
U.C. Berkeley — CS170: Intro to CS Theory Handout N13
Professor Luca Trevisan October 18, 2001 (corrected Oct. 25)

Notes for Lecture 13

1 Edit Distance

1.1 Definition

When you run a spell checker on a text, and it finds a word not in the dictionary, it normally
proposes a choice of possible corrections.

If it finds stell it might suggest tell, swell, stull, still, steel, steal, stall,
spell, smell, shell, and sell.

As part of the heuristic used to propose alternatives, words that are “close” to the
misspelled word are proposed. We will now see a formal definition of “distance” between
strings, and a simple but efficient algorithm to compute such distance.

The distance between two strings x = x1 · · ·xn and y = y1 · · · ym is the minimum number
of “errors” (edit operations) needed to transform x into y, where possible operations are:

• insert a character.
insert(x, i, a) = x1x2 · · ·xiaxi+1 · · ·xn.

• delete a character.
delete(x, i) = xix2 · · ·xi−1xi+1 · · ·xn.

• modify a character.
modify(x, i, a) = x1x2 · · ·xi−1axi+1 · · ·xn.

For example, if x = aabab and y = babb, then one 3-steps way to go from x to y is
a a b a b x
b a a b a b x’ = insert(x,0,b)
b a b a b x” = delete (x’,2)
b a b b y = delete (x”,4)

another sequence (still in three steps) is
a a b a b x
a b a b x’ = delete (x,1)
b a b x” = delete(x’,1)
b a b b y = insert (x”,3,b)

Can you do better?

1.2 Computing Edit Distance

To transform x1 · · ·xn into y1 · · · ym we have three choices:

• put ym at the end: x → x1 · · ·xnym and then transform x1 · · ·xn into y1 · · · ym−1.

• delete xn: x → x1 · · ·xn−1 and then transform x1 · · ·xn−1 into y1 · · · ym.



Notes for Lecture 13 2

• change xn into ym (if they are different): x → x1 · · ·xn−1ym and then transform
x1 · · ·xn−1 into y1 · · · ym−1.

This suggests a recursive scheme where the sub-problems are of the form “how many
operations do we need to transform x1 · · ·xi into y1 · · · yj .

Our dynamic programming solution will be to define a (n + 1)× (m + 1) matrix M [·, ·],
that we will fill so that for every 0 ≤ i ≤ n and 0 ≤ j ≤ m, M [i, j] is the minimum number
of operations to transform x1 · · ·xi into y1 · · · yj .

The content of our matrix M can be formalized recursively as follows:

• M [0, j] = j because the only way to transform the empty string into y1 · · · yj is to add
the j characters y1, . . . , yj .

• M [i, 0] = i for similar reasons.

• For i, j ≥ 1,

M [i, j] = min{ M [i− 1, j] + 1,
M [i, j − 1] + 1,
M [i− 1, j − 1] + change(xi, yj)}

where change(xi, yj) = 1 if xi 6= yj and change(xi, yj) = 0 otherwise.

As an example, consider again x = aabab and y = babb

λ b a b b

λ 0 1 2 3 4
a 1 1 1 2 3
a 2 2 1 2 3
b 3 2 2 1 2
a 4 3 2 2 2
b 5 4 3 2 2

What is, then, the edit distance between x and y?
The table has Θ(nm) entries, each one computable in constant time. One can construct

an auxiliary table Op[·, ·] such that Op[·, ·] specifies what is the first operation to do in order
to optimally transform x1 · · ·xi into y1 · · · yj . The full algorithm that fills the matrices can
be specified in a few lines
algorithm EdDist(x,y)

n = length(x)
m = length(y)
for i = 0 to n

M [i, 0] = i
for j = 0 to m

M [0, j] = j



Notes for Lecture 13 3

for i = 1 to n
for j = 1 to m

if xi == yj then change = 0 else change = 1
M [i, j] = M [i− 1, j] + 1; Op[i, j] = delete(x, i)
if M [i, j − 1] + 1 < M [i, j] then

M [i, j] = M [i, j − 1] + 1; Op[i, j] = insert(x, i, yj)
if M [i− 1, j − 1] + change < M [i, j] then

M [i, j] = M [i− 1, j − 1] + change
if (change == 0) then Op[i, j] = none
else Op[i, j] = change(x, i, yj)

2 Longest Common Subsequence

A subsequence of a string is obtained by taking a string and possibly deleting elements.
If x1 · · ·xn is a string and 1 ≤ i1 < i2 < · · · < ik ≤ n is a strictly increasing sequence

of indices, then xi1xi2 · · ·xik is a subsequence of x. For example, art is a subsequence of
algorithm.

