
The Fast Fourier Transform

1 Motivation: digital signal processing

The fast Fourier transform (FFT) is the workhorse of digital signal processing. To understand

how it is used, consider any signal: any quantity which is a function of time or of position.

This signal might, for instance, capture a human voice by measuring air pressure over time

(Figure 1.1(a)). In order to extract information from it, we need to first digitize it if it is analog

– that is, to convert it to a discrete function � �� � � � � �, by sampling (Figure 1.1(b)) – and,

then, to put it through a system which will transform it in some way. The output is called the

system response.

In picking an appropriate transformation from the endlessly diverse space of possibilities,

there are two especially desirable properties.� Linearity – the response to the sum of two signals is just the sum of their individual

responses. For instance, doubling a signal also doubles the system response.� Time invariance – shifting the input signal by time � produces the same output, also

shifted by �.
A system with these properties can be described concisely because it is completely charac-

terized by its response to the simplest possible input signal: the unit impulse 	 �� �, consisting

solely of a “jerk” at time zero (Figure 1.1(c)). To see this, first consider the close relative 	 �� 
��,
a shifted impulse in which the jerk is moved to time �. Any signal � �� � can be expressed as a

linear combination of these, letting 	 �� 
 �� pick out its behavior at time �,
� �� � � ����

� ���	 �� 
 �� �
By linearity, the system response to input � �� � is determined by the responses to the various	 �� 
 ��. And by time invariance, these are in turn just shifted copies of the impulse response� �� �, the response to 	 �� �. In other words, the output of the system on any possible input

signal � �� � can be read off easily from
� �� �. It is

� �� � � ����
� ���� �� 
 �� �

called the convolution of � and
�
. For example, a system with impulse response (Figure 1.1(d))

� �� � � � ��� if � � � � �� � � � � � 
 �� otherwise

performs a simple averaging operation, � �� � � �� �� �� � � � �� 
 �� � � �� 
 �� � � � �� � �� 
 � � ���.
Most often, � ��� and

� ��� are nonzero only at a small finite set of times, say � to � 
 �. In

such cases, their convolution � ��� is nonzero only from � to �� 
 �:

� �� � � � � ��! � ���� �� 
 �� if � " � " � 
 ��� ���� �� # � � ���� �� 
 �� if � " � " �� 
 �
1



Figure 1.1 (a) An analog signal. (b) A digitized version, obtained by sampling at regular

intervals. (c) The unit impulse. (d) An averaging filter.

(a)

Time

� �� � (b)

� ��� ��� �	 	
 
� � � �� ��� �� ��� �� � ��� �� ��� �� �  ! "# $%& &'( ()* ** *+ ++ + ,- ./ 012 23 34 45 5 678 89 9 :;< <=> >? ?@ @A A BC Time

D EF G

(c)

HI
JK LM NO PQ RS TU VW XY Z[ \] _̂ à bc de fg hi jk lm no pq rs tu vw xy z{ |} ~� �� �� �� �� �� �� �� Time

� �� � (d)

���� �� �� �� �� ��  ¡ ¢£ ¤¥ ¦§ ©̈ ª« ¬ ®̄ °± ²³´ µ́¶ ¶·¸ ¸¹ ¹º º» » ¼½ ¾¿ ÀÁ ÂÃ ÄÅ ÆÇ ÈÉ ÊË ÌÍ ÎÏ ÐÑ ÒÓÔÕ Ö× Time

Ø ÙÚ Û

This operation is such a basic primitive that it is very important to compute efficiently. EachÜ ÝÞ ß
takes à Ýá ß

steps, so it looks like the overall computation time must be à Ýá â ß
.1 Remark-

ably, the fast Fourier transform is able to do it in just à Ýá ã ä å á ß
steps. This speedup from

quadratic to almost linear time has revolutionized the practicality of digital signal processing.

The first step towards a more efficient algorithm is to reinterpret the problem as one

involving polynomials. If we think of the æ ÝÞ ß
as coefficients of a polynomial ç è æ è é è

, and

likewise the
Ü ÝÞ ß

, then the output signal ê Ý ë ß
is given by the coefficients of their product,ìí î ïðè ñ ò æ è é è ó ë ìí î ïðè ñ ò Ü è é è ó ô â í î âðè ñ ò ê è é è õ

In other words, convolution can be reformulated as polynomial multiplication. We will hence-

forth tackle the problem in this particular guise, letting the rich structure of polynomials

guide us through various twists and turns towards a solution. In fact, it will soon become

apparent that this chapter is all about switching representations.

