
PHASE TRANSITIONS IN RANDOM DYADIC TILINGS AND RECTANGULAR
DISSECTIONS∗

SARAH CANNON† , SARAH MIRACLE ‡ , AND DANA RANDALL §

Abstract. We study rectangular dissections of an n × n lattice region into rectangles of area n, where n = 2k for an
even integer k. We show there is a natural edge-flipping Markov chain that connects the state space. A similar edge-flipping
chain is known to connect the state space when restricted to dyadic tilings, where each rectangle is required to have the form
R = [s2u, (s + 1)2u] × [t2v , (t + 1)2v ], where s, t, u and v are nonnegative integers. The mixing time of this Markov chain for
general rectangular dissections remains open, while recent work by Cannon, Levin, and Stauffer [4] gave a polynomial upper
bound on the mixing time when restricting to dyadic tilings.

We consider a weighted version of these Markov chains where, given a parameter λ > 0, we would like to generate each
rectangular dissection (or dyadic tiling) σ with probability proportional to λ|σ|, where |σ| is the total edge length. We show
there is a phase transition in the dyadic setting: when λ < 1, the edge-flipping chain mixes in time O(n2), and when λ > 1, the
mixing time is exp(Ω(n2)). The behavior for general rectangular dissections is more subtle, and even establishing ergodicity
of the chain requires a careful inductive argument. As in the dyadic case, we show that the edge-flipping Markov chain for
rectangular dissections requires exponential time when λ > 1. Surprisingly, the chain also requires exponential time when λ < 1,
which we show using a different argument. Simulations suggest that the chain converges quickly at the isolated point λ = 1,
but this case remains open.
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1. Introduction. Rectangular dissections arise in the study of VLSI layout [6], mapping graphs for floor
layouts [18, 23], and routings and placements [26] and have long been of interest to combinatorialists [2, 22].
In each of these applications, a lattice region needs to be partitioned into rectangles whose corners lie on
lattice points such that the dissection satisfies some appropriate additional constraints. For example, equitable
rectangular dissections require that all rectangles in the partition have the same area [9](see Figure 1). We
are interested in understanding what random equitable rectangular dissections look like as well as finding
efficient methods for sampling these dissections.

There has also been interest in the special case of dyadic tilings, or equitable rectangular dissections into
dyadic rectangles. A dyadic rectangle is a set of the form

R = [s2u, (s+ 1)2u]× [t2v, (t+ 1)2v]

where s, t, u and v are nonnegative integers. A dyadic tiling of the 2k × 2k square is a set of 2k dyadic
rectangles, each of area 2k, whose union is the full square; see Figure 1(b). Janson et al. [10] studied the
asymptotics of Ak, the number of dyadic tilings of the 2k × 2k square where k ∈ Z+. They show that
every dyadic tiling must have a fault line, that is, a line bisecting the square in the vertical or horizontal
direction which avoids non-trivial intersection with all rectangles in the tilings. This allows them to derive the

recurrence Ak = 2A2
k−1−A4

k−2 and show that asymptotically Ak ∼ φ−1ω2k , where φ = (1+
√

5)/2 = 1.6180....
is the golden ratio and ω = 1.84454757 is a constant.

Although equitable partitions of lattice regions into rectangles or triangles have been extensively studied,
many fundamental questions remain open. A notable exception is dissections into rectangles with area 2,
commonly known as domino tilings or the dimer model from statistical physics. Researchers have discovered
remarkable properties of these tilings, including striking underlying combinatorial structures [11], statistical
properties of random tilings [12], and analysis showing various Markov chains for generating them are efficient
[7, 15, 19].
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(a) (b)
Fig. 1. (a) An equitable rectangular dissection and (b) a dyadic tiling of the 16 × 16 square. Shaded rectangles are not

dyadic.

Triangular dissections have been explored extensively as well, both when the vertices are in general
position and when they are vertices of a planar lattice. On the Cartesian lattice Z2, the problem becomes
finding equitable (or unimodular) triangulations of a lattice region, where each triangle has area 1/2. See
[14] for an extensive history of work on triangulations.

Interestingly, in each of these cases, a certain “edge-flip” Markov chain has been identified that connects
the state space of allowable dissections. For example, for domino tilings, the Markov chain iteratively removes
a length 2 edge bordering two dominoes and replaces it with a length 2 edge in the orthogonal direction,
effectively replacing two vertical dominoes with two horizontal ones, or vice versa. This chain is known to
be rapidly mixing [15, 20, 25]. In the case of dyadic tilings, there is again a natural edge-flip chain that
connects the set of possible configurations – if there are two neighboring rectangles in the tiling that share
an edge, we can remove that edge and retile the larger composite rectangle with the edge that bisects it in
the orthogonal direction, provided the new tiling is still dyadic (see Figure 3(c),(d)). The mixing rate of
this edge-flip chain was left open in [10], although the authors argue that a different nonlocal Markov chain
containing additional moves does converge quickly to equilibrium. This edge-flip chain was later shown to
be rapidly mixing [4].

Another edge-flip chain also connects the state space of triangulations by replacing an edge bordering
two triangles with the edge connecting the triangles’ other two vertices if the quadrilateral formed by their
union is convex. The edge-flip chain on triangulations of general point sets has been the subject of much
interest in the computational geometry community (see, e.g., [24]). In the unweighted case the chain has
only been analyzed when the points are in convex position [16, 17], in which case the triangulations are
enumerated by the Catalan numbers.

Recently, Caputo et al. [5] introduced a weighted version of the lattice triangulation problem and dis-
covered remarkable behavior. Each triangulation σ on a finite region of Z2 is assigned a weight λ|σ|, where
λ > 0 is some input parameter, with the stationary probabilities proportional to these weights. They con-
jecture there is a phase transition at λ = 1 and that when λ < 1 there are no long-range correlations of
the triangles and Markov chains based on local edge flips converge in polynomial time, while when λ > 1
there will be large regions of aligned long-thin triangles and local Markov chains will require exponential
convergence time. Their conjecture is supported by the intuition that when λ is large, triangulations with
many long-thin triangles will be favored, and the geometry will force these triangles to align in the same
direction. In contrast, when λ < 1, triangles with large aspect ratio will be preferred, the chain will be
rapidly mixing, and there will not be any long-range order. They verify this conjecture when λ > 1 and
when λ < λ0 < 1 for some suitably small constant λ0.

1.1. Sampling Rectangular Dissections. In this paper, we study a weighted version of the equitable
rectangular dissection problem and explore the mixing time of an appropriate edge-flip Markov chain. Let
n = 2k, for k an even integer, and let Λn be the n × n lattice region. We will be considering rectangular
dissections of Λn into rectangles of area n in the dyadic and general cases. Let Ωn be the set of dyadic tilings
of Λn and let Ω̂n be the set of rectangular dissections of Λn into rectangles of area n that are not necessarily
dyadic. In the weighted setting, we are given an input parameter λ > 0 and the weight of a dyadic tiling
σ ∈ Ωn is π(σ) = λ|σ|/Z, where |σ| is the total length of edges in σ and Z =

∑
σ∈Ωn

λ|σ| is the normalizing

constant known as the partition function. Likewise, in the general dissection setting, for α ∈ Ω̂n, we define
π̂(α) = λ|α|/Ẑ, where |α| is the total length of α and Ẑ is again the normalizing constant.

Let Mn be the edge-flip Markov chain on Ωn that replaces an edge bordering two rectangles with the
perpendicular bisector of the combined area 2n rectangle, provided the resulting tiling remains dyadic (details
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Fig. 2. M64 and M̂64 after 1,000,000 simulated steps for various values of λ, starting with all vertical rectangles of width

1 and height 64.

are given in Section 2.). It is easy to generalize this chain to the weighted setting by modifying the transition
probabilities so that the chain converges to distribution π. Likewise, we can define the natural generalization
of the edge-flip chain M̂n on Ω̂n by connecting two dissections if they differ by the the removal and addition
of one edge. It is not obvious that this Markov chain M̂n connects the state space Ω̂n, and establishing this
is our first result (Theorem 7).

The remainder of the paper is concerned with the mixing times ofMn and M̂n as we vary the parame-
ter λ. One might expect the same behavior for weighted rectangular dissections as in the triangulation case,
namely that when λ is small we favor “balanced” rectangles (that are close to square) and we might expect
the chain to be rapidly mixing, while for λ large we favor long thin rectangles, and we should expect they
will mostly align vertically or horizontally. This picture is actually much more complicated in the general
case, but precisely what we find in the dyadic setting. In particular, in the dyadic case we show that there is
a critical point λc = 1, below which the chain mixes in polynomial time and above which the chain requires
exponential time (Theorems 13 and 18). Such a sharp phase transition is conjectured but unproven for
triangulations [5]. In subsequent work, the chainMn has been shown to converge in polynomial time also at
the critical point λc [4]. See the top row of Figure 2 for samples generated with various values of λ forM64.

