
CS 3510 Honors Algorithms
Solutions : Midterm 2

1. Let A be an NP-Complete decision problem whose inputs are from a
set S, and let A′ be the same decision problem whose inputs are from
a set T .

a) If S ⊆ T then A′ is in NP.
FALSE: If S ⊆ T , then you can of course check those instances from S
with just a small amount of information. However, since T can contain
additional inputs, you do not necessarily know that yes instances to
these can also be checked efficiently with a small amount of informa-
tion. For example, consider the class of problems that given a graph G
answers ”yes” if G is not 3-colorable. If S is bipartite graphs, then you
can always check for a yes instance efficiently. However, if T contains
a graph G that is not bipartite, there is no efficient way to check, with
only a small amount of information, that G is not 3-colorable.

b) If T ⊆ S then A′ is in NP.
TRUE: If A is in NP, then for all instances in S there is polynomial
information and an efficient procedure that will convince you that you
have a yes instance. If T is a subset of these instances, then the same
check will work on instances of T .

c) If S ⊆ T then A′ is NP-hard.
TRUE: If A is NP-hard, then there is a reduction from any NP-complete
problem, say B, to A. The same reduction will map instances of B to
A′ as well, but of course it only maps to instances that are in S. Since
S ⊆ T , this reduction will also show that A′ is NP-hard.

d) If T ⊆ S then A′ is NP-hard.
FALSE: We know that there is a reduction from any NP-hard problem
to A, but these might rely on mapping to instances in S \ T . In this
case the reduction does not go through. If S is all SAT instances and
T is just instances of 2-SAT, then A′ is not NP-hard even though A is.

2. (a) If you have a single hash function h you use it to map 50 elements

1



from {0, . . . , 199} to {0, . . . , 9}, what is the maximum number of
elements that can be hashed to the same value?

Since nothing is specified about the hash function, it is possible
that all the elements get mapped to the same value. So 50 is the
possible maximum.

(b) If you have a 2-universal family of 25 hash functions from {0, . . . , 199} →
{0, . . . , 9} and you notice that h1(5) = h1(12), then what is the
maximum number of hash functions from this family (besides h1)
that can map 5 and 12 to the same point?

This is a 2-universal family. So the probability of collision is at-
most 1/10. Since there are 25 hash functions, there can be atmost
b25/10c = 2 hash functions which collide for a specific pair of in-
puts. So at most one more hash function (besides h1), can map 5
and 12 to the same point.

(c) Suppose hu : {0, . . . , 99} → {0, . . . , 9} by setting hu(x) = x (mod 10)
and ht : {0, . . . , 99} → {0, . . . , 9} by setting ht(x) = (x−hu(x))/10.
Then hu(x) is the unit’s digit of x and ht(x) is the ten’s digit of
x. Is this pair of functions 2-universal? Why or why not?

Consider numbers 26 and 27. ht(26) = ht(27) = 2. hu(26) = 6 and
hu(27) = 7. So the probability of collision for this pair of numbers
is 1/2 > 1/10. So this pair of hash functions is not 2-universal.

3. Show that the following languages are NP-Complete. You can use the
fact that the Hamiltonian Cycle and Independent set problems are NP-
Complete, or any other NP-Complete problem that you know.

a) Half-Cycle = {G|G is an undirected graph on 2n vertices with a
simple cycle on n vertices}.

To show that Half-Cycle is in NP, we just note that if we are given the
vertices in the cycle in order, then we can check that this cycle contains
exactly half the vertices, that consecutive vertices are connected by an
edge in the graph, and that each vertex that appears on the cycle
appears only once. Each of these checks can be done in polynomial
time.

2



We will now show that Half-Cycle is NP-hard by reducing from Hamil-
tonian Cycle to Half-Cycle. Let G = (V, E) be an instance to Hamil-
tonian Cycle. We form G′ = (V ′, E ′) by defining V ′ as the set V with
|V | new vertices added and letting E ′ = E (so we are just adding n
independent vertices to the graph G). If G′ is a yes instance to Half-
Cycle, then there must be a cycle of length n among the first n vertices
(those that came from V ) since the new vertices are all disconnected.
Therefore, this must constitute a Hamiltonian Cycle in G. Conversely,
if there is a Hamiltonian Cycle in G, then this cycle has length n in
G′, a graph with 2n vertices. Therefore this cycle is a Half-Cycle in G′.
This shows that Half-Cycle is NP-hard. Since it is also in NP, we have
shown that Half-Cycle is NP-complete.

b) Indepedent-Set-or-Reverse = {(G, k)|G has an independent set of
size k or the complement of G has an independent set of size k.

To show ISOR is in NP, just notice that if we have a yes instance, then
there are k vertices that form an independent set or a clique. We can
check that all pairs of vertices in this set are connected, or that they
are all disconnected, in polynomial time.

We will show that ISOR is NP-hard by reducing from Independent Set.
Let G = (V, E), k be an instance of Independent Set. We form a new
graph G′ = (V ′, E ′) by taking G and adding n new vertices. The edge
set E ′ = E, and we add no additional edges. The input to ISOR is
(G′, k + n). If (G′, k + n) is a yes instance of ISOR, then there is an
independent set of size k + n or a clique of size k + n – however, the
clique must be contained in the copy of G and therefore can only have
at most n vertices. Therefore it must be that we have an independent
set of size k + n. This must contain at least k vertices in G, so this is
a yes instance of IS on (G, k). Conversely, if we have an independent
set of size k in G, then these vertices together with the n new vertices
in G′ form an independent set of size k + n in G′, so this is also a yes
instance of ISOR. Therefore, by this reduction, ISOR is NP-hard and
consequently NP-complete.

4. Given an array of integers a1, a2, . . . , an positive and negative, such as
−1.3, 2,−7, 4, 2,−2, 3,−1, you want to find the largest sum of contin-

3



guous integers. In this case it would be 4 + 2− 2 + 3 = 7.

We can accomplish this by dynamic programming. For each i =
0, . . . , n, define maxsum[i] to be the value of the largest sum seen so
far. We also need maxsuff[i] to be the largest sum of a suffix ending
at ai (In the array above, maxsum[4] = 5, maxsuff[4] = 0.)

Fill in the blanks in the dynamic programming algorithm:

(a) Initialize:

maxsum[0] = 0

maxsuff[0] = 0

(b) Iteration:

for i = 0, . . . , n− 1,

maxsum[i + 1] = max(maxsum[i], maxsuff[i + 1])

for i = 0, . . . , n− 1,

maxsuff[i + 1] = max(maxsuff[i] + ai+1, 0)

(c) What other data structure do you need in order to recover in
the end of the algorithm, the beginning and end of the maximum
continguous sum?

We could have two more bit-arrays, indicating which of the two
alternatives we picked for computing the maxsuff at each j. So
after we find out the maxsum at the end of the algorithm, we
could scan back through looking at which of the earliest entries
were the maxsum equal to the overall maxsum. That will be the
end of the longest contiguous sum. The beginning will be the last
point before the end, where the maxsuff started from 0.

(d) What is the running time of the algorithm?

We do constant amount of comparisons at each stage. So the
algorithm is linear time. Even the backtracking to find out the
beginning and the end of the maxsum can be done in linear time,
so the algorithm runs in linear time, Θ(n).

4