1For simplicity we are assuming here, and for the rest of this chapter, that all coefficients are real numbers,

and that basic arithmetic operations on reals take unit time. In general, if the numbers involved are large, the

various time bounds we obtain will need to be multiplied by ö ÷ø ù ú û ü ý, where ü is the number of bits of precision.

2



2 Polynomial multiplication

2.1 An alternative representation of polynomials

The product of two degree-� polynomials � �� � � �! � � �� � � � � � ���� and � �� � � �! � ��� �� � � � ��� � has degree ��:

� �� � � � �� � � �� � � �! � ��� � � � � � ������ �
Its � �	 coefficient is �
 � � 


��! �� �
�� , and takes � �� � steps to compute. Therefore the baseline

scheme for polynomial multiplication is essentially identical to the one for convolution, and

has � ��� � time complexity.

A radically different approach is suggested by a special property of polynomials.

Fact. A degree-� polynomial is uniquely characterized by its values at any � � �
distinct points.

We will later see why this is true, but for the time being it gives us an alternative representa-

tion of polynomials. Fix any distinct points � ! � � � � � �� . We can specify a degree-� polynomial

� �� � either by

(1) its coefficients �! � � � � � � � � �� ; or

(2) the values � �� ! � �� �� � � � � � � �� ��� �.
Going from the first representation to the second is merely a matter of evaluating the polyno-

mial at the chosen points. Going in the reverse direction is called interpolation.

Interpolation

Coefficient representation�� �� � � � � � Value representation������������ � � � ������
Evaluation

This alternative representation gives us another route to
� �� �: since it has degree " ��,

we only need its value at any �� � � points, and its value at any given point is easy enough to

compute, simply � �� � times � �� �. The resulting algorithm is shown in Figure 2.1.

The correctness of this high-level approach is a direct consequence of the equivalence of

the two polynomial representations. What is not so immediate is its efficiency. Selection and

multiplication are no trouble at all, just linear time. But how about evaluation? We know that

evaluating a polynomial of degree � " � at one point takes � �� � steps, and so we would expect� points to take � �� � � steps. The FFT does it in � �� ��� � � time, for a particularly clever choice

of � ! � � � � � � �� in which the computations required by the individual points overlap with one

another and can be shared.

2.2 Evaluation by divide-and-conquer

Here’s an idea for how to pick the points � ! � � � � � � � � � �� at which to evaluate a polynomial

� �� � of degree " � 
 �. If we choose them to be positive-negative pairs, that is,

� ! � � � � � � � � � �� � �� ! ��� � � � � � ��� ���� �
3



Figure 2.1 Polynomial multiplication

function PolyMult(� ��)
Input: Coefficients of two polynomials � �� � �� �� �, of degree �
Output: Their product

� � � � �
Selection

Pick any points � ! � � � � � � � � � ��, where � � �� � �
Evaluation

Compute � �� ! � �� �� � � � � � � �� �� ���
and � �� ! � �� �� � � � � � � �� �� ���

Multiplication

Compute
� ��
 � � � ��
 �� ��
 � for all � � � � � � � � � 
 �

Interpolation

Interpolate to recover
� �� � � �! � ��� � � � � � ���� ��

then the computations required for � �� � � and � �
� � � have a lot in common, because the even

powers of � � coincide with those of 
� �.
To investigate this, we need to split � �� � into its odd and even powers, for instance

� � �� � ��� � �� � � � � � ��� � � �� � ��� � � � � � � �� � ��� � ��� � � �
Notice that the terms in parentheses are polynomials in ��. More generally,

� �� � � � � ��� � � �� � ��� � �
where � � ���, with the even-numbered coefficients, and � � ���, with the odd-numbered coeffi-

cients, are polynomials of degree " ��� 
 � (assume for convenience that � is even). Given

paired points �� �, the calculations needed for � �� � � can be recycled towards computing � �
� � �:
� �� � � � � � ���� � � � �� � ���� �

� �
� � � � � � ���� � 
 � �� � ���� � �
In other words, we can reduce the evaluation of polynomial � �� �, which has degree " �, at �
paired points �� ! � � � � ��� ���� to the evaluation of � � and � � , which have degree " ��� 
 �,
at the ��� points ��! � � � � � �� ����. In this way, the original problem of size � can be recast as

two subproblems of size ���, followed by some linear time arithmetic. If we could recurse, we

would get a divide-and-conquer procedure with running time

� �� � � �� ����� � � �� � �
which is � �� ��� � �, exactly what we want.