In the general setting the picture is more surprising. When λ is large, as in the dyadic case, the Markov
chain M̂n requires exponential time (Theorem 18). However, we show that the chain also requires exponential
time to converge to equilibrium when λ is small (Theorem 19). Even though together these results seem to
suggest that the chain will always be slow, the proofs in these two regimes (i.e., λ < 1 and λ > 1) verify
that the reasons underlying the slow mixing results are quite different. When λ > 1, long thin rectangles are
favored, and it will take exponential time to move from a configuration that is predominantly horizontal to
one that is vertical. However, when λ < 1, balanced rectangles are favored. This is enough to dramatically
speed up the mixing time in the dyadic case, but in the general setting it causes an obstacle because long thin
rectangles that are well separated by many squares (or near squares) will take exponential time to disappear
since their removal requires more long-thin rectangles whose creation is exponentially unlikely. Both slow
mixing proofs when λ > 1 show that there is a bad cut in an equitable partition of the state space into two
equal sized pieces, but the proof in the general setting when λ < 1 relies critically on a careful choice of the
starting configuration. It may indeed be the case that the chain is fast if we start from the most favorable
configuration consisting entirely of squares. The convergence time is unknown when λ = 1, but based on
simulations we conjecture that the chain M̂n converges quickly to equilibrium at this isolated point(see the
bottom row of Figure 2).

We note that these results for dyadic tilings are complementary to other phase transitions discovered
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in the unweighted setting. Angel et al. [1] affirmatively answered a question of Joel Spencer regarding the
probability that there is a dyadic tiling if each dyadic rectangle is present with probability p, independent
of the others. They show that there is a phase transition for some p < 1, at which point the likelihood of
there not being such a tiling becomes exponentially small.

1.2. Techniques. Dyadic tilings have rich combinatorial properties that allow us to establish the pres-
ence of a phase transition in the convergence times. The proof of fast mixing of Mn on dyadic tilings when
λ < 1 is based on the method of exponential metrics for path coupling. Similar techniques have been used by
Greenberg et al. [8] for lattice paths and Caputo et al. [5] for weighted triangulations. Both of these results
rely on analysis of lattice paths while we take a more traditional approach that directly analyzes configura-
tions of rectangles. It is worth noting that the analysis is self-contained and does not rely on computational
tools to optimize the weights used in the calculations.

To show slow mixing of the Markov chains Mn and M̂n in the dyadic and general cases when λ > 1,
we apply a standard Peierls argument. Here, a straightforward analysis suffices to show that configurations
without horizontal or vertical long thin rectangles must have exponentially small weight, even after summing
over all such configurations. Since we must pass through these very unlikely configurations to move from a
mostly horizontal configuration to a mostly vertical one, we can conclude that the mixing time is exponential
using a basic flow argument.

The proof of slow mixing for general rectangular dissections when λ < 1 is considerably more delicate.
In this regime, rectangles that are close to square are preferred. We show that it will take exponential time
to move from a configuration that has two well-separated long thin rectangles to one that does not have any
long thin rectangles by very carefully analyzing required features of these tilings.

2. Preliminaries. We start by formalizing the problems. In the remainder of this paper, we will refer
to equitable rectangular dissections instead as tilings in analogy to the widely used designation dyadic tilings
to provide a uniformity of language.

Let n = 2k for some even integer k. An n-tiling is a tiling of the [0, n]× [0, n] lattice Λn by n axis-aligned
rectangles, each of area n; see Figure 1. We assume all rectangles are the Cartesian product of two closed
intervals, R = [x1, x2] × [y1, y2], and are of dimension 2a × 2b, where a, b ∈ {0, 1, 2, ..., k} and a + b = k.
That k is even implies n is a perfect square and there exists a “ground state” tiling consisting entirely of√
n ×
√
n squares; this is critical to the proof of Theorem 13. A tiling is dyadic if all rectangles are of the

form [s2u, (s+ 1)2u]× [t2v, (t+ 1)2v] for some nonnegative integers s, t, u, v, that is, if all rectangles are the
Cartesian product of two dyadic intervals. We will use the following lemma about dyadic intervals in some
of our proofs.

Lemma 1. Two dyadic intervals of the same length do not overlap nontrivially.

Proof. For any integer u, the only dyadic intervals of length 2u are

[0, 2u], [2u, 2 · 2u], [2 · 2u, 3 · 2u], ... [k · 2u, (k + 1) · 2u], ...

and none of these overlap except at their endpoints.

2.1. The Markov Chains Mn and M̂n. We study two related Markov chains Mn and M̂n whose
state spaces Ωn and Ω̂n, respectively, are all dyadic n-tilings and all n-tilings. Moves in these Markov chains
consist of edge-flips, which we now define. By an edge, we mean a boundary between two adjacent rectangles
in a tiling. Two tilings σ1, σ2 differ by exactly one edge-flip if it is possible to remove an edge in σ1 that
bisects a rectangle of area 2n and replace it with the bisecting edge in the perpendicular orientation to
form σ2. For example, in Figure 3, tilings (a) and (b) differ by a single edge-flip, as do tilings (c) and (d).
We say an edge e is flippable if it bisects a rectangle of area 2n.

We consider biased Markov chains with a bias λ ∈ (0,∞), analogous to [5]. For a tiling σ, let |σ| denote

the sum of the lengths of all the edges in σ. First, we define the Markov chain M̂n with bias λ. Note all
logarithms are assumed to be base 2. Starting at any tiling σ0, iterate:

• Choose, uniformly at random, (x, y, d, o, p) ∈{
1

2
,

3

2
,

5

2
, ...,

2n− 1

2

}
×
{

1

2
,

3

2
,

5

2
, ...,

2n− 1

2

}
× {t, l, b, r} × {0, 1} × (0, 1).
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(d)(c)(b)(a)

Fig. 3. Some tilings for n = 16. Non-dyadic tilings (a) and (b) differ by an edge-flip. Dyadic tilings (c) and (d) differ by
an edge-flip.

Let R be the (unique) rectangle in σt containing (x, y). If d = t, let e be the top boundary of R; if
d = l, b, or r, let e be the left, bottom, or right boundary of R, respectively.

• If e is a flippable edge and log |e| ≡ o(mod 2), let σ′ be the tiling obtained by flipping e to new
edge e′. If p < λ|σ

′|−|σt| = λ|e
′|−|e|, then σt+1 = σ′.

• Else, σt+1 = σt.
The Markov chain Mn for dyadic tilings is defined in the same way, interpreting “flippable” to mean

flippable into another dyadic tiling; Figure 3 (c) and (d) shows an edge-flip between two dyadic tilings that
are adjacent in Ωn.

We note that each rectangle R of any tiling σ is of area n and so contains exactly n points in
{ 1

2 ,
3
2 ,

5
2 , ...,

2n−1
2 }×{

1
2 ,

3
2 ,

5
2 , ...,

2n−1
2 }. A given flippable edge e in σ is thus selected by 2n different values of

(x, y, d, o), specifically, the 2n points (x, y) in the two rectangles e separates, each with the appropriate value
of direction d and parity o. Consequently, a given flippable edge e is selected by (x, y, d, o) with probability
2n · 1

n2 · 1
4 ·

1
2 = 1

4n =: q. This flip then occurs with probability min{1, λ|σ′|−|σ| = λ|e
′|−|e|}, according to the

random value of p. These transition probabilities favor long, thin rectangles when λ > 1 and favor squares
or rectangles close to square when λ < 1.

At most one of (x, y, d, 0, p) and (x, y, d, 1, p) results in an edge-flip; (x, y, d) selects a potentially flippable
edge e in σt, and then an edge-flip can only occur if the length of e satisfies log |e| = o(mod 2). This implies

both Mn and M̂n are lazy and thus aperiodic.
In Section 2.2, below, we demonstrate that M̂n and Mn are irreducible and thus ergodic, so they

converge to unique stationary distributions π̂ and π, respectively. By detailed balance, the distribution π̂
for general tilings can be given by π̂(σ) = λ|σ|/Ẑ, where Ẑ is the normalizing constant. Similarly, for dyadic
tilings, π(σ) = λ|σ|/Z, where Z is the normalizing constant.

The time a Markov chain M takes to converge to its stationary distribution π is measured in terms of
the distance between π and Pt, the distribution at time t. Let Pt(x, y) be the t-step transition probability
and Ω be the state space. The mixing time of M is

τ(ε) = min{t : ‖Pt
′
, π‖tv ≤ ε, ∀ t′ ≥ t},

where ‖Pt, π‖tv = maxx∈Ω
1
2

∑
y∈Ω |Pt(x, y)− π(y)| is the total variation distance at time t. As is standard

practice, for our theorems in Section 1.1 we assume ε = 1/4 and consider mixing time τ = τ(1/4). We say
M is rapidly mixing if τ is bounded above by a polynomial in n and slowly mixing if it is bounded below
by an exponential in n.

