
CS 3510 - Honors Algorithms
Homework 7 - Solutions

1. (Least Common Multiple) One important observation to make is that
the LCM of two integers a and b satisfies lcm(a, b) = ab/ gcd(a, b).
This can be shown by the fact that a and b can be factorized in a
unique manner as a =

∏k
i=1 pri

i and b =
∏k

i=1 psi
i where pi are all

the primes appearing in the factorization of a or b and ri, si are non
negative integers (some of the ri’s and si’s may be 0). Now note that

lcm(a, b) =
∏k

i=1 p
max(ri,si)
i and gcd(a, b) =

∏k
i=1 p

min(ri,si)
i . Trivially,

max(r, s) + min(r, s) = r + s and this implies lcm(a, b) · gcd(a, b) = ab
(Verify).

Also, verify that the LCM of 3 numbers lcm(a1, a2, a3) = lcm(lcm(a1, a2), a3).
From this, one can inductively show that

lcm(a1, a2, . . . , an) = lcm(lcm(a1, a2, . . . , an−1), an)

So we can use the following algorithm to calculate the LCM.

LCM(a(1),a(2),..., a(n))

If n=1 return a(1);

Else { L = LCM(a(1),a(2),..., a(n-1));

return L*a(n)/gcd(L,a(n)); }
End

The algorithm is correct because of the above arguments.

If n = 1, we do not use any GCD computation. If n = 2, we need one
call to the GCD function. If n > 2, we need one GCD function plus a
recursive call to an LCM function with n−1 arguments. By induction,
we need n−1 calls to the GCD algorithm. (Alternatively, you can think
of it as the recurrence relation where T (n) denotes the number of calls
to the GCD subroutine, T (1) = 0, T (2) = 1 and T (n) = T (n− 1) + 1)

2. (RSA) We have p = 17, q = 19. So N = pq = 323 and φ(N) =
(p − 1)(q − 1) = 288. The public key e = 25 is given. Check by
running the Extended Euclid that 25−1 ≡ 265 mod 288. So the pub-
lic key pair is (e, N) = (25, 323) and the associated private key pair
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is (d,N) = (265, 323). Let us encrypt the message M = 10. The
encrypted message is X = M e mod N .

102 ≡ 100 mod N

104 ≡ 310 ≡ −13 mod N

108 ≡ 169 mod N

1016 ≡ 137 mod N

1024 ≡ 1016 · 108 ≡ 220 mod N

1025 ≡ 1024 · 10 ≡ 262 mod N

The encrypted message is X = 262. For decryption, we need to use the
private key and calculate Y = Xd mod N .

2622 ≡ 168 mod N

2624 ≡ 123 mod N

2628 ≡ 271 mod N

26216 ≡ 120 mod N

26232 ≡ 188 mod N

26264 ≡ 137 mod N

262128 ≡ 35 mod N

262256 ≡ 256 mod N

262264 ≡ 262256 · 2628 ≡ 254 mod N

262265 ≡ 262264 · 262 ≡ 10 mod N

So we can see the decryption Xd mod N indeed gives us the original
message M = 10.
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3. (Digital Signature)

(a) Digital signatures provide a way of authenticating the fact that
it is indeed the sender who has sent the message. In eletronic
communication, we would like to have an analogue to the signature
in the physical communication. For example, if the letter is a letter
to a bank requesting money transfer, the bank would require some
means of authenticating that the letter is indeed from the person
who claims to have sent the message. Thus, digital signatures
provide a way of authenticating the sender, and the contents of
the message as well.

(b) Given the public key pair (N, e) and the message M , we can verify
that the given signature S = Md was created by the intended
sender, using the following procedure.

Verify ((N,e), S, M)

If (S^e = M mod N) then return TRUE

Else return FALSE

End

The private key - public key pair (d, e) is such that e and d are
multiplicative inverses modulo φ(N) = (p− 1)(q − 1), where N is
the product of the primes p and q. The algorithm Verify checks
if (Md)e ≡ M (mod N). This is true since (Md)e) = Mde =
M ed. And by the proof of RSA cryptosystem, we have M ed ≡ M
(mod N).

Someone without our help cannot find out the private key d, so a
false signature T 6= Md mod N is what one could produce other-
wise. When we use the Verify algorithm, T e 6= M mod N would
return FALSE. So the Verify algorithm would return TRUE if and
only if the signature was S = Md mod N .

4. (Breaking RSA using Signatures) The hacker’s message is Y = reX =
reM e mod N . When we sign the message, as described in the last
question, we have to give the signature S = Y d = (rM)ed = rM mod
N . The hacker can choose the random r such that it is relatively prime
to N , and can compute r−1 (mod N) using extended Euclid. Then
he can proceed to do r−1S = r−1rM = M mod N and recovering the
original message.
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5. (Taking care of Carmichael Numbers)

(a) A non trivial square root of 1 modulo s is a number x /∈ {1,−1}
and x2 ≡ 1 mod s.

Let x be a square root of 1 modulo s. This means that x2 − 1 ≡
0 mod s. That is, x2 − 1 = (x + 1)(x − 1) is a multiple of s.
Since s is a prime, either x + 1 or x − 1 has to be a multiple of
s. This would imply x ≡ −1 mod s or x ≡ 1 mod s, respectively.
Therefore, when s is a prime, there are no non trivial square roots
of 1 modulo s.

(b) Solution by verification, left as exercise. Since both 561 and 1729
are Carmichael numbers, as−1 ≡ 1 mod s for any a. You have to
pick 4 different values for a and verify that for atleast 3 of them,
you end up discovering non trivial square roots of 1 using the
procedure explained in the question.

(c) The following algorithm will work.

Primality (s)

Represent s-1 = 2^t*u where u is odd

Repeat k times {
Pick a randomly from {1,2,3... s-1}
If a^u = 1 mod s then return PRIME;

Else {
For i = 0 to t-1 {
If a^(u.2^i) = -1 then return PRIME;

}
}

Return COMPOSITE if PRIME has not been returned;

}

We accept s as a prime number only if all the random rounds
accept. If at least one round says composite, we will reject.

Note that when s is not a prime or Carmichael number as−1 6=
1 mod s with high probability. So none of the au2i

will be equiva-
lent to −1 mod s. Else in the next squaring, we will get au2i+1 ≡
1 mod s which is not true for s Composite and non Carmichael.

When s is Carmichael number as−1 ≡ 1 mod s, but we have shown
that with high probability, we will encounter a non trivial square
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root of 1. Then on squaring, we will get au2i+1 ≡ 1 mod s and
then onwards 1 will remain invariant on squaring. So we will
never encounter −1. So the algorithm will reject with probability.

In both cases, when s is composite, we can boost the probability
by repetition and make it as close to 1 as we wish to.

5