There are ��� � levels to this recursion, and the points at any given level are the squares of

the points at the previous level. The divide-and-conquer works correctly under one condition.

4



Condition. The points are paired at every level of the recursion, that is,

1. the initial points � ! � � � � � � �� are paired,

2. their squares (of which there are ���) are paired,

3. their fourth powers (of which there are ���) are paired, and so on.

The top level, with � points, is easy enough to manage. But at the second level we already

seem to be in trouble – if the numbers are squares, how can they be positive-negative pairs?

The answer is to use complex numbers, as becomes apparent when we reverse-engineer a

solution. At the very bottom of the recursion, we are left with a single point. This point might

as well be 1, in which case the level above it must consist of its square roots, �� � � � �. The

next level up then has ��� � � � ��� �, where � is the imaginary unit. Continuing in this way,

we can show that our condition is exactly satisfied when the initial numbers are taken to be

the � �	 complex roots of unity, that is, the � complex solutions to the equation � � �. We now

turn to these in more detail.

2.3 The complex roots of unity

Figure 2.2 is a quick pictorial review of complex numbers. Assume � is even; the following

observations from the diagram will be important to us.

1. The complex roots of unity are the � numbers whose angles are multiples of �� ��.

2. The squares of the � �	 roots are the �� ��� � roots.

3. These roots are paired: the numbers with angles �� � �� and �� �� � ������ � �� � �� � �
are negatives of each other.

Observation (2) says that if we start our divide-and-conquer procedure with the � �	 complex

roots of unity, and � is a power of two, then at the � �	 level of recursion the points being

evaluated will be �� ��
 ��	 roots of unity. Observation (3) then confirms the recursive pairing

condition we need. The resulting algorithm is the fast Fourier transform, shown in Figure 2.3.

Why is � a power of two? The correctness of our polynomial multiplication scheme is

assured for any � � �� � �, but for the sake of efficiency � should not be too large. Fortunately,

we can always find a power of two between �� � � and �� (can you see why?). This modest

increase in the input size is a small cost for the tremendous convenience it brings.

5



Figure 2.2 A review of complex numbers.

real

imaginary

�
�

�

�

The complex plane

1. � � � � �	 is plotted at position 
� � ��.
2. Another format: � � ��� , where

� length  � ��� � ��,
� angle � � �� � �� �: ��� � � �� � ��� � � ��
� ��� is the same as ��� � � 	 ��� �
� � can always be reduced modulo �� .

3. Polar coordinates: 
 � � �.

 !"!#$%"&%#'

 !"$%"' !#$%#'
Multiplying complex numbers

The product of  (���) and � ���* is  (� �� +�), �* -:
multiply the lengths and add the angles.

.

./0

012

3012

0

angle 4or
20

The unit circle

1. Complex numbers with length 1.

2. Specified completely by their angles, e.g.

Number 5 	 65 6	
Angle

� � �� � 7� ��
3. Multiply numbers 89 add their angles

4. Number � has angle � 89 6� has angle � � �

:;< =>

angle
:;<

?;<

The � �	 complex roots of unity
(assume @ is even)

1. Shown here for @ � 5A.

2. Their angles are multiples of �� �@.

Raise to the @BC power D multiply angle by @ D
result has angle zero.

3. Square a number 89 double its angle

4. Squares are the 
@ ���EF roots of unity, shown

here with boxes around them.