2.2. Ergodicity of Mn and M̂n. It remains to be shown that the moves described above connect
state spaces Ωn and Ω̂n. Connectivity for Ωn follows from work on dyadic tilings in [10], specifically from
their tree representation of a dyadic tiling. Dyadic constraints ensure rectangles exist in pairs, meaning an
edge-flip is always possible for every rectangle. In particular, all 1× n and n× 1 rectangles are adjacent to
at least one other rectangle of the same dimensions, so can be eliminated with a single edge-flip.

However, connectivity of Ω̂n is much less straightforward, and an interesting result in its own right.
Intuitively, issues arise because rectangles in a general n-tiling do not exist in pairs and there may be many
rectangles for which no edge-flip is possible; it is not even immediately evident that there is always a single
valid edge-flip for any general tiling. Rectangles of height n, or alternately, rectangles of height h where
there are no rectangles of larger height, may be well separated by complicated arrangements of tiles. It is
not clear how to introduce another rectangle of height h next to an existing rectangle of height h so that
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(b)(a)

Fig. 4. For n = 16, the bold lines in (a) define an 8-region that is not linked, while in (b) they give a linked 4-region.
Slicing lines intersecting the interior of each region are dashed.

Q

Fig. 5. A linked h-region P with four slices; leftmost slice Q is white, slices at distance 1 from Q are light gray, and slices
at distance 2 from Q are dark gray.

both may be eliminated, a necessary step for obtaining a tiling with no rectangles of height h or larger, for
instance.

To prove ergodicity of M̂n, we use a double induction on h-regions, which are certain subsets of rectangles
from an n-tiling in which all rectangles have height at most h. We prove there exists a sequence of edge-flips
leading to a tiling of h-region P by rectangles of height h. One can repeatedly find within P an h/2-region
or an h-region of strictly smaller area than P , inductively apply a sequence of edge-flips to obtain tilings
with all height h/2 or h rectangles, respectively, and apply a final sequence of edge-flips yielding a tiling of P
by rectangles of height h. As an n-tiling is an h-region for h = n, there is a sequence of edge-flips connecting
any two n-tilings, going through the tiling consisting entirely of 1× n rectangles.

Formally, an h-region is a simply-connected subset of rectangles from an n-tiling in which (A) all rectan-
gles have height at most h, and (B) for all vertical segments on the boundary of the region there is a c ∈ Z+

such that the segment has length ch. Note (B) is equivalent to all horizontal segments on the boundary of
the region being separated by some multiple of h. For n = 16, Figure 4(a) depicts an 8-region while (b)
depicts a 4-region.By the interior int(P ) of an h-region P we mean the area occupied by the rectangles of
P minus its boundary. The collection of all vertical edges on the boundary of an h-region P for which the
interior of P is to the right is the left boundary of P , and the right boundary of P is defined similarly.

For any h-region P , let h0 denote the vertical coordinate of the bottommost boundary edge of P . Call
the horizontal lines at heights h0, h0 +h, h0 +2h,..., h0 +kh,... the slicing lines of P . By (B) in the definition
of an h-region, all horizontal segments on the boundary of P are contained in some slicing line. An h-region
is linked if every connected component of the intersection of a slicing line with int(P ) also intersects the
interior of some rectangle in P . That is, P is linked if there are no segments of slicing lines that separate
int(P ) into two disjoint h-regions. Figure 4 (a) is not linked as the 8-region is separated by the slicing line
at height 8, while (b) is linked.

Call the connected regions of int(P ) separated by the slicing lines of P slices of P ; note that one rectangle
might span two slices. Slices are shaded different colors in Figure 5. Call two slices adjacent if they are both
incident on a common segment of a slicing line. If P is linked, then for any two adjacent slices there exists
a rectangle spanning both.

For any linked h-region P , let w0 denote the horizontal coordinate of the leftmost boundary edge of P ,
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and let w := n/h denote the minimum width of a rectangle in P . Note every rectangle in P has width 2iw,
for some integer i ≥ 0, and has width exactly w if and only if its height is h.

Lemma 2. Let P be a linked h-region. For any rectangle [x1, x2] × [y1, y2] in P , both x1 and x2 can be
written in the form w0 + dw, d ∈ Z+.

Proof. Let Q be a slice of P adjacent to a leftmost boundary edge of P . All rectangles whose interior
intersects Q satisfy the necessary property because all rectangles in P have width a multiple of w. We
proceed by induction on the distance between some slice Qi and Q, where two adjacent slices are at distance
one; see Figure 5.

Suppose that Qi is adjacent to some Qi−1 at distance i− 1 from Q, and that the statement holds for all
rectangles whose interior has a nontrivial intersection with Qi−1. At least one of those rectangles R in Qi−1

must also have a nontrival intersection with Qi because P is linked. Traveling leftwards in Qi from R, all
rectangles crossed must also satisfy the desired property, as they are separated horizontally from R by some
collection of rectangles, each of width a multiple of w. It follows that the left boundary edge of Qi satisfies
the desired property, and thus all rectangles in slice Qi do.

For any (linked) h-region P , let S be the set of aligned rectangles in P , that is, all rectangles [x1, x2]×
[y1, y2] in P of height h for which y1 − h0 is an integer multiple of h. Aligned rectangles are precisely those
whose top and bottom boundaries are both contained in some slicing line and whose interior doesn’t intersect
a slicing line. All other rectangles of height h are unaligned.

Lemma 3. Let P be an h-region. Any connected component of the intersection of a slicing line with the
interior of P intersects the interior of an even number (possibly 0) of rectangles of height h.

Proof. We will prove the stronger statement that for any connected component of the intersection of
int(P ) with the slicing line l at vertical coordinate yl, for every y ∈ {yl − h+ 1, yl − h+ 2, ..., yl − 1}, there
are an even number (possibly 0) of rectangles R = [x1, x2]× [y1, y2] of height h satisfying y1 = y that cross l.

Suppose for the sake of contradiction that the stronger statement above does not hold. We define a dual
graph F on slices of P , where each vertex represents a slice of P . Two slices (vertices) are connected by an
edge in F if there is a common segment l of a slicing line between them and this segment doesn’t satisfy the
above statement; that is, if there is some y ∈ {yl − h + 1, ..., yl − 1} such that there are an odd number of
rectangles of height h with y1 = y that cross l. As P is simply connected F is a forest, with at least one edge
by assumption. Pick some slice Q of P that corresponds to a degree one vertex of F . Let Q′ be the unique
adjacent slice such that segment l separating Q from Q′ crosses an odd number of rectangles of height h with
some common value for y1. Let yl denote the vertical coordinate of this slicing line l, and suppose without
loss of generality Q lies below l and Q′ lies above it.

Consider the collection of rectangles R = [x1, x2] × [y1, y2] of height h crossing l, which each have
y1 ∈ {yl − h + 1, ...., yl − 1}. Let y∗ be the smallest among yl − h + 1, ..., yl − 1 such that an odd number
of rectangles of height h crossing l have y1 = y∗. Because slice Q was a vertex of degree 1 in F , for
each coordinate y ∈ {yl − h+ 1, ...., yl − 1} (particularly, for y = y∗) there are an even number of unaligned
rectangles of height h non-trivially intersecting Q and extending down into another slice satisfying y2 = y.
For the same reason, there are also an even number of rectangles of height h non-trivially intersecting Q
satisfying y1 = y and extending upward into some slice that is not Q′.

Examine the horizontal lines l1 and l2 at heights y∗ + ε and y∗ − ε, respectively, for some ε < 1; for
each consider the connected component of its intersection with the interior of Q. Both must be of the same
length dw, d ∈ Z+; cross the same number number r of aligned rectangles of height h in Q; and cross the
same number u of unaligned rectangles of height h that don’t have y1 or y2 equal to y∗. Note l1 crosses an
odd number of rectangles of height h with y1 = y∗, an odd number extending into Q′ and an even number
extending into all other slices. At the same time, l2 crosses an even number of rectangles of height h with
y2 = y∗ extending into other slices below Q. By looking at l1 we conclude d is odd and by looking at l2 we
conclude d is even, a contradiction.

Recall S denotes the set of aligned rectangles in a linked h-region P . Define a binary coloring of all
points in P \ S. For p = (x, y) ∈ P \ S, let p = (x, y) be the rightmost point on the left boundary of P that
is left of p. By Lemma 2, write x = w0 + dw, d ≥ 0 an integer. Define o(p) = 0 if d is even and o(p) = 1
if d is odd. Let r(p) be the number of (aligned, height h) rectangles in S that cross the segment between p
and p. Let E be the set of all points in P \S with r(p) + o(p) even, and let O be the set of all points in P\S
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Fig. 6. An h-region P and a rectangle R crossing a slicing line illustrating the definitions r(p), o(p), u(p), and u∗(p).

with r(p) + o(p) odd. We now show r(p) + o(p) has constant parity on rectangles of a linked h-region.

Lemma 4. For linked h-region P containing rectangle R = [x1, x2] × [y1, y2] ⊆ P \ S, for all p ∈ R,
r(p) + o(p) is the same modulo 2.

