
CS170{Spring, 1999 Notes on Union-Find March 16, 1999

The Basic Data Structure

This data structure maintains a collection of disjoint sets and supports the following three

operations:

� MAKESET(x) - create a new set containing the single element x.

� UNION(x,y) - replace the two sets containing x and y by their union.

� FIND(x) - return the name of the set containing the element x. For our purposes this

will be a canonical element in the set containing x.

We will represent each set by a tree, where each element has a pointer to its parent in

the tree. The root points to itself, and is the canonical element (or name) of the set. It is

convenient to add a fourth operation LINK(x,y) where x and y are required to be canonical

elements. LINK changes the parent pointer of one of these elements, say x, and makes it

point to y. It returns the root of the composite tree y. Then UNION(x,y) = LINK(FIND(x),

FIND(y)). We must be careful in carrying out the LINK operation so that the new tree remains

roughly balanced. This is because FIND(x) requires time proportional to the length of the

path from x to the root of the tree. The balancing heuristic we shall use is called UNION BY

RANK. For each element, we have a number that we call its rank. For now, think of the rank

of an element as its height in the tree. i.e. it is the length of the longest path from it to a

leaf. The rank of x is initialized to 0 by MAKESET. Rank is only updated by the operation

LINK as follows: if x and y have the same rank r, then invoking LINK(x,y) causes the parent

pointer of x to be updated to y, and the rank of y to be updated to r+1. On the other hand,

if LINK is invoked on two elements x and y of di�erent rank, then the parent pointer of the

smaller rank element is updated to point to the larger rank element. This heuristic, called

UNION BY RANK, tries to keep the trees short and bushy. We shall show below that, thanks

to UNION BY RANK, the depth of each tree is bounded by logn.

Here is the pseudocode for what we've discussed so far:

procedure makeset(x)

p(x) := x

rank(x) := 0

end



function �nd(x)

if x 6= p(x) then p(x):= �nd(p(x))

return(p(x))

end

function link(x,y)

if rank(x) > rank(y) then x$ y

if rank(x) = rank(y) then rank(y) = rank(y) + 1

p(x) := y

return(y)

end

procedure union(x,y)

link(�nd(x), �nd(y))

end

First a few observations about rank:

� Lemma 1: If v 6= p(v) then rank(p(v)) > rank(v).

Proof: Note that we update the rank of the root of the tree only; once an element has

a parent other than itself, its rank is forever �xed. Now observe that when v's parent

pointer was updated to p(v), either p(v) had a higher rank, or they had the same rank

and rankp(v) was incremented by one. In either case, rank(p(v)) > rank(v).

� Lemma 2: At the time an element acquires rank k, it is the root of a tree with at least

2k elements (all but the root having rank strictly smaller than k).

Proof: rank(v) is updated to k only when v is a root vertex, rank(w) = rank(v) = k�1,

and LINK(v,w) causes w to point to v. By a simple induction on k, after the update the

tree rooted at v contains at least 2k elements. By Lemma 1 all these vertices except v

have rank strictly less than k.

� Lemma 3: The number of elements of rank strictly greater than k is at most n
2k
.

Proof: This assertion follows easily from the previous one. For each element v of rank

k we have at least 2k � 1 elements of lesser rank - the nodes of the tree rooted at v when

v got its rank. Since there are n elements in all, there can be only n
2k

such trees each of



which contains at most a single element of rank k. Thus, there are at most n
2k

elements

of rank k.

The number of elements of rank stricly greater than k is at most:

1X

j=k+1

n

2j
=

n

2k
(1=2 + 1=4 + 1=8 + : : :) =

n

2k

� Lemma 4: The rank of any element is at most logn

Proof: Since n
2k

is an upper bound on the number of elements of rank k, if there is at

least one element of rank k, then n
2k
� 1 and k � logn.

Path Compression

There is another heuristic that will further reduce the time required, on average, to carry

out FIND operations. Whenever we carry out the operation FIND(x), we may as well update

x's parent pointer to point directly to the root of the tree. In fact, we could do better still

by updating all the parent pointers in the path from x to the root of the tree. This heuristic,

which we will call PATH COMPRESSION, only doubles the time required to carry out this

FIND operation, but can potentially save a lot of time in future FIND operations.