6



Figure 2.3 The fast Fourier transform (polynomial formulation)

function FFT(� ��)
Input: Coefficient representation of a polynomial � �� �

of degree " � 
 �, where � is a power of two�, an � �	 root of unity
Output: � �� ! � � � � � �� ��  ���
if � � � then return � ���
rewrite � �� � � � � ��� � � �� � ��� �
FFT(� � �� �

) evaluates � � at even powers of �
FFT(� � �� �

), likewise for � �
for

� � � to � 
 �:
compute � �� � � � � � �� �� � � � � � � �� �� �

return � �� ! � � � � � �� ��  ���

2.4 A matrix reformulation

We are well on our way towards efficiently realizing the grand scheme of Figure 2.1. The last

piece of the puzzle, the interpolation step, will be solved in the most simple and elegant way

we could possibly have hoped for – using the same FFT algorithm, but called with � �� in place

of � ! This might seem like a miraculous coincidence, but it will make a lot more sense when

we recast our polynomial operations in the language of linear algebra.

Our two representations for a polynomial � �� � of degree " � 
 � are both vectors of �
numbers,

Interpolation

Coefficient representation�� �� � � � � ��� Value representation������������ � � � ��������
Evaluation

and are related by the following equation.

�
����

� �� ! �
� �� � �

...

� �� ���
�
���	

�
�
����

� � ! ��! � � � � ��!� � � ��� � � � � ���
...� � �� �� �� � � � � �� ��

�
���	

�
����

�!� �
...� ��

�
���	
�

Call the matrix in the middle 
 . Its highly specialized format – a Vandermonde matrix –

gives it many interesting properties, of which the following is particularly relevant to us.

If � ! � � � � � � �� are distinct numbers then 
 is invertible.

The existence of 
 �� allows us to invert the matrix equation above, so as to express coeffi-

cients in terms of values. In brief,

Evaluation is multiplication by 
 , while interpolation is multiplication by 
 ��.
7



This reformulation of our polynomial operations reveals their essential nature more clearly.

Among other things, it finally justifies an assumption we have been making throughout, that

� �� � is uniquely characterized by its values at any � points – in fact, we now have an ex-

plicit formula which will give us � �� � in this situation. Vandermonde matrices also have the

distinction of being quicker to invert than more general matrices, in � �� � � time instead of

� �� � �. However, we need to do interpolation a lot faster than this, so once again we turn to

our special choice of points – the complex roots of unity.

2.5 Interpolation resolved

In linear algebra terms, the FFT multiplies an arbitrary �-dimensional vector (which we were

calling the coordinate representation) by the � � � matrix


  �� � �
�
�����������

� � � � � � �� � � � � � � �  ��
� � � � � � � � � � � ���

...� � � � �� � � � � � ����

...� � � ��� � � � ��� � � � � � ��� � ���

�
����������	

�
 row for � ! � ��
 �
�
 � �

...�
 � �

...�
 �  ��
where � is any complex � �	 root of unity, and � is a power of two.

For simplicity, pick � to be �
�� �� , the root with angle �� ��, and as long as we are dealing

with just one value of �, drop the subscript from 
  . It turns out that in addition to being a

Vandermonde matrix, 
 �� � is also (up to a scaling factor) unitary, which we will define later

but for the time being implies that its inverse is easy to write down explicitly.

Inversion formula. 
 �� ��� � � 
 �� ��� �
Therefore interpolation is the same as multiplication by � 
 �� ���, and, since � �� is also an� �	 root of unity, can be handled by a single FFT! Our � �� ��� � � polynomial multiplication

algorithm (Figure 2.1) is now fully specified.

In terms of justification, however, there remains one loose end: the inversion formula. We

need to verify that 
 �� � � 
 �� ��� is � times the identity matrix. Let’s do this entry by entry.

Position �� � � � of 
 �� � � 
 �� ��� is the dot product of the
� �	 row of 
 �� � with the � �	 column

of 
 �� ���. These are, respectively,

�� � � � �� � � � � � ���� � and
�� � �
 � ��
 � � � � � � ���
 ��

(if you number rows and columns starting from zero), and their dot product is

� � � � �
 � � � �� �
 � � � � � � � � ����� �
 � �
If
� � � then all these numbers are one, and they add up to � , exactly the diagonal elements

we want. If
� 	� � , the numbers are arranged symmetrically around the unit circle and thus

cancel each other out to give a sum of zero. In short,

� � � 
 � � � 
 � � � � � � � ���
 � � � if � is a multiple of �� otherwise.

