
CS 3510 Honors Algorithms
Solutions : Midterm 1

Problem 1. [Divide and Conquer]
The three ways of dividing the problem correspond to three recursions. We
could write down the recursion and solve for the running time in each of the
three cases.

In the first case T (n) = 3T (n/2) + Θ(n2
√

n) is the recursion. We could
solve this using Master’s theorem. Case 3 of Master’s theorem would apply
in this case, giving a Theta bound of T (n) = Θ(n2

√
n).

In the second case T (n) = 4T (n/2) + Θ(n2). Second case of Master’s
theorem applies and we get T (n) = Θ(n2 log n).

In the third case we have T (n) = 5T (n/2) + Θ(n log n). The first case of
Master’s theorem applies here and we get, T (n) = Θ(nlog

2
5).

Comparing the three Theta bounds, we can see that the second case yields
the least running time. So the best alternative is the one where we split the
problem into 4 pieces.

Problem 2. [Depth First Search]
The DFS can be executed and the pre/post numbers would be as shown
below. (Ties are resolved in alphabetical order)

Vertex Pre/Post Vertex Pre/Post Vertex Pre/Post

A 1/10 B 11/18 C 13/14
D 2/9 E 3/6 F 12/17
G 7/8 H 4/5 I 15/16

There are 5 strongly connected components in the graph. After shrinking
the SCC’s, we get the DAG in the Figure 1.

Problem 3. [True or False]

(a) False. Counterexample. Consider the following triangle ABC where
the directed edges are {(A,B), (A,C), (C,B), (B,A)}. If we start a
DFS from A, resolving ties alphabetically, then we get a cross edge from
C to B. But there is a cycle and hence graph is strongly connected.
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Figure 1: Strongly Connected Components
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Figure 2: Edge weights are distinct. But two shortest paths.

(b) False. Counterexample. Consider a simple graph with two vertices
A,B and one directed edge (A,B). If we start a DFS from A, we will
get no cross edges but clearly the graph is not strongly connected.

(c) False. Counterexample. Consider an undirected graph with two ver-
tices and an edge joining them. Irrespective of the weight, that edge
is the heaviest edge in the graph, and all the edge weights are trivially
distinct. But the edge is part of the MST. (which is the only spanning
tree in the graph)

(d) True. See solution for problem 2(b) in Homework 4.

(e) False. Counterexample. See figure 2.

(f) False. If there is a cycle in the graph, there is no longest path as we can
always cycle around and increase the path length. However, if there is
no cycle, we can use Bellman ford to find the longest path.
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Figure 3: Shortest path from A to B is not in any MST

(g) True. Taking the graph with all the weights multiplied by −1 and
finding a shortest path is equivalent to this, which can be done by
Dijkstra’s.

(h) True. Since the tree height can be atmost log n, FIND can be executed
in O(log n) time. It follows that UNION has the same running time
complexity.

(i) False. It is the amortized cost which is O(log∗ n). A single operation
is upper bounded by O(log n) and not O(log∗ n).

(j) False. The minimum spanning tree need not be the shortest path tree.
As a counterexample, consider the graph in figure 3.

Problem 4. [Strongly Connected Components]

(a) Thinking of intersections as vertices, we get a directed graph. The
mayor’s claim is that the graph is strongly connected. ie., the whole
graph is one strongly connected component. Finding the strongly con-
nected components can be done using DFS in linear time (done in
class). The only change required is to have a check if the first ’Explore’
finds all the vertices in the graph.

(b) Here the mayor makes a weaker claim. She says that from every vertex
reachable from the townhall, we should be able to trace back a path
to the townhall. In other words, the strongly connected component
including the townhall should not have any outgoing nodes. The town-
hall SCC should be a sink. As seen in class, we can isolate the SCC
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containing townhall in linear time. Now we can run through all the
edges in that SCC and check if any of them is directed outside that
SCC. If not, the weaker claim is true. This also can be done in linear
time.

Problem 5. [Searching in an array]
The algorithm is as given below. We look at the middle element of the array
first. If the element a[n/2] = n/2, we are done. Else if a[n/2] > n/2, since
all the array entries are distinct integers, it means that none of the elements
in the latter half of the array would satisfy a[i] = i. So we can recurse in the
former half. IF a[n/2] < n/2, by a similar argument, we need to look at only
the latter half of the array.

As the base case, we return TRUE or FALSE for a singleton array by just
looking at the element and index. Thus the algorithm is correct.

Check(a,0,n-1);

Check(array, first, last) {
if (first = last) {

if (a[first] = first) return TRUE;

else return FALSE;

}
mid = floor((first + last)/2);

if (array[mid]=mid) return TRUE;

else {
if (array[mid]>mid) Check (array, first, mid);

if (array[mid]<mid) Check (array, mid, last);

}
}

For the running time analysis, notice that at every recursion the array
size is halved. For an array of size n, we would require atmost log n steps,
each of constant time. So the running time is O(log n).
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