When we do path compression, we do not update rank. Thus, although the rank of an

element may no longer be the height of that element in the tree, the UNION BY RANK

heuristic still LINKs according to the ranks of the elements involved.

Also note that the lemmas above are still correct: their proofs depend only on rank which

behaves as if there was no path compression.

Time Requirements

The time requirement of union-�nd with path compression depend on a very slowly-

growing function of n called log� n. log� n is the ceiling of the number of times you must

iterate the log function on n before you get one. Thus, log�(1) = 0, log�(2) = 1, for n = 3; 4,

log�(n) = 2, for 22 = 4 < n � 22
2

= 16, log�(n) = 3, for 22
2

= 16 < n � 216, log�(n) = 4, and

for 64K < n � 264K, log�(n) = 5. Since 264K is an unimaginably large number - much larger

than the number of bits that can be stored in a computer - for all practical purposes, log�(n)

is constant.

Now we will argue that any sequence of m UNION and FIND operations on n elements

take O((m+n)log�n) steps - or, since typically m � n, O(m log� n). This indicates that while



some of these operations may take as much as logn time, the average time per operation is

only log�(n), this is the savings from path compression!

This type of time analysis - where the average cost of an operation is small if we average

over a sequence of operations even though the cost of a single operation may be quite large - is

known as amortized analysis. We say that the union-�nd data structure with path compression

takes O((m+ n)log�n) amortized time.

First note that once an element is a non-root vertex, its rank is forever �xed (recall that

path compression doesn't a�ect rank). Now divide the non-root elements into groups according

to the log� of their ranks. Thus group i is de�ned to be the set of vertices whose rank r satis�es

log� r = i. More simply, each group consists of all vertices with ranks in the interval (k; 2k]

where k is itself an iterated power of 2 (the �rst six such groups were given above).

� Observation 1: The number of distinct groups is at most log�(n).

Proof: In Lemma 4 we proved that the maximum rank attainable for a given element

is logn, and log�(logn) < log� n.

� Observation 2: The number of elements in the group (k; 2k] is at most n
2k
.

Proof: This follows immediately from Lemma 3 which states that the number of

elements of rank greater than k is at most n
2k
.

Let us imagine assigning 2k tokens to each element in group (k; 2k]. Then, by Observation

1, the total number of tokens assigned to all the elements in that group is at most 2k n
2k

= n.

Moreover, by Observation 2, the number of tokens assigned to all elements in all groups is at

most n log� n.

In addition, we assign log� n tokens to each FIND operation. Since we have m UNIONs,

each requiring 2 FINDS, the total number of FINDs is O(m). Putting this together with the

tokens assigned to the elements, the grand total number of tokens is O((m+ n) log� n).

Recall that the number of steps to carry out the operation FIND(x) is proportional to the

length of the path from x to the root of the tree. We shall use a token to pay for each pointer

along this path that FIND must traverse. Our payment scheme is the following:

� if u and v belong to di�erent groups then FIND uses one of its tokens to pay for chasing

this pointer.

� if u and v belong to the same group then u pays using one of its tokens.



Recall that every time the parent pointer of an element v is updated via path compression,

the rank of p(v) increases by at least 1. If u and its initial parent are in group (k; 2k]), the

rank of the parent can increase fewer than 2k times before the parent is an element in a higher

group. Once the parent of u is in a higher group, FIND operations pay every time we chase

that pointer; so the 2k tokens assigned to u are su�cient to pay for all FIND operations

through u.

The tokens assigned to the FIND operations are su�cient to pay for the remaining (inter-

group) pointer jumps: since there are at most log� n groups, a given FIND operation can cross

at most log� n boundaries between groups.

Thus the total number of steps for m FIND operations on n elements is bounded by the

total number of tokens, which is O((m+ n) log� n). Finally, since LINK requires O(1) steps,

and a UNION is implemented using two FIND operations and a LINK operation, the total

time for m UNION and FIND operations on n elements is also O((m+ n) log� n).