8



Figure 3.1 A fast convolution algorithm.

function Convolution(� � �)
Input: Signals � � ��! � � � � � �� ��� and

� � ��! � � � � � �� ���
Output: Their convolution �

Let � be the smallest power of two above �� 
 �
Pad � � � with zeros to get them to length �

Selection

Let � be �
�� �� 

Evaluation
�� �
 ��� �� �� �
�� �
 ��� �� �� �

Multiplication
��� �
 ��� � ��� for all

� � � � � � � � � 
 �
Interpolation� �
 � � ��� ��� �� ���

A formal proof of the second case of this equation goes like this: since � is not a multiple of�, the angle �� ��� is not a multiple of �� , so � 
 	� �. By the usual formula for the sum of a

geometric series,

� � � 
 � � � � � � � ���
 � �  
 
 �� 
 
 � � � (note �  
 � ��  �
 � �).
Another way to prove this is to argue that for some even �, these ��� 
 � � � � �� � ���
 are the � �	
roots of unity, repeated ��� times. For instance, when � � ��� they are alternately � � and 
�.
Therefore, the numbers are paired and add to zero.

3 The definitive algorithm

3.1 Putting polynomials aside

The scenic journey of the previous section culminated in an � �� ��� � � algorithm for comput-

ing the convolution of two length-� signals. Much of the inspiration came from casting the

problem in terms of polynomials. But now their job is done, and we can put them aside and

rewrite the algorithm without them. The result is shown in Figure 3.1.

Let’s step back and solidify our understanding of this algorithm. The overall idea is that

convolution is just a disguised form of a simpler, linear-time operation: coordinate-wise mul-

tiplication. The real work is done in switching between disguises, and this is the province of

the FFT. Figure 3.2 shows the correspondences between the two spaces involved – the default

space, which contains the original vectors (signals) � � �, and the transformed space, with their

counterparts
�� � ��.

The transformation is extremely simple. It is just multiplication by the matrix 
  �� �
which we defined earlier, and which we will occasionally call 
 for convenience. What fea-

tures give 
 its special properties?

9



Figure 3.2 Switching between two vector spaces.

��

�� ��

��
�	


�

Original space
Transformed space

�



�

� ��

��

 is the convolution of � � � � is the coordinate-wise product of
�� � ��

Feature 1. 
 is a Vandermonde matrix – each row starts with � and has ascending

powers of some number.

By simple algebra (which you should check), this implies exactly the claim of Figure 3.2, that


 times the convolution of � � � is the coordinate-wise product of 
 � with 
 �
.

Can you also show the converse, that any matrix with this property must be Vandermonde?

Feature 2. 
 is unitary (up to a scaling factor) – in other words, it is invertible

and its inverse is obtained by replacing each entry �
��

of 
 �
by �

���
.

The most concrete consequence of this feature is that 
 �� looks a lot like 
 itself, so much

so that both transformations can be carried out using the same procedure. But it also tells us

something about the geometry of the two spaces we are managing. A unitary transformation

is a rigid rotation. Therefore, multiplication by 
 is (not just figuratively but also technically)

a change of basis. We rotate the original vectors into the new Fourier basis, multiply them

coordinate-wise, and then rotate the result back.

Feature 3. The powers of � are recursively paired.

By making 
  �� � amenable to divide-and-conquer, this serves as our source of efficiency. Let’s

take a closer look at how this works in matrix format.

3.2 Divide-and-conquer revisited

For reference, here again is 
  �� �.


  �� � �
�
�����������

� � � � � � �� � � � � � � �  ��
� � � � � � � � � � � ���

...� � � � �� � � � � � ����

...� � � ��� � � � ��� � � � � � ���� ���

�
����������	

10



Its � � entries are all � �	 roots of unity and therefore consist of only � distinct values. Moreover,

they are arranged in a highly regular pattern, which is easiest to appreciate when the matrix

is divided into four ��� � ��� regions.

Code

� � � �

Region � consists of the top halves of all the even-numbered columns (starting count at zero),

while � has the bottom halves of these columns. Regions � and � are the corresponding

halves of the odd-numbered columns.

The four submatrices are intimately related.

1. � � � � 
  �� �� � �.
2. The

� �	 row of � is � � times the
� �	 row of � .

