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Abstract

Monotonic surfaces spanning finite regions of Zd arise
in many contexts, including DNA-based self-assembly,
card-shuffling and lozenge tilings. We explore how
we can sample these surfaces when the distribution
is biased to favor higher surfaces. We show that a
natural local chain is rapidly mixing with any bias for
regions in Z2, and for bias λ > d2 in Zd, when d > 2.
Moreover, our bounds on the mixing time are optimal
on d-dimensional hyper-cubic regions. The proof uses
a geometric distance function and introduces a variant
of path coupling in order to handle distances that are
exponentially large.

1 Introduction

Random sampling of lattice configurations, including
tilings and colorings, is used to study properties of var-
ious computational, combinatorial and physical mod-
els. In statistical physics, for example, domino tilings
of the Cartesian lattice and lozenge (rhombus) tilings
of the triangular lattice are natural models of diatomic
molecules. Sampling provides insight into the ther-
modynamics properties of these systems. Similarly, 3-
colorings of lattice regions represent states of the zero
temperature Potts model, a popular model of ferromag-
netism. Local Markov chains that either update a single
site of a coloring, or rotate 2 or 3 nested tiles in a tiling,
can be used to generate random configurations.

Luby, Randall and Sinclair [11] analyzed a family of
nonlocal, Markov chains for each of those sets of config-
urations and showed that they are rapidly mixing (i.e.,
converging rapidly to equilibrium). Subsequently, Ran-
dall and Tetali [15] showed that bounds on the mix-
ing times of the nonlocal chains imply that the local
chains are also rapidly mixing. The key to the anal-
ysis was the observation that in each case the planar
coloring or tiling could be mapped to a 3-dimensional
monotonic surface [11]. Accordingly, steps of the lo-
cal Markov chains on these planar configurations can
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be viewed as perturbing a 3-dimensional surface by in-
verting a locally convex region to a concave one, or vice
versa. For example, Figure 1 shows a two-dimensional
lozenge tiling. Our eyes naturally interpret this as a
3-dimensional picture where we are viewing the tops of
a set of cubes. The local Markov chain that rotates
three closely packed lozenges by 180 degrees can be in-
terpreted as adding or removing a single cube from the
3-dimensional structure.

Figure 1: A monotonic surface in three dimensions.

There is a natural generalization of the monotonic
surfaces arising in the context of lozenge tilings to any
number of dimensions. Informally, in two dimensions
the monotonic surface is just a “staircase walk” go-
ing to the right and down as in Figure 2. The local
Markov chain adds or removes individual squares ad-
jacent to the boundary. It is easy to show that this
Markov chain is rapidly mixing using a straight-forward
coupling argument (see, e.g., [2] for background on cou-
pling). In higher dimensions, d-dimensional monotonic
surfaces correspond bijectively with (d−1)-dimensional
tilings [14], although the convergence rate of the corre-
sponding local Markov chain is unknown for d > 3.

Figure 2: A monotonic surface in two dimensions.



Recently there has been a lot of interest in a biased
version of this local Markov chain, where it is more likely
to add unit cubes than remove them. More precisely,
let P (σ, τ) be the transition probability of moving
from σ to τ in one move for a pair of configurations
σt and τt that differ by a single move. If τ is the
configuration formed by adding one cube to σ, then
λ = P (σ, τ)/P (τ, σ) is the bias of the chain. Using
detailed balance, it is easy to see that the stationary
probability of a configuration σ will be proportional
to λ|σ|, where |σ| is the number of unit cubes defining
the surface σ. This biased version of the Markov chain
arises in the context of nanotechnology [12] and biased
card shuffling [3], while a biased version of the chain
for sampling 3-colorings comes up in the context of
asynchronous cellular automata [5]. We restrict our
attention here to the first two examples where the
monotonic surfaces correspond to sets of supported
cubes, although the methodology also applies in the
third setting.

