ti) paths, corresponding to each
clause. Since we started off with a satisfying assignment, every (si, ti) pair
would be able to find a path through a literal that is set to TRUE. Thus we
can cover all the k = q + n source/sink pairs.

Suppose we have k disjoint paths between each source/sink pair, then
both the (si, ti) clause pairs and (sj, tj) variable pairs are to have disjoint
paths between them. This will mean that the clause pairs never use the
literal nodes that correspond to both a literal and a negation. If we look at
the literals used by the (si, ti) paths, and set all the corresponding literals
TRUE, then we will have satisfied all the clauses. The source/sink pairs
corresponding to each variable ensures that no literal and its negation are set
too TRUE simultaneously. This means that we have a satisfying assignment
for 3-SAT.

We now have shown both directions of equivalence, the original 3-SAT
instance is satisfiable if and only if the routing problem has disjoint paths
between the k source/sink pairs.

Problem 7: Clearly, given a set which is a kernel of the directed graph, we
can verify in polynomial time if every vertex is in the kernel or has a directed
edge from the kernel. We can also verify that no two vertices in the kernel
share a directed edge. So the problem is in NP.

To prove that this is NP-complete, consider the following reduction from
3-SAT. Consider a 3-SAT instance. For each variable xj in the 3-SAT in-
stance, put down two vertices in the form of a 2-cycle, as in the question.
The two vertices will correspond to the complemented and uncomplemented
literals. Notice that of these two vertices, at most one will be in the kernel.
If there are no edges directed into these two vertices, then exactly one of
these two should be in the kernel.

Now, for every clause Ci, we put down three vertices in a 3-cycle similar to
the picture in the question. The vertices correspond to the literals appearing
in the clause. Notice that we can have atmost one vertex from every such 3-
cycle in the kernel (if we pick more than one, then we will have a directed edge
between 2 vertices). To help us cover all the three vertices, we add directed
edges into the 3-cycle as follows. For every variable in the clause, we add
a directed edge from the corresponding literal in the 2-cycle directed to the
corresponding vertex in the 3-cycle. Note that this reduction is polynomial
time.

Now, if the 3-SAT instance had a satisfying assignment, we pick the

6

vertices corresponding to the TRUE literals in each of the 2-cycles. So we
pick exactly one vertex from each 2-cycle. Also, every clause has atleast one
TRUE literal. For a 3-cycle of the form xk → xl → xm → xk, if xk is the
TRUE literal, xk would have an incoming edge from the picked vertex in
the 2-cycle, and hence is covered. We just pick xl so that both xl and xm

are covered. This is a kernel for the graph. So if the 3-SAT instance has a
solution, the constructed graph would have a kernel.

If the constructed graph has a kernel, then it is easy to see that there
should be exactly one vertex from every 2-cycle, and exactly one vertex from
every 3-cycle. The remaining vertex in the 3-cycle has to be covered using
an incoming edge from a vertex in the 2-cycle, which is picked in the kernel.
So look at the picked literals in the 2-cycle, and set the variables TRUE or
FALSE correspondingly. Every variable is set TRUE or FALSE. And we have
already noted that one vertex in the 3-cycle has to be covered using a picked
vertex (which corresponds to a TRUE literal) in the 2-cycle. So every clause
has a satisfying assignment as well. So if the graph has a kernel, then the
3-SAT instance is satisfiable.

So the 3-SAT instance is satisfiable if and only if the corresponding graph
has a kernel. So the problem in deciding if a given directed graph has a
kernel is NP-complete.

7