In the longest common subsequence problem, given strings x and y we want to find the
longest string that is a subsequence of both.

For example, art is the longest common subsequence of algorithm and parachute.
As usual, we need to find a recursive solution to our problem, and see how the problem

on strings of a certain length can be reduced to the same problem on smaller strings.
The length of the l.c.s. of x = x1 · · ·xn and y = y1 · · · ym is either

• The length of the l.c.s. of x1 · · ·xn−1 and y1 · · · ym or;

• The length of the l.c.s. of x1 · · ·xn and y1 · · · ym−1 or;

• 1 + the length of the l.c.s. of x1 · · ·xn−1 and y1 · · · ym−1, if xn = ym.

The above observation shows that the computation of the length of the l.c.s. of x and
y reduces to problems of the form “what is the length of the l.c.s. between x1 · · ·xi and
y1 · · · yi?”

Our dynamic programming solution uses an (n + 1)× (m + 1) matrix M such that for
every 0 ≤ i ≤ n and 0 ≤ j ≤ m, M [i, j] contains the length of the l.c.s. between x1 · · ·xi

and y1 · · · yj . The matrix has the following formal recursive definition

• M [i, 0] = 0

• M [0, j] = 0

•
M [i, j] = max{ M [i− 1, j]

M [i, j − 1]
M [i− 1, j − 1] + eq(xi, yj)}

where eq(xi, yj) = 1 if xi = yj , eq(xi, yj) = 0 otherwise.



Notes for Lecture 13 4

The following is the content of the matrix for the words algorithm and parachute.

λ p a r a c h u t e

λ 0 0 0 0 0 0 0 0 0 0
a 0 0 1 1 1 1 1 1 1 1
l 0 0 1 1 1 1 1 1 1 1
g 0 0 1 1 1 1 1 1 1 1
o 0 0 1 1 1 1 1 1 1 1
r 0 0 1 2 2 2 2 2 2 2
i 0 0 1 2 2 2 2 2 2 2
t 0 0 1 2 2 2 2 2 3 3
h 0 0 1 2 2 2 3 3 3 3
m 0 0 1 2 2 2 3 3 3 3

The matrix can be filled in O(nm) time. How do you reconstruct the longest common
substring given the matrix?

3 Chain Matrix Multiplication

Suppose that you want to multiply four matrices A × B × C × D of dimensions 40 × 20,
20 × 300, 300 × 10, and 10 × 100, respectively. Multiplying an m × n matrix by an n × p
matrix takes mnp multiplications (a good enough estimate of the running time).

To multiply these matrices as (((A×B)×C)×D) takes 40·20·300+40·300·10+40·10·100 =
380, 000. A more clever way would be to multiply them as (A× ((B ×C)×D)), with total
cost 20 · 300 · 10 + 20 · 10 · 100 + 40 · 20 · 100 = 160, 000. An even better order would be
((A× (B×C))×D) with total cost 20 ·300 ·10+40 ·20 ·10+40 ·10 ·100 = 108, 000. Among
the five possible orders (the five possible binary trees with four leaves) this latter method
is the best.

How can we automatically pick the best among all possible orders for multiplying n
given matrices? Exhaustively examining all binary trees is impractical: There are C(n) =
1
n

(2n−2
n−1

) ≈ 4n

n
√

n
such trees (C(n) is called the Catalan number of n). Naturally enough,

dynamic programming is the answer.
Suppose that the matrices are A1 ×A2 × · · · ×An, with dimensions, respectively, m0 ×

m1,m1 × m2, . . .mn−1 × mn. Define a subproblem (remember, this is the most crucial
and nontrivial step in the design of a dynamic programming algorithm; the rest is usually
automatic) to be to multiply the matrices Ai × · · · × Aj , and let M(i, j) be the optimum
number of multiplications for doing so. Naturally, M(i, i) = 0, since it takes no effort to
multiply a chain consisting just of the i-th matrix. The recursive equation is

M(i, j) = min
i≤k<j

[M(i, k) + M(k + 1, j) + mi−1 ·mk ·mj ].

This equation defines the program and its complexity—O(n3).
for i := 1 to n do M(i, i) := 0

for d := 1 to n− 1 do
for i := 1 to n− d do



Notes for Lecture 13 5

j = i + d,M(i, j) = ∞, best(i, j) :=nil
for k := i to j − 1 do

if M(i, j) > M(i, k) + M(k + 1, j) + mi−1 ·mk ·mj then
M(i, j) := M(i, k) + M(k + 1, j) + mi−1 ·mk ·mj , best(i, j) := k

As usual, improvements are possible (in this case, down to O(n log n)).
Run this algorithm in the simple example of four matrices given to verify that the

claimed order is the best!