The nanotechnology example that motivates our
work is a model for DNA-based self-assembly. Roughly
“square” shaped tiles are constructed from strands of
DNA so that each side of the square is single-stranded.
Specified pairs of tiles are encouraged to line up and at-
tach along edges by encoding their corresponding sides
with complementary sequences of base pairs. At ap-
propriately chosen temperatures, these tiles will have a
good chance of assembling according to these prescribed
rules, although they also have a chance of disassociat-
ing and breaking apart. See, e.g., [8, 17, 19, 20] for
more details. The model considered by Majumder et
al. [12] allows the left column and bottom row of a large
square to form first, and then iteratively allows tiles
to associate with the large substrate if their left and
bottom neighbors are already present. Likewise, tiles
can disassociate if their upper and right neighbors are
not present, although disassociation happens at a lower
rate. The dynamics of this model are precisely cap-
tured by the local Markov chain on 2-dimensional mono-
tonic surfaces and the chain must be rapidly mixing if
the substrate is to efficiently self-assemble, as required.
The 3-dimensional analogue is also used to study self-
assembly, where now tiles are shaped like cubes and
complementary sequences are used to encourage corre-
sponding faces to attach.

Benjamini et al. [3] studied the 2-dimensional bi-
ased chain in order to analyze a biased card shuffling
algorithm that favors putting each pair of cards in
the lexicographically correct order. They gave optimal
O(n) bounds on the mixing rate of the biased chain on√

n ×
√

n regions of Z2 for any constant bias. In three
and higher dimensions, substantially less is known. Ma-

jumder et al. [12] showed that the chain mixes quickly
when the bias is Θ(n); apparently the case of large bias
is the most interesting for nanotechnology applications.
Nothing else is known about the convergence of the bi-
ased chain. Both of these results are highly technical
and do not readily generalize to other values of the bias
or other dimensions.

We make progress in several aspects of the problem
of sampling biased surfaces. In two dimensions, we
show that the biased chain is rapidly mixing for any
bias on a large family of simply-connected regions, even
when the bias is arbitrarily close to one. Our proof is
significantly simpler than the arguments of Benjamini
et al., while achieving the same optimal bounds on
the mixing time for square regions when the bias is
constant. We also show the chain is rapidly mixing on
d-dimensional lattice regions provided the bias λ ≥ d2,
for d > 2. Again, our bounds on the mixing time are
optimal when the regions are hyper-cubes and we show
the chain is rapidly mixing for a large family of simply-
connected regions in Zd.

The key observation underlying these results is that
we can define an exponential metric on the state space
such that the distance between pairs of configurations
is always decreasing in expectation. We then show how
to modify the path coupling theorem to handle the
case when the distances are exponentially large and the
expected change in distance is small during moves of the
coupled chain. We believe that this new theorem is of
independent interest.

We note that our method for bounding the mix-
ing rate of the biased chain can also be generalized
to Markov chains for other families of monotonic sur-
faces. A particularly intriguing example is “biased 3-
colorings.” Three-colorings of finite regions of the d-
dimensional Cartesian lattice are known to correspond
to a family of (d + 1)-dimensional surfaces (see [11]
for the bijection in two dimensions; the higher dimen-
sional mapping follows similarly). Again, there is a
local Markov chain that perturbs each surface locally.
This chain is known to be rapidly mixing in two and
three dimensions in the unbiased case [11, 15]. How-
ever, it is also known that in sufficiently high dimen-
sions, the unbiased chain requires exponential time to
converge [9, 10]. The mixing time of the unbiased chain
is unknown in all intermediate dimensions. A biased
version of this Markov chain is motivated by a model
for asynchronous cellular automata and favors moves
that increase the height of the surface [5]. The argu-
ments introduced in this paper can be extended to this
second model of monotonic surfaces, with nearly iden-
tical results. We leave the details for the full version of
the paper.



The remainder of this paper is organized as follows.
In Section 2 we formalize the model and the Markov
chain. In Section 3 we review the path coupling method
and introduce the modified path coupling theorem that
can be more appropriate when distances are exponen-
tially large. Finally, in Section 4, we show how we can
use our new path coupling theorem to conclude that the
chain on biased surfaces is rapidly mixing.