Proof. If R does not cross a slicing line, this is trivially true as o(p) and r(p) are constant on the
intersection of any rectangle with any slice. If R crosses slicing line l, let p = (x, y) be on the left boundary
of R just above l and p′ = (x′, y′) be on the left boundary of R just below l; see Figure 6. By Lemma 2,
x = w0 + dw for some d ∈ Z; we now analyze the parity of d. The value of o(p) as well as all rectangles
of height h between p and p affect this parity, whether aligned or not, while shorter rectangles have width
at least 2w and do not. Let u(p) be the number of unaligned rectangles of height h that cross the segment
between p and p, and let u∗(p) be the number of these rectangles that also cross the component of l∩ int(P )
that intersects R. We note that u(p) ≡ u∗(p)(mod 2) by Lemma 3, and that u∗(p) = u∗(p′), provided p
and p′ were placed sufficiently close together. Thus u(p) ≡ u(p′)(mod 2).

One can see that x = w0 + dw, where d ≡ o(p) + r(p) + u(p)(mod 2). Similarly, x′ = w0 + d′w,
where d′ ≡ o(p′) + r(p′) + u(p′)(mod 2). As x = x′ and u(p) ≡ u(p′)(mod 2), it follows that r(p) + o(p) ≡
r(p′) + o(p′)(mod 2).

Thus E and O form a well-defined partition of the rectangles in P \ S. We now consider h/2-regions
within P as well as h-regions within P with strictly smaller area of two types: - ‘interior’ and ‘boundary’.
Interior h/2-regions or h-regions have both their left and right boundaries adjacent to rectangles of height h
in S. Boundary h/2-regions contain part of the boundary of P for a portion of their left or right boundary.

A h-region P has even width if every connected component of the intersection of any horizontal line with
int(P ) is of length that is an even multiple of w.

Lemma 5. Let P be a linked h-region, where no two rectangles of height h are horizontally adjacent such
that there exists a valid edge-flip between them. Then at least one of the following holds:

• all connected components of E and O are boundary h/2-regions
• there exists an interior h/2-region
• there exists an interior h-region of strictly smaller area than P and even width

Proof. Suppose there is at least one connected component of E or of O that is not a boundary h/2-region;
we now proceed to find an interior h/2-region or an interior h-region with strictly smaller area.

Consider all connected components of E andO that are not boundary h/2-regions; that is, all components
that are not simply connected, contain rectangles of height h, or are not adjacent to the boundary of P .
Define a partial order on these components where G ≤ H if and only if G is contained within a hole in
component H. Consider any minimal element G in this partial order, and suppose without loss of generality
that it is a connected component of E. Any holes in G consist entirely of aligned rectangles of height h that
are in S, and by hypothesis no two of these aligned rectangles are horizontally adjacent. Consider rectangle
R = [x1, x2] × [y1, y2] that is part of such a hole. Choose any vertical height y∗ such that the horizontal
line at height y∗ intersects the interior of R, as well as the interior of some rectangle R− immediately left
of R and some rectangle R+ immediately right of R. Let p− be on the horizontal line at height y∗ inside
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Fig. 7. A simply connected h-region G that is not an h/2-region. Rectangles in S′ are white, while region E′ is shaded
dark gray and region O′ is light gray. The dashed line encloses h-region G′ with strictly smaller area.

R−, and let p+ be on the same horizontal line inside R+. Both R− and R+ must be in E, implying that
r(p−) + o(p−) has the same parity as r(p+) + o(p+); but this is a contradiction as r(p+) = r(p−) + 1 while
o(p+) = o(p−). Thus G is in fact simply connected.

Suppose G is an h/2-region. Because G is a maximal connected component of E, any rectangles in P \S
horizontally adjacent to G would also by definition be in E. Thus the left and right boundaries of G can
only be adjacent to rectangles in S because, by assumption, G is not a boundary h/2-region. G is an interior
h/2-region, and we are done.

If G is not an h/2-region, then it contains rectangles of height h; recall that as G ⊆ E ⊆ P \ S, it
contains no aligned rectangles of height h. Pick any leftmost rectangle R′ of height h in G, and let S′ ⊆ G be
the set of all rectangles of height h in G for which bottom coordinate y1 is an integer multiple of h different
from the bottom of R′; call all rectangles in S′ realigned. For all points in G \ S′, let r′(p) be the number of
realigned rectangles left of p.

In analogy to Lemma 4, we show r′(p)(mod 2) is constant on any given rectangle R ∈ G \ S′. First,
note r′(p) is constant on any rectangle entirely contained in a realigned slice of G (a slice determined by
horizontal lines at vertical interval ch, c ∈ Z, from the bottom of R′). Suppose rectangle R crosses some
line separating two realigned slices. Examine p = (x, y) and p̄ = (x̄, ȳ) on the left boundary of R just above
and just below the realigned slicing line. By Lemma 2, x = x̄ = x0 + dw, d ∈ Z+; consider the parity of d.
Using the same notation as above, o(p) = o(p̄) because realigned slicing lines are offset from the alignment
of vertical boundary edges of G. If u(p) denotes the number of rectangles of height h not in S′ between p
and the first boundary edge left of p, u(p) = u(p̄) for the same reason. As d = o(p) + u(p) + r′(p)(mod 2)
and also d = o(p̄) + u(p̄) + r′(p̄)(mod 2), then r(p) = r(p̄)(mod 2) and r′(p)(mod 2) is constant across all
rectangles in G \ S′.

Partition G \S′ into E′, rectangles for which r′(p) is even, and O′, the rectangles for which r′(p) is odd.
Let G′ be the largest connected component of O′, joined with all of its holes; see Figure 7. Note region O′

always has at least one nontrivial component as any rectangles immediately to the right of R′ are not in S′

by hypothesis, so satisfy r′ = 1.
The left and right boundaries of G′ must be adjacent to rectangles in S′ ⊆ G, so G \ G′ is nonempty

and G′ has strictly less area than G ⊆ P . The lengths of the vertical boundary segments of G′ are integer
multiples of h, and G′ is simply connected as it is the union of a connected region with all of its holes. As
G′ ⊆ P , it contains no rectangles of height more than h. Thus G′ is a h-region of strictly smaller area than
P . We can also observe that G′ has even width, as otherwise we quickly find a contradiction within E′ and
O′ in a manner analogous to Lemma 3.

Lemma 6. For any h-region P , there exists a sequence of edge-flips within P that yields a tiling of P
entirely with rectangles of height h.

Proof. We proceed by a double induction, on h and on the area of P . We first note any 1-region is
simply an n× a box consisting of a horizontal n× 1 rectangles, that is, it is tiled with rectangles of height 1.
Additionally, the smallest area h-regions consist of a single rectangle of height h, and are clearly tiled with
rectangles of height h. These two examples serve as the base cases for our double induction.
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⇒ ⇒ ⇒ ⇒ ⇒

Fig. 8. The edge-flip sequence used to reduce the number of rectangles of height h given an interior h/2-region tiled
entirely by height h/2 rectangles.

⇒ ⇒

Fig. 9. An h-region P in which all connected components of E (dark gray) and O (light gray) are boundary h/2-regions;
the tiling of P after applying (1) to each; and the tiling of P by rectangles of height h resulting from edge-flips between
vertically-adjacent rectangles of height h/2.

Let h = 2a, a ≤ k, be some height larger than one, and let P be any h-region. Suppose by induction that
(1) for any h/2-region, there exists a sequence of edge-flips leading to a tiling of the h/2-region entirely by
rectangles of height h/2, and (2) for all h-regions with strictly smaller area than P , there exists a sequence
of edge-flips yielding a tiling consisting entirely of rectangles of height h.

If P is not linked, then we can separate P into at least two h-regions of smaller area and apply (2),
so assume P is linked. We an also assume that P never contains two horizontally-adjacent rectangles of
height h with a valid edge-flip between them; any such pairs can easily be eliminated with single edge-flip,
creating instead two rectangles of height h/2, in a preprocessing step.

We now apply Lemma 5, to show that unless all connected components of E and O are boundary
h/2-regions, then we can always reduce the number of rectangles of height h in P .

If there exists an interior h/2 region, by (1), flip so that all rectangles are of height h/2. Recall that its
boundary must consist of rectangles of height h by the definition of an interior region. For each left boundary
height h rectangle R, ‘move’ it to the right via a sequence of edge-flips. Specifically, flip the horizontal edge
separating the two height h/2 rectangles immediately to R’s right to create two more rectangles of height h
at the same alignment as R; then, flip R’s right edge. Repeat until there is a rectangle of hight h adjacent
to a right boundary rectangle of height h, at which point one final flip eliminates both; see Figure 8. After
each such sequence of flips, there are two fewer rectangles of height h in P .

If there exists an interior h-region G of strictly smaller area and even width, by (2), flip edges such
that the region is tiled exclusively by rectangles of height h. Because of the even width condition, at each
y-coordinate, there are an even number of rectangles of height h in G; including the rectangles of height h
necessarily adjacent to the left and right boundary of G, there are still an even number of rectangles. These
can be paired horizontally and edges can be flipped such that the region occupied by G and the height h
rectangles adjacent to its left and right boundary is tiled with rectangles of height h/2. There are now
fewer rectangles of height h because, at the least, the rectangles adjacent to the boundary of G have been
eliminated.