3. The
� �	 row of � is � � # �� � 
� � times that of � .

For the first of these, notice that the
� �	 row of matrix � contains all even powers of � � :

�� � �� � �� � � � � � � ����
while the

� �	 row of � contains even powers of � � # �� :�� �  #�� � � #�� � � � �  � �����#� � ��� � �
Since �  � �, these two matrices are identical. The other claims can be checked similarly.

By rewriting 
  �� � in terms of � �� �� � � , and then in terms of 
  �� �� � �, the multiplication

of a vector � � ��! � � � � � � ���� by 
  �� � can be decomposed into subtasks:

� 	� 

.
.
.� � � 	

 � �

� � � �

� � � �
�  � �

� �� �
.
.
.� � � �� � � �

� � � � �

reorder� �� 

� �� 	
� �

� � � 	
.
.
.

�

�
� � � 	

�

� � �� �
.
.
.� 	� 

.
.
.

� �

separate

into two

columns

This leads to the definitive FFT algorithm of Figure 3.3.

11



Figure 3.3 The fast Fourier transform

function FFT(� ��)
Input: A vector � � ��! � � � � � � � � � ���, for � a power of two

A primitive � �	 root of unity, �
Output: 
  �� � �
if � � � then return ���! � � � � � � � � � ����� � ��� ���! � �� � � � � � � �� � �� � ��� �! � � �� � � � � � � � ����� � ��� ��� � � �� � � � � � � ��� �� � �
for

� � � to ��� 
 �:�� � �� � � � � ��
�� # �� � �� 
 � � � ��

return ��! � � � � � � � � � ���

4 The fast Fourier transform unraveled

Through all our discussions so far, the fast Fourier transform has remained tightly cocooned

within the strictures of a divide-and-conquer formalism. To fully expose its structure, we need

to unbind it, to unravel the recursion.

The FFT decomposes an input vector into its even- and odd-numbered components. On an

input of length eight, this results in the following pattern of recursion.

�� � �� � �� � ��

�� � �	 � � � �� �� � ��

�
 �� �	 �� �� ������

�� � �� � �
 � �	

�� � � � � �� � �� � �
 � �� � �	 � ��

�� � �


The intermediate computations are extremely simple. What happens with ��! � �� �, for

instance, is shown below on the left.

�

��

� � ��

� ����� (� � ���)

FFT�����������

�

�

��
��

��
�� �

This kind of computation is called a butterfly. The FFT is made up entirely of these, so it will

be convenient to instead use the shorthand depicted above on the right. The edges are wires

carrying complex numbers from left to right. A weight of
�

means “multiply the number on

this wire by � � ”. And the numbers coming into a node get added up.

12



Figure 4.1 The fast Fourier transform circuit.

��

��

��

��

�	


�

�

�� ��

��

��

��

��

��

��

��  !

"#

$%

&'

()

*+

,-

./

0 1

0 2

0 3

0 4

0 5

0 6

0 7

8 9 : 5 ;

8 9 : 3 ;

8 9 : < ;

8 9 : 2 ;

8 9 : 6 ;

8 9 : 4 ;

8 9 : 7 ;

0 <

8 9 : 1 ;

5

2

2

2

2

4

4 7

2

2

3

3
4

<

3
6

2

1 1 1

5 1 1

1 5 1

5 5 1

1 1 5

5 1 5

1 5 5

5 5 5 5 5 5

5 5 1

5 1 5

5 1 1

1 5 5

1 5 1

1 1 5

1 1 1

Expressed in terms of these circuit elements, the FFT computation on a length-eight vector

is shown in Figure 4.1. Notice the following.

1. For � inputs there are ���� � levels, each with � nodes.

2. There is a unique path between each input �� and each output � �� 
 �.
This path is most easily described using the binary representations of

�
and � (shown in the

figure for convenience). There are two edges out of each node, one going up (the �-edge) and

one going down (the �-edge). To get to � �� 
 � from any input node, simply follow the edges

specified in the bit representation of �, starting from the leftmost bit. (Can you similarly

specify the path in the reverse direction?)

3. On the path between �� and � �� 
 �, the labels add up to
� � = � > ?.

Since � @ � �, this means that the contribution of input �� to output � �� 
 � is �� � � 
 , and

therefore the circuit correctly the values of polynomial � �� �.
4. And finally, the circuit is a natural for parallel computation.

13