2 Monotonic surfaces

Let R ⊂ Zd be the union of the corners of a (face)
connected set of unit cubes. Given R, we let R̂ ∈ Rd

be the real region that is the union of all the points in
the corresponding real cubes. If R̂ is simply-connected,
then we say the discrete set R is also. The set of edges
of R is just the union of edges of the cubes defining the
region and the boundary of R is the set of vertices in R
that lie on the boundary of the real region R̂.

We first restrict our attention to 2-dimensional
regions. A monotonic surface (or path) in R is a path
starting and ending on the boundary of R that only
takes steps down and to the right and is composed
entirely of edges in R. Such a path is illustrated
in Figure 2 when R is a 4 × 4 square. Notice that
any monotonic surface can be interpreted as the upper
boundary of a set of unit squares, where each square in
the set is supported below or to the left by other squares
in the set or the boundary of R.

Likewise, in three dimensions a monotonic surface
in R is the union of two-dimensional faces such that
any cross-section along an axis-aligned plane is a two-
dimensional monotonic surface. Such a surface is
illustrated in Figure 1 when R is a 2 × 2 × 2 region.

In general, we consider simply-connected regions
R ⊂ Zd composed of unit hyper-cubes. A d-dimensional
monotonic surface is a set of (d − 1)-dimensional faces
such that any cross-section along an axis-aligned (d−1)-
dimensional hyper-plane is a (d−1)-dimensional mono-
tonic surface.

We will restrict our focus to a family of simply-
connected regions that have favorable properties for the
purposes of sampling monotonic surfaces. The following
definitions will allow us to define these regions.

Definition 2.1. Let u∗ = (1, 1, ..., 1) ∈ Zd. For v ∈
Zd, we define the real ray r̂(v) to be the set

r̂(v) = {v + kū∗ : k ∈ R},

and we define the discrete ray r(v) to be the set

r(v) = r̂(v)
⋂

Z
d.

Definition 2.2. A d-dimensional simply-connected re-
gion R ⊂ Zd is nice if, for all v ∈ R, the set R̂

⋂
r̂(v)

is connected.

Note that all hyper-rectangular regions are nice.

2.1 The biased Markov chain In order to formal-
ize the interpretation of monotonic surfaces in terms of
sets of supported cubes, it will be convenient to rep-
resent the surfaces in terms of downsets. Let ui =
(0, 0, . . . , 1, . . . , 0) be the unit vector in the ith direction,
and recall that u∗ = (1, . . . , 1). Given a nice region R,
we let RL = {v ∈ R such that v−u∗ /∈ R} be the lower
envelope of the region.

Definition 2.3. Let R ⊂ Zd be a simply-connected
region consisting of the union of unit cubes. A downset
is a subset σ ⊆ R, with RL ⊆ σ, such that for any i, if
v ∈ σ and v − ui ∈ R, then v − ui ∈ σ.

For a nice region R, we define the state space Ωmon

to be the set of all downsets of R. The following
definition helps us formalize the Markov chain we will
be using to sample from Ωmon.

Definition 2.4. Let R be any nice region and let σ be
any downset of R. We say the upper boundary of σ is
∂(σ) = {v ∈ σ such that v + u∗ /∈ σ}.

Notice that, just as the downset represents the vertices
of the cubes lying below a monotonic surface, the upper
boundary is the set of vertices that lie on the surface.

We are now ready to describe the Markov chain on
Ωmon. For simplicity, we start by defining the unbiased
chain M̂mon that converges to the uniform distribution
over monotonic surfaces Ωmon. Start at an arbitrary
downset, e.g., σ0 = RL and repeat the following steps.
If we are at a downset σt at time t, pick a point v ∈ ∂(σ)
and an integer b ∈ ±1 uniformly at random. If b = +1,
let σt+1 = σt ∪ (v + u∗), if this is a valid downset. If
b = −1, let σt+1 = σt \ {v}, if this is a valid downset.
In all other cases, keep σt unchanged so that σt+1 = σt.