After a finite number of steps, all connected components of E and O are boundary h/2-regions. By (1),
flip edges such that each h/2-region is tiled by rectangles of height h/2. As in fact all vertical boundary
edges of these regions are of height h, it is possible to pair all of these height h/2 rectangles vertically, and
flip edges such that each connected component of E and O is tiled by rectangles of height h, as demonstrated
in Figure 9. This yields a tiling of P exclusively by rectangles of height h.

Theorem 7. The Markov chain M̂n connects the state space Ω̂n consisting of all rectangular dissections
of Λn into n rectangles with area n.

Proof. Note that any tilings σ1 and σ2 of the n × n square are n-regions. By Lemma 6, there exists a
sequence s1 of edge-flips for σ1 leading to the tiling of the n×n square by rectangles of height n and width 1,
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and similarly there exists s2 for σ2. Applying the edge-flips of s1 and then the reverse of s2 yields a sequence
of edge-flips connecting σ1 and σ2.

3. Polynomial Time Mixing for Dyadic Tilings when λ < 1. We begin by proving that Mn is
rapidly mixing for all λ < 3−1/

√
n (Theorem 12). This bound approaches 1 as n grows, so for any λ < 1

there is sufficiently large n for which the Markov chain Mn is rapidly mixing (Theorem 13). To give some
perspective, we note that for all n ≥ 4, we have fast mixing for all λ < 0.577, a much better constant than
obtained in [5]. Already for n ≥ 1024 we have fast mixing for all λ < 0.966.

We use a path coupling argument and an exponential metric, as in [8]. A coupling of a Markov chainM
is a joint Markov process on Ω×Ω such that the marginals each agree withM and, once the two coordinates
coalesce, they move in unison. Path coupling arguments are a convenient way of bounding the mixing time
of a Markov chain by considering only a subset U of the joint state space Ω×Ω of a coupling. By considering
an appropriate metric φ on Ω, proving that the two marginal chains, if in a joint configuration in subset U ,
get no farther away in expectation after one iteration is sufficient to show that M is rapidly mixing. The
following theorem bounds the mixing time of a Markov chain by considering a path coupling; a version of
this theorem was first proved in [3], but the statement presented in [8] will be easier for us to work with.

Theorem 8 ([8]). Let φ : Ω×Ω→ R+∪{0} be a metric that takes on finitely many values in {0}∪[1, B].
Let U ⊆ Ω × Ω be such that for all (Xt, Yt) ∈ Ω × Ω, there exists a path Xt = Z0, Z1, ..., Zr = Yt such that

(Zi, Zi+1) ∈ U for 0 ≤ i < r and
∑r−1
i=0 φ(Zi, Zi+1) = φ(Xt, Yt).

Let M be a lazy Markov chain on Ω and let (Xt, Yt) be a coupling of M, with φt := φ(Xt, Yt). Suppose
there exists a β < 1 such that, for all (Xt, Yt) ∈ U ,

E[φt+1] ≤ βφt.

Then the mixing time satisfies

τ(ε) ≤ ln(Bε−1)

1− β
.

This theorem is particularly useful because the values taken by φ can be exponential in n. As long as
the distance between two chains in a coupling decreases by some constant multiplicative factor with each
move of the joint Markov process, the Markov chain is provably rapidly mixing.

We now apply this exponential metric theorem. Intuitively, we consider the subset U of the joint state
space Ωn×Ωn of tilings that differ by one edge-flip. The main result we need to show is that for any coupling
whose joint state is two configurations in U , after one iteration of the Markov chain, the expected distance
between the two coupled chains decreases by a constant factor of their original distance. It is crucial to
define the appropriate notion of “distance” between two tilings; we do so by carefully defining the distance
between tilings that are adjacent in Ωn, and then extending this definition to non-adjacent tilings.

Definition 9. Consider any dyadic tilings σ1 and σ2 that differ by one flip between edge e and edge f ,
both bisecting a common area 2n rectangle S. Without loss of generality, suppose that |e| ≥ |f |. We define
the distance between σ1 and σ2 to be

φ(σ1, σ2) = φ(σ2, σ1) := λ|f |−|e|,

For any dyadic tilings σ1 and σ2 that are not adjacent in Ωn, the distance between σ1 and σ2 is the
minimum over all paths in Ωn from σ1 to σ2 of the sum of the distances between adjacent tilings along the
path.

If σ1 = σ2, then φ(σ1, σ2) = 0.

We now examine the range of this distance metric.

Lemma 10. For λ < 1, the distance metric φ of Definition 9 takes on values in the range

0 ∪ [1, n log(n)λ−n].

Proof. If σ1 and σ2 differ by an edge-flip, then φ(σ1, σ2) is at least 1 as λ < 1 is being raised to a
nonpositive power. If σ1 and σ2 differ by more than an edge-flip, then φ(σ1, σ2) is a sum of distances that
are at least 1 so is at least 1. It only remains to show that φ(σ1, σ2) has the stated upper bound.
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⇒ ⇒...⇒

σh σ∗

Fig. 10. A sequence of edge-flips from σh to σ∗.

At Bt

2a

2b
S

e
f2b

2a

S

Fig. 11. Rectangle S of area 2n in marginal tilings At and Bt.

Let σ∗ denote the ground state tiling, tiling the n × n square with n smaller squares of size
√
n ×
√
n,

careful consideration shows that the two dyadic tilings at farthest distance φ from σ∗ are the tiling consisting
of all n × 1 horizontal rectangles σh and the tiling consisting of all 1 × n vertical rectangles σv. We note
that one path in Ωn from σh to σ∗ consists of (log n)/2 = k/2 stages, where in each stage n/2 edge-flips are
performed, reducing the length of each of the n rectangles by half; see Figure 10.

The contribution to φ(σh, σ
∗) from each of these edge-flips is at most λ−n, and there are nk/4 such

moves in this particular path in Ωn from σh to σ∗, giving φ(σh, σ
∗) ≤ (nk/4)λ−n. The same holds for σv.

There is thus a path between any two tilings, through the ground state σ∗, yielding the bound

φ(σ1, σ2) ≤ (nk/2)λ−n ≤ n log(n)λ−n.

Thus φ takes on values in the range {0} ∪ [1, n log(n)λ−n], as claimed.

We now define a coupling and will show that at each iteration, the two coupled process are getting closer
together in expectation according to distance metric φ. Fix λ < 3−1/

√
n. Let (A,B) denote a coupling of

Markov chain Mn on dyadic tilings, where At and Bt are the states of the two chains, respectively, after t
iterations. At each iteration, At and Bt are simultaneously updated by choosing the same random values
(x, y, d, o, p) for each. Let φt = φt(At, Bt) denote the distance between the two chains in the coupling (A,B)
after t iterations.

Lemma 11. Suppose At and Bt differ by a single edge-flip. Then for all λ < 3−1/
√
n, there is a constant c

such that for q = 1/(4n),
E[φt+1] ≤ (1− qc)φt

Proof. Let At and Bt differ by a single between edge e and edge f , where without loss of generality
|e| ≥ |f |, e is horizontal in At of length 2a, f is vertical in Bt of length 2b, and both bisect a rectangle S of
area 2n; see Figure 11.

We wish to bound E[φt+1 − φt] in terms of φt. Any potential moves (x, y, d, o, p) that select an edge
not in S and not on the boundary of S have the same effect on both At and Bt and thus, in these cases,
φt+1 = φt, as At+1 and Bt+1 still differ by the same single edge-flip. We next note there is a rectangle in
valid dyadic tiling At of dimension 2a × b, implying that 2ab = n = 2k. As a and b are powers of 2, a ≥ b
by assumption, and k is even, then a = 2ib where i is odd. We now consider two cases, a ≥ 8b and a = 2b.

Case a ≥ 8b. We first examine the moves that decrease the distance between the two coupled chains.
There are exactly two edge-flips that do this, namely flipping e to f in At or flipping f to e in Bt. There
are 2n values of (x, y, d, o) that select edge e in At. Precisely, these are each of the 2n points (x, y) in S
together with the appropriate direction from among t, b that selects e and the appropriate parity o such that
log |e| = o(mod 2). Examining the parity o shows these same choices do not yield a flippable edge in Bt; this
is where the value of o plays a critical role, as no edges within or on the boundary of S in Bt = σ2 are of the
same length as e. As each such selection of (x, y, d, o) occurs with probability 1/(8n2), potential edge-flip e

12



At Bt

2a

2b
S

e
S f

g

h

g

h
i j i j

Fig. 12. An area 2n rectangle S bisected by horizontal edge e in At and vertical edge f in Bt. Four “bad” edge-flips
g, h, i, j exist only if At and Bt are tiled in the neighborhood of S as shown.

is selected with probability q = 1/(4n). In this case the condition for flipping edge e is p < λ2b−2a, which
always occurs as 2b− 2a ≤ 0. After such a flip, At+1 = Bt while Bt+1 = Bt. Thus φt+1 = 0 and the change
in distance between the two chains is −φt = −λ2b−2a. The total contribution to the expected change in
φ(A,B) from this move is −q · λ2b−2a.

