```
CS 3510X - Honors Algorithms - Spring 2006
```

Practice Midterm 2

1. A palindrome is a word $w_{1} w_{2} \ldots w_{k}$ whose reverse $w_{k} \ldots w_{1}$ is the same string (e.g., danaranad). Consider a string $A=a_{1} a_{2} \ldots a_{n}$. A partitioning of a string is a palindrome partitioning if every substring of the partition is a palindrome. For example, $a b a|b| b b a b b \mid a b a$ is a palindrome partitioning of $a b a b b b a b b a b a$. Design a dynamic programming algorithm to determine the coarsest (i.e., fewest cuts) palindrome partitioning of A.
a) Formally define the set of subproblems you will solve.
b) Give your recurrence for the solution of a given subproblem in terms of other subproblems.
c) Give a non-recursive pseudo-code specification of the algorithm and state its complexity in terms of n.
2. Double-SAT is a problem for which you are given a boolean formula Φ that is a conjunction of disjunctions (just like SAT). An algorithm for DoubleSAT should answer YES if there are at least two satisfying assignments to Φ and should answer NO if there is only one or none.

Prove that Double-SAT is NP-Complete.
3. What is the expected number of collisions when using a random hash function from a 2-universal family to hash n elements of a universe M into a table of size $2 n$?
4. We are given two strings x and y of length m and n respectively. We are asked to find the new edit distance between these two strings. That is, the minimum number of operations needed to transform x to y when these types of operations are allowed: (1) insert a character in any position, (ii) change one character into another, (iii) delete a whole consecutive block of characters of x. Each of these three operations counts as one step. Find a dynamic programming algorithm that solves this problem, as follows:
Define, for $i=0, \ldots, m$ and $j=0, \ldots, n, E D[i, j]$ to be the edit distance between the first i characters of x and the first j characters of y.
(Extra credit) Can you devise an $O(m \cdot n)$ algorithm for this problem?