Lemma 2.1. For any nice region R, the Markov chain
M̂mon connects the state space Ωmon.

Proof. Let σ be any downset and let vmax be any
point in σ such that

∑
i vmax

i is maximized. We can
always remove vmax and move to σ′ = σ \ vmax without
violating the downset condition because the maximality
of vmax tells us that vmax +ui /∈ σ, for all i. Thus, from
any valid downset σ we can always remove points and
get to the “lowest” downset RL. Also, such a sequence
of steps can be reversed to move from RL to any other
downset ρ.

It is important to notice that for any downset σ
and point v /∈ σ, if σ ∪ v is a valid downset, then



|∂(σ)| = |∂(σ ∪ v)|. This is because ∂(σ ∪ {v}) =
∂(σ)∪{v}\{v−u∗}. It follows that for any nice region R,
the size of the boundary of each valid downset is fixed.
This observation motivates the following two definitions
that will be convenient when we state the mixing time
of our Markov chain.

Definition 2.5. The span of a nice region R is α =
|∂(σ)|, where α is any downset of R.

Definition 2.6. Let R be any nice region. The stretch
of R is

max
x∈R

x · u∗ − min
y∈R

y · u∗,

where · is the dot product.

Consider, for example, when R is an h × · · · × h
region in Zd. Then the span is α = dhd−1 and the
stretch is γ = dh.

Since we have shown that the moves of M̂mon

connect the state space and all valid moves have the
same transition probabilities, we can conclude that
the chain converges to the uniform distribution over
downsets in Ωmon. We now define the biased Markov
chain by using Metropolis-Hastings probabilities [13] to
modify the transition probabilities so that we converge
to the desired distribution on biased surfaces. This new
chain connects the state space by the same argument as
in Lemma 2.1.

The Markov chain Mmon with bias λ > 1.

Starting at any σ0, iterate the following:

• Choose (v, b, p) uniformly at random from

∂(σt) × {+1,−1}× (0, 1).

• If b = +1, let σt+1 = σ ∪ {v + u∗} if it is a

valid downset.

• If b = −1 and p ≤ 1
λ, let σt+1 = σ \ {v} if

it is a valid downset.

• Otherwise let σt+1 = σt.

The biased Markov chain Mmon converges to the
correct distribution on Ωmon by the detailed balance
condition. Moreover, notice that for any given v there
is at least one choice of b, corresponding to adding
or removing a vertex, that does not result in a valid
downset. Therefore, for all σt ∈ Ωmon, we have
P[σt+1 = σt] ≥ 1/2. A chain like this with a self-loop
probability of at least 1/2 at each step is called lazy,
and we will use this property later in our analysis.

2.2 Our results We give conditions under which we
can prove Mmon converges quickly to the stationary
distribution. First, we review some Markov chain
terminology.

Let M be a Markov chain with transition matrix
P (·, ·), state space Ω, and stationary distribution π. The
mixing time is defined as follows.

Definition 2.7. For ε > 0, the mixing time τ(ε) is

τ(ε) = min{t : ‖P t′ , π‖tv ≤ ε, ∀t′ ≥ t},

where

‖P t, π‖tv = max
x∈Ω

1

2

∑

y∈Ω

|P t(x, y) − π(y)|.

We say a Markov chain is rapidly mixing if the mixing
time is bounded above by a polynomial in n and log ε−1,
where n is the size of each configuration in the state
space.

We may now present our main results.

Theorem 2.1. Let R be any nice d-dimensional region
with volume n, span α, stretch γ, and bias λ. Let

λ̂d =
(

2
d−

√
d2−4

)2
.

1. If λ− λ̂d > c, for some positive constant c, then the
mixing time of Mmon satisfies

τ(ε) = O
(
α(γ + lnn) ln ε−1

)
.

2. If λ − λ̂d > 0 is less than any constant, then the
mixing time of Mmon satisfies

τ(ε) = O
(
α(γ + lnn)2) ln(ε−1)

)
.

Note that for all nice regions, we have α, γ ≤ n, so the
mixing time of Mmon is always polynomially bounded
for the values of λ given in the theorem.