Similarly, the probability (x, y, d, o) selects edge f in Bt is also q = 1/(4n), and these values do not yield
a flippable edge in At. Edge f flips only if p < λ2a−2b, which occurs with probability λ2a−2b < 1. If this
move occurs, then Bt+1 = At = At+1, and the change in distance between A and B is again −λ2b−2a. The
total contribution to the expected change in φ(A,B) from this move is

−q · λ2a−2b · λ2b−2a = −q.

While the two potential moves above decrease the distance between the chains according to metric φ,
there are also moves that increase it. However, dyadic constraints limit the number of such moves, because
two dyadic intervals of the same length cannot overlap nontrivially (Lemma 1). For At, this means the
top and bottom edges of S are not flippable, because the vertical dimension of any rectangle resulting from
such a flip could not be dyadic: it would be an interval of length 2b overlapping S’s projection onto the
y-axis, which is a dyadic interval of length 2b. At first glance there are four other potential edge-flips for At
involving S, specifically flips of the top and bottom halves of S’s left and right boundaries. However, again
by Lemma 1, at most one of the left boundary and the right boundary of S contains flippable edges. Without
loss of generality, assume it is the right boundary of S, and label the two potentially flippable edges as g
and h. Similarly, for Bt, at first glance there exist four other potential edge-flips involving S, specifically the
left and right halves of S’s top and bottom boundaries. By Lemma 1, we assume without loss of generality
that only portions of S’s bottom boundary are potentially flippable, and label the two potentially flippable
edges as i and j.

Such edge-flips can only occur if At and Bt are tiled in the neighborhood of S as in Figure 12. We
suppose this worse case neighborhood tiling exists. Edges g and h are each selected by values (x, y, d, o) in
At with probability q; both are then flipped with probability λ4a−b. The tiling At+1 resulting from this flip
is at distance λb−4a from configuration At. The same selection (x, y, d, o) does not result in any flip in Bt,
so Bt+1 = Bt. The change in distance between A and B for each of these two moves is at most λb−4a. In all,
the contribution by these moves to the expected change in distance between the coupled chains is at most

2 · qλ4a−b · λb−4a = 2q.

Similarly, edges i and j are selected to be flipped in Bt by values (x, y, d, o) with probability q, and once
selected, these edge-flips occur if p < λ4b−a, a bound which is at least 1 for a ≥ 8b. The tiling Bt+1 resulting
from either flip is at distance at most λ4b−a from configuration Bt. The same values of (x, y, d, o) producing
these moves also yield At+1 = At. Thus the change in distance between A and B for these two moves is
at most λ4b−a. In all, the contribution by these moves to the expected change in distance between the two
chains in the coupling is at most 2 · q · λ4b−a.

In total, we have shown

E[φt+1 − φt] ≤ −q − qλ2b−2a + 2q + 2qλ4b−a

= −qλ2b−2a(λ2a−2b + 1− 2λ2a−2b − 2λ2b+a)

= −qφt(1− λ2a−2b − 2λ2b+a).
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We first note that as a ≥ 8b, and in particular, as a ≥
√
n,

2a− 2b ≥ 2(a− 1

8
a) ≥ a ≥

√
n.

Additionally, 2b+ a ≥ a ≥
√
n. Thus,

λ2a−2b + 2λ2b+a ≤ λ
√
n + 2λ

√
n = 3λ

√
n.

Provided λ < 3−1/
√
n, as we assumed at the start of this section, we have that

λ2a−2b + 2λ2b+a ≤ 3λ
√
n < 1.

Then,

E[φt+1] ≤ (1− qc)φt,

where c is some positive constant, depending on how close λ is to the bound 3−1/
√
n given above. This

concludes the first case.

Case a = 2b. The analysis of potential good moves and bad moves remains the same as the first case
above, though certain probabilities and distances change. Initially, φ(At, Bt) = λ2b−2a = λ−2b, as in the
previous case. We note that the contribution to the expected change in distance from good moves flipping
edges e and f is still −q(1 + λ2b−2a) = −q(1 + λ−2b). The contributions to the expected change in distance
from flipping edges g and h is still 2q. We note now, however, that for the edges i and j, once selected by
(x, y, d, o), flips now occur with probability qλ4b−a = qλ2b rather than probability q. Such a move results in
a change in distance between the chains in the coupling of λa−4b = λ−2b. The expected contribution to the
change in distance from these moves is now 2qλ2bλ−2b = 2q.

In total, we see that in this case,

E[φt+1 − φt] ≤ −q(1 + λ−2b) + 4q

= −qλ−2b(λ2b + 1− 4λ2b)

= −qφt(1− 3λ−2b).

We note that in this case, 2ab = n so a = 2b =
√
n. Provided λ < 3−1/

√
n, it follows that 3λ

√
n < 1,

the required condition holds and we get the same bound on E[φt+1] as in the previous case, though with a
different constant c, also depending on λ.

Theorem 12. The mixing time of Markov chain Mn is O(n2) for all λ < 3−1/
√
n.

Proof. We apply the exponential metric theorem from [8] (Theorem 8), using the coupling (A,B) and
metric φ defined above. Metric φ satisfies the path requirement of Theorem 8 with U being the set of all pairs
of tilings that are adjacent in Ωn, and by Lemma 10 φ takes on values in {0} ∪ [1, B] for B = n log(n)λ−n.
Additionally Mn is lazy, as discussed in Section 2. We have also demonstrated (Lemma 11) that there is a
constant c such that E[φt+1] ≤ (1− qc)φt whenever λ < 3−1/

√
n. By Theorem 8, we conclude that

τ(ε) ≤
ln
(
n log(n)λ−nε−1

)
qc

=
4n

c

(
lnn+ ln(log n) + n lnλ−1 + ln ε−1

)
= O(n2 + n log(1/ε)).

When we assume ε = 1/4, as is standard practice, we see τ = τ(1/4) = O(n2).

Now that we know the mixing time whenever λ < 3−1/
√
n, it only remains to consider sufficiently large n to

extend this result to all λ < 1.

Theorem 13. For any constant λ < 1, the edge-flip chain Mn on dyadic tilings converges in time
O(n2).

Proof. For any constant 0 < λ < 1, there is an n0 such that for all n > n0, 3−1/
√
n > λ. By Theorem 12,

this implies that for all n > n0, the mixing time of Mn is O(n2), which suffices to prove the claim.
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We remark that this mixing time upper bound is within a factor of O(n/ log n) of the true mixing time.
We show this by presenting a lower bound on the mixing time of (n log n)/4. This proof holds for Markov
chainMn and all values of λ, though a better lower bound when λ > 1 will be presented in the next section.
We will use the following well-known result.

Theorem 14 (see, e.g., [13]). Let D be the diameter of the state space of an irreducible aperiodic
Markov chain. Then for any ε, the mixing time satisfies

τ(ε) ≥ D

2
.

Theorem 15. The mixing time of Markov chain Mn for any value of λ is at least (n log n)/4.

Proof. Let σv denote the tiling consisting entirely of 1×n vertical rectangles and let σh denote the tiling
consisting entirely of n× 1 horizontal rectangles. Starting at σv, the number of edge-flips required to move
to σh is at least (n log n)/2: one edge-flip at most doubles the width of two rectangles, and n rectangles
must have their width doubled at least log n times each to reach σh. This implies the diameter of Ωn under
edge-flip moves is at least (n log n)/2, which by Theorem 14 gives the claimed mixing time lower bound.

4. Exponential Time Mixing for General and Dyadic Tilings. In this section, we prove that
for certain values of λ both chains can require exponential time to converge. We begin by proving that
in both the dyadic and general settings, the Markov chains Mn and M̂n require exponential time when
λ > 1. Next, we show that for general tilings, when λ < 1 the Markov chain M̂n also requires exponential
time, unlike in the restricted setting of dyadic tilings. In each of these cases, we prove that the Markov
chain converges slowly to equilibrium by demonstrating that the state space contains a bottleneck requiring
exponential expected time to cross. We use the bottleneck to bound the conductance of the Markov chain.
The conductance of an ergodic Markov chain M with stationary distribution π is

ΦM = min
S⊆Ω

π(S)≤1/2

1

π(S)

∑
s1∈S,s2∈S

π(s1)P(s1, s2).

We can infer a lower bound on the mixing time using the following theorem that relates conductance and
mixing time (see, e.g., [21]).

Theorem 16. For any Markov chain with conductance ΦM, ∀ε > 0 we have

τ(ε) ≥
(

1

4ΦM
− 1

2

)
log

(
1

2ε

)
.

A change in terminology will be convenient for the remainder of this section whereby we let |σ| be the
sum of the perimeters of the rectangles in the dissection (or tiling) σ, rather than the total edge length.
This will simplify the analysis. Using detailed balance, we reformulate stationary distributions π and π̂
forMn and M̂n as follows. Let w(R) be the width of rectangle R and l(R) be the length (height) of R. For
convenience, we now let |σ| denote the total perimeter of σ, that is, |σ| =

∑
R∈σ 2w(R) + 2l(R). We note

this total perimeter divided by 2 differs from the total edge length of σ by exactly 2n. By detailed balance,
we rewrite

π(σ) =
λ|σ|/2

Z
=

(∏
R∈σ λ

w(R)+l(R)
)

Z
and π̂(σ) =

(∏
R∈σ λ

w(R)+l(R)
)

Ẑ
.

Here Ẑ and Z are new normalizing constants, differing from those in Section 2.2 by a multiplicative factor
of λ2n.

First, we prove the following lemma bounding the number of n-tilings in the general setting which we
use in both slow mixing proofs.

Lemma 17. The number of general tilings of Λn satisfies |Ω̂n| ≤ (log n)n.

Proof. Consider any rectangle R in an n-tiling. By assumption R has dimensions 2w × 2h for integers
w, h ∈ {0, 1, . . . , k = log n} and thus has log n possible heights. Given the height of R, the width is uniquely
determined since R has area n. To bound the total number of tilings, there are log n choices for the height
of the rectangle that covers the lowest leftmost unit square of Λn. Next, consider the rectangle that covers
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the lowest leftmost unit square not yet tiled. Given the height of all rectangles ordered in this way the
rectangle tiling is uniquely determined. There are n different rectangles with log n possible heights therefore
|Ω̂n| ≤ (log n)n.

4.1. Slow Mixing when λ > 1. We start by showing that for both dyadic and general rectangle tilings
when λ > 1, the Markov chains Mn and M̂n both take exponential time to converge. Informally, consider
the tilings with at least one n × 1 rectangle and those with at least one 1 × n rectangle. In order to go
between these sets we must go through a tiling where all rectangles have width and length at least 2 and
thus each has perimeter at most n+ 4. We show these tilings are exponentially unlikely and thus our state
space forms a bottleneck.

Theorem 18. For any constant λ > 1, the edge-flip chain Mn on the set of diadic tilings Ωn and the
edge-flip chain M̂n on the set of rectangular dissections Ω̂n both require time exp(Ω(n2)) to mix.

Proof. We note that the proofs are identical for Mn and M̂n and here we show it for M̂n. We first
partition the state space into two sets, B, the set of tilings with no rectangles of dimension 1×n, and B, the
remainder. Notice that B contains the tiling σh where all rectangles are n× 1 and B contains the tiling σv
where all rectangles are 1× n. Both of these tilings have weight π(σh) = π(σv) = Ẑ−1λn(1+n). Therefore,

π(B) ≥ π(σh) ≥ Ẑ−1λn(1+n),

π(B) ≥ π(σv) ≥ Ẑ−1λn(1+n).

Let Bc ⊂ B be the set of tilings containing no (1×n) or (n×1) rectangles. Every rectangle in every tiling in Bc
has perimeter at most n+4 and thus has weight at most Ẑ−1λn(n+4)/2. By Lemma 17, |Bc| ≤ |Ω̂n| ≤ (log n)n;
we briefly note this is true in the dyadic case as well although tighter bounds exist. Combining these, we see

π(Bc) ≤ (log n)nẐ−1λn(n+4)/2,

which is exponentially smaller than the weight of B and B.
Using these bounds, we next bound the conductance of the Markov chain and then the mixing time

using Theorem 16. If π(B) ≤ 1/2, then combining the definition of conductance with the bounds on π(B)
and π(Bc) yields

ΦM̂n
≤ 1

π(B)

∑
b1∈B,b2∈B

π(b1)P(b1, b2)

=
1

π(B)

∑
b1∈Bc,b2∈B

π(b1)P(b1, b2)

≤ 1

π(B)

∑
b1∈Bc

π(b1)

=
π(Bc)

π(B)
≤ (log n)nZ−1λn(n+4)/2

Z−1λn(1+n)
=

(log n)n

λn2/2−n = λ−c1n
2

,

for constant c1 and n sufficiently large when λ is a constant greater than 1. Alternately, if π(B) > 1/2 then
π(B) ≤ 1/2 and so by detailed balance and the bounds on π(B) and π(Bc),

ΦM̂n
≤ 1

π(B)

∑
b1∈B,b2∈B

π(b2)P(b2, b1)

=
1

π(B)

∑
b1∈B,b2∈B

π(b1)P(b1, b2)

=
1

π(B)

∑
b1∈Bc,b2∈B

π(b1)P(b1, b2)

≤ π(Bc)

π(B)
≤ (log n)nZ−1λn(n+4)/2

Z−1λn(1+n)
=

(log n)n

λn2/2−n = λ−c1n
2

,
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Fig. 13. The tiling s64.

for constant c1 defined above and n sufficiently large, whenever λ is a constant greater than 1.
In both cases, ΦM̂n

≤ λ−c1n
2

. Applying Theorem 16 proves that for all ε > 0, the mixing time of M̂n

satisfies

τ(ε) ≥
(
λc1n

2

/4− 1

2

)
log

(
1

2ε

)
= Ω(λc1n

2

ln ε−1).

Letting ε = 1/4 we have that τ = Ω(λc1n
2

), as desired.

4.2. Slow Mixing for General Tilings, λ < 1. Finally, we consider general tilings when λ < 1 and
show that in this setting M̂n takes exponential time to converge by again demonstrating a bottleneck in the
state space. In this case however the bottleneck is much more complex. A key fact is that if the total width
of the region being filled with rectangles is n = 2k, and there are at least two rectangles with width 1, then
there must be many other thin rectangles in the rectangular dissection. We define the cut set to consist of
rectangular dissections that are forced to have significantly more thin rectangles in order to show that there
is a bad cut in the state space.

Define a bar to be a rectangle of width 1 and length (height) n. The bottleneck in Ω̂n is based on the
separation of a tiling which measures the distance between the bars in the tiling. More formally, define the
distance between two bars to be the difference in their x-coordinates plus one. For example, two adjacent
bars are at distance 2 and two bars separated by a rectangle of size 2 × n/2 are at distance 4. Given an
n-tiling, pair the bars in order from left to right (there must be an even number of bars since n = 2k). The
separation of a tiling is the sum of the distances between each pair of bars. Let S be the set of tilings with
separation greater than or equal to n/2 + 2 and S be the remaining tilings, namely those with separation
less than n/2+2. We show all moves from S to S involve a tiling with at least 4 bars and separation n/2+2,
and the total weight of this set of tilings is exponentially smaller than the weight of both S and S.

Theorem 19. For any constant λ < 1, the edge-flip chain M̂n on Ω̂n requires time exp(Ω(n log n)).

Proof. We begin by proving a lower bound on π(S) and π(S̄). Let gn be the “ground state” tiling consisting
entirely of rectangles of size

√
n ×
√
n. This tiling has perimeter |gn| = 4n

√
n. Since gn ∈ S because gn

has no bars and thus separation 0, this implies that π(S) > π(gn) = Ẑ−1λ2n
√
n. Next we will define a

special tiling sn ∈ S. Let sn have one bar on the far left side of Λn and one bar on the far right side of Λn.
Next to the leftmost bar there is a column with two rectangles of width 2 followed by a column with four
rectangles of width 4 and so forth until there is a column with only rectangles of width 2k/2−1. The remainder
of the tiling is filled with rectangles of size

√
n ×
√
n. Note that the combined width of these columns is

2+
∑k/2−1
i=1 2i =

√
n so the remainder of the tiling has width n−

√
n and can be tiled with n−

√
n rectangles

of size
√
n×
√
n. Figure 13 shows s64. Configuration sn has perimeter

|sn| = 4(1 + 2k) +

k/2−1∑
i=1

(2i2(2i + 2k−i)) + (n−
√
n)4
√
n = 4n3/2 + n log n− (4/3)n+ (4/3).

As sn ∈ S because it has separation n, this implies π(S) > π(sn) = Ẑ−1λ|sn|/2.
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Let SC be the set of tilings in S from which it is possible to transition to S. We will prove that every
tiling in SC has at least four bars and separation exactly n/2 + 2. We use the following lemma.

Lemma 20. One move of the chain M̂n changes the separation of a tiling by 0, +2 or -2.

Proof. The only moves of the Markov chain that change the separation are when two bars are added or
removed. Let’s consider adding two bars first. Let P be the pairing of the bars in the configuration before
the two bars are added. There are two cases; either the two bars are added between two bars that were
paired in P , or between two pairs of bars. If they are added between two pairs, then they will be paired
up in the new pairing and add 2 to the separation. If they are added between two bars bl and br paired in
P with distance d, then the new bars will be paired with bl and br. The sum of the distances will remain
unchanged. Next, consider the case where two bars are removed. Again, there are two cases. If the two bars
are paired, then the separation decreases by two however if the two bars are paired with two other bars the
distance remains unchanged.