When d = 2, Theorem 2.1 tells us the biased chain
is rapidly mixing for all λ > 1. In general, for d ∈ Z+,

we have
(

2
d−

√
d2−4

)2
< d2, so in any dimension d > 2

we find that the chain is rapidly mixing when λ ≥ d2.
We conjecture the chain is rapidly mixing for all values
of λ > 1, in all dimensions d, but do not yet have a
proof for small values of λ in dimensions higher than 2.

When R is the h×h× · · ·×h hyper-cube, with hd =
n, Theorem 2.1 gives optimal bounds on the mixing
time. To see this, recall that in this case α = dhd−1 and
γ = dh. This gives the following corollary.



Corollary 2.1. Let R be the d-dimensional h × h ×
... × h hyper-cube with hd = n. If d = 2 and λ > 1 is
constant or if d ≥ 3 and λ ≥ d2, then the mixing time
of Mmon satisfies

τ(ε) = O(d2n ln ε−1).

This matches the bounds of Benjamini et al. for square
regions in Z2, and generalizes their result to higher
dimensions by giving optimal bounds on the mixing
time for large enough λ.

3 Path Coupling

We will use a coupling argument to prove Theorem 2.1
bounding the mixing rate of the biased Markov chain.
A coupling of a chain M is a joint Markov process on
Ω×Ω such that the marginals each agree with M and,
once the two coordinates coalesce, they move in unison
thereafter. The coupling lemma bounds the mixing time
in terms of the expected time of coalescence of any
coupling.

Definition 3.1. For initial states x, y let

T x,y = min{t : Xt = Yt | X0 = x, Y0 = y},

and define the coupling time to be T = maxx,y E[T x,y].

The following result relates the mixing time and the
coupling time.

Theorem 3.1. (Aldous [2]) For any coupling with
coupling time T , the mixing time satisfies

τ(ε) ≤ ,T e ln ε−1-.

The goal, then, is to define a good coupling and
show that the coupling time is polynomially bounded.
Path coupling [4, 7] is a convenient way of establishing
such a bound by only considering a subset of the joint
state space Ω × Ω. The following version is convenient.

Theorem 3.2. (Dyer and Greenhill [7]) Let ϕ be
an integer valued metric defined on Ω × Ω which takes
values in {0, . . . , B}. Let U be a subset of Ω × Ω
such that for all (xt, yt) ∈ Ω × Ω there exists a path
xt = z0, z1, . . . , zr = yt between xt and yt such that
(zi, zi+1) ∈ U for 0 ≤ i < r and

r−1∑

i=0

ϕ(zi, zi+1) = ϕ(xt, yt).

Let M be a Markov chain on Ω with transition matrix
P . Consider any random function f : Ω → Ω such
that P[f(x) = y] = P (x, y) for all x, y ∈ Ω, and
define a coupling of the Markov chain by (xt, yt) →
(xt+1, yt+1) = (f(xt), f(yt)).

1. If there exists β < 1 such that

E[ϕ(xt+1, yt+1)] ≤ βϕ(xt, yt),

for all (xt, yt) ∈ U , then the mixing time satisfies

τ(ε) ≤
ln(Bε−1)

1 − β
.

2. If β = 1 (i.e., E[∆ϕ(xt, yt)] ≤ 0, for all xt, yt ∈ U),
let α > 0 satisfy Pr[ϕ(xt+1, yt+1) /= ϕ(xt, yt)] ≥ α
for all t such that xt /= yt. The mixing time of M
then satisfies

τ(ε) ≤
⌈eB2

α

⌉
,ln ε−1-.

To understand why it is difficult to use coupling to
prove Theorem 2.1, we first examine the straightforward
coupling of (σt, ρt) with a natural distance function.
Recall that a move of Mmon is defined by choosing
(v, b, p), where v ∈ ∂(σt). Equivalently, we can choose
v by selecting a ray v∗ uniformly, since for each σt each
ray has a unique intersection with ∂(σt). The coupling
simply chooses the same (v∗, b, p) to generate both σt+1

and ρt+1. The natural distance metric on Ωmon ×Ωmon

is the Hamming distance, where h(σt, ρt) = |σt ⊕ ρt|,
and ⊕ is the symmetric difference. Unfortunately, we
encounter difficulties using this coupling and metric that
will be useful to illustrate.

Examine the pair of downsets in Figure 3. They
differ at a single point, so h(σt, ρt) = 1. In order to
use Theorem 3.2, we need for the distance to be non-
increasing in expectation, i.e., that E[h(σt+1, ρt+1)] ≤
h(σt, ρt). However, for this pair of downsets this will
not be the case. There are two moves that increase the
distance, each occurring with probability 1/(2α), and
two moves that decrease the distance, one occurring
with probability 1/(2α) and the other occurring with
probability 1/(2αλ). This is sufficient for a coupling
argument when λ = 1 since the expected change in
distance would be 0. Unfortunately, when λ > 1 the
expected change in distance is positive.

In higher dimensions, the situation becomes even
worse. For the pair of 3 dimensional downsets in
Figure 4, there are three moves which increase the
Hamming distance with probability 1/(2α) and only
two moves that potentially decrease the distance, one
occurring with probability 1/(2α) and the other with
probability 1/(2αλ). In d dimensions there are pairs of
configurations at Hamming distance one so that d moves
that increase the Hamming distance and only two moves
that bring the configurations together.

One promising remedy is to alter the distance
metric. When two downsets σt and ρt differ at a point x,



Figure 3: A pair of downsets σt (left) and ρt (right)
where ρt = σt ∪ {(1, 1)} .

with ρt = σt ∪ {x}, the two moves which decrease the
distance involve adding x to σt or removing x from ρt.
The moves that increase the distance involve adding
x + ui to ρt, for some i or removing x − ui from σt,
although the later case occurs with smaller probability.
Therefore, we consider a distance metric that counts the
distance between two sets that differ on x as greater
than the distance between two sets that differ on x+ui.

We find the following distance metric does achieve
the desired contraction property for appropriate values
of λ in order to bound the coupling time. First, let
m = maxx∈R x · u∗. Then, for two downsets σ and ρ,
we define the distance function φ to be

φ(σ, ρ) =
∑

x∈σ⊕ρ

(
√

λ)m−x·u∗

.

We present the proof that this metric is indeed de-
creasing in expectation at every step in Section 4. Un-
fortunately, however, this definition of the distance met-
ric introduces new difficulties, especially when λ is very
close to 1. First, the distances might now take on non-
integer values, while the Path Coupling Theorem re-
quires integer valued metrics. In fact, if this restriction
is merely removed, then the theorem is no longer true
as the distances might get smaller and smaller without
coalescence occurring in a polynomial number of steps.
However, it turns out to be enough to add an additional
condition requiring that no pairs of configurations have
a distance within the open interval (0, 1). Notice that
our definition of φ satisfies this restriction as the dis-
tance between any two downsets is either 0 or at least 1.

The second, more serious concern is that the maxi-
mum distance between two configurations can be expo-
nentially large in n while we are only guaranteed that
the distance is decreasing in expectation. If the magni-
tude of the expected change is small (polynomial), then
we cannot expect the distance to be zero in only a poly-
nomial number of steps. Consider, for example, when λ
is very close to one in Z2. We can find configurations xt

and yt so that E[ϕ(xt+1, yt+1)] ≤ (1 − 2−n)ϕ(xt, yt), so

Figure 4: A pair of downsets σt (left) and ρt (right)
where ρt = σt ∪ {(0, 0, 0)} .

1−γ ≤ 2−n. Therefore the expected change is too small
to apply the first part of Theorem 3.2. Moreover, the
maximum distance B is very large, so we cannot get a
good bound on the mixing time using the second part of
Theorem 3.2 either since the bound on the mixing time
depends quadratically on B.

3.1 Path coupling with exponential metrics
The following modification of the Path Coupling The-
orem allows us