The ground state configuration gn has separation 0. Since all tilings are connected by the Markov chain M̂n

which by Lemma 20 changes the separation by an even number at each step, this implies that the separation
of all tilings is even. Additionally, to go from S to S we must go through a tiling with separation exactly
n/2 + 2. Given a tiling with two bars and separation n/2 + 2 there is no way to decrease the separation and
thus no way to transition to S. Thus, every tiling in SC has separation n/2 + 2 and at least four bars. Next,
we will upper bound the weight of each tiling σ in SC . To do this, we lower bound the perimeter of any tiling
of a lattice region of size (n/2− 2)× n and then show that every tiling in SC has two such regions.

Lemma 21. Any tiling σ′ of an (n/2−2)×n region has perimeter |σ′| ≥ 2n3/2 +n log n−(16/3)n−(8/3).

Proof. We will assign each unit square in the lattice region a weight based on the perimeter of the
rectangle the square is contained in so that the combined weight of all n squares within a rectangle is equal
to the perimeter of the rectangle. Assume the unit square at location (i, j) is contained in a rectangle of size
2a × 2k−a then the weight wi,j = 2(2a + 2k−a)/2k. Since each rectangle has area 2k, the sum of all weights∑n/2−2
j=1

∑n
i=1 wi,j = |σ′|. The width of the region is n/2 − 2, and this number has binary representation

011 . . . 110. Since each rectangle has width 2a for some integer a this implies that in each row, for each integer
` = 1 to k/2 − 1 there must be either a rectangle of width 2` or multiple rectangles of width smaller than
2` whose widths add up to 2`. If there is a single rectangle of width 2` then the 2` unit squares in this row
contained in this rectangle each have weight 2(2` + 2k−`)/2k. If there is instead multiple smaller rectangles
then they will have larger perimeter and thus larger weight. Thus, the combined weight of these unit squares
in each row is at least

k/2−1∑
`=1

2`(2(2` + 2k−`)/2k) = log n− (4/3)− 8/(3n).

Since the minimum perimeter rectangle is the 2k/2 × 2k/2 square, wi,j ≥ 4/2k/2. Thus the remaining
2k−1 − 2k/2 unit squares in each row have combined weight at least

4(2k−1 − 2k/2)/2k/2 = 2
√
n− 4.

This implies that the total perimeter satisfies

|σ′| =
n∑
i=1

n/2−2∑
j=1

wi,j ≥
n∑
i=1

(
log n− (4/3)− 8/(3n) + 2

√
n− 4)

)
= 2n3/2 + n log n− (16/3)n− 8/3.

This is the desired result.

Consider any tiling σ with separation n/2 + 2 and at least four bars. Label the bars b1, b2, . . . bB from
left to right. Next, label the regions between the pairs of bars p1, p2, . . . pB/2 and the gaps between the pairs
g0, g1, g2, . . . gB/2, as shown in Figure 14. Let w(pi), w(gi) denote the widths of the regions between the bars.

Now, since σ has separation n/2 + 2, this implies that
∑B/2
i=1 (w(pi) + 2) = n/2 + 2. Reorder the tiling so that

the bars and regions are in the following order: g0, g1, . . . , gB/2, b1, b2, . . . , bB−1, p1, p2, . . . , pB/2, bB .Notice
that the region b4 ∪ . . . ∪ bB−1 ∪ p1 ∪ . . . ∪ pB/2 has width n/2 − 2 as does the region g0 ∪ g1 ∪ . . . ∪ gB/2.
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g0 p1 g1 p2 g2

⇒
g0 g1 g2 p1 p2

Fig. 14. An example labeling of the bars and regions surrounding bars.

Thus we can apply Lemma 21 to show that the total perimeter of tiling σ must be at least

|σ| ≥ 4(2 + 2k+1) + 2

(
2n3/2 + n log n− 16

3
n− 8

3

)
= 4n3/2 + 2n log n− (8/3)n+ 8/3.

Combining this bound with the bound on the number of tilings from Lemma 17 gives

π(SC) ≤ Ẑ−1(log n)nλ2n3/2+n logn−(4/3)n+(4/3),

which is exponentially smaller than the above bound on π(S), as desired. Using these bounds we bound
the conductance of the Markov chain and then the mixing time using Theorem 16. If π(S) ≤ 1/2, then
combining the definition of conductance with the bounds on π(S) and π(SC) yields

ΦM̂n
≤ 1

π(S)

∑
s1∈S,s2∈S

π(s1)P(s1, s2)

=
1

π(S)

∑
s1∈SC ,s2∈S

π(s1)P(s1, s2)

≤ 1

π(S)

∑
s1∈SC

π(s1)

=
π(SC)

π(S)

≤ (log n)nλ2n3/2+n logn−(4/3)n+(4/3)

λ2n3/2+(n logn)/2−(2/3)n+(2/3)

= (log n)nλ(n logn−(4/3)n+(4/3))/2

= 2n log lognλ(n logn−(4/3)n+(4/3))/2 = λc2n logn,

for constant c2 and n sufficiently large when λ < 1 is a constant.
If π(S) > 1/2, then π(S) ≤ 1/2, and by detailed balance and bounds on π(S), π(S) and π(SC),

ΦM̂n
≤ 1

π(S)

∑
s1∈S,s2∈S

π(s1)P(s1, s2)

=
1

π(S)

∑
s1∈S,s2∈S

π(s2)P(s2, s1)

=
1

π(S)

∑
s1∈SC ,s2∈S

π(s1)P(s1, s2)

≤ π(SC)

π(S)
≤ (log n)nλ4n3/2+2n logn−2n

λ4n3/2+n logn−n = λc2n logn,

for constant c2 defined above and n sufficiently large when λ < 1 is a constant. In both cases,

ΦM̂n
≤ λc2n logn.
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10,000,000 iterations 20,000,000 iterations 30,000,000 iterations

40,000,000 iterations 50,000,000 iterations 60,000,000 iterations

Fig. 15. A simulated execution of a Markov chain on Ω̂64 with λ = 0.8 that includes both edge-flip moves and additional
moves that select a random rectangular region and rotate the tiling within it by 180 degrees, starting with all vertical rectangles
of width 1 and height 64.

Applying Theorem 16 proves that the mixing time of M̂n satisfies

τ(ε) ≥
(
λ−c2n logn

4
− 1

2

)
log

(
1

2ε

)
= Ω(λ−c2n logn ln ε−1).

Letting ε = 1/4, we have that τ = Ω(λ−c2n logn), and we have proved Theorem 19.

5. Conclusions. In this paper, we have bounded the mixing times of both dyadic and general rectan-
gular dissections in the entire λ > 1 and λ < 1 regimes. For dyadic tilings we have shown there is a phase
transition at λ = 1 by giving polynomial upper bounds on the mixing time when λ < 1 and exponential
lower bounds when λ > 1. For general rectangular dissections we have shown the mixing time is at least
exponential whenever λ 6= 1, but the reasons for this are different when λ < 1 and λ > 1.

Bounding the mixing time when λ = 1 is a natural next question. For dyadic tilings, Cannon, Levin,
and Stauffer [4] have shown the mixing time at λ = 1 is polynomial, but for rectangular dissections this
question remains open. Simulations seem to suggest fast mixing also occurs in this case, but new approaches
and techniques are needed to analyze this.

There are many other natural directions for extending this work. It will be interesting to explore whether
adding additional moves can speed up the mixing time of the edge-flip Markov chain. For instance, we proved
the edge-flip Markov chain for rectangular dissections is slowly mixing when λ < 1; we conjecture that if
we add additional moves that rotate the tiling within a rectangular region by 180 degrees, the mixing time
will become polynomial. Our simulations support this hypothesis (see Figure 15 for an example). While we
proved that vertical bars are an obstruction to fast mixing for the edge-flip chain on rectangular dissections
when λ < 1 (Section 4.2), when these additional rotation moves are added this bottleneck no longer exists
and simulations show that bars at all scales are eliminated. Note that while the number of iterations is
much higher for this simulation than the one presented at the beginning of this paper (Figure 2), we expect
a slowdown by a factor of about 32 when adding rotations: each potential move is now proposed with
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probability 1/642, by randomly selecting grid points to be the corners of a rectangle that is rotated or
flipped, instead of with probability 1/(2 · 64) as they are in the edge-flip chain.

These simulations also provide evidence that the behavior of rectangular dissections is different when
λ > 1 and when λ < 1, because the bottleneck that produces slow mixing when λ > 1 still exists when
rotations of 180 degrees are added. Conversely, if 90 degree rotations of the tilings within rectangular
subregions (with necessary rescalings) are added to the edge-flip chain, we expect polynomial mixing time
when λ > 1 while it remains unclear if there would also be polynomial mixing when λ < 1. To distinguish
further between the λ < 1 and λ > 1 regimes for rectangular dissections, we expect that from a warm start
the edge-flip chain when λ < 1 will mix in polynomial time, while we do not expect this is true when λ > 1.
Next steps include further investigations to rigorously differentiate between the λ < 1 and λ > 1 regimes
for rectangular dissections, as well as to understand the behavior when λ = 1, where simulations seem to
suggest that fast mixing occurs.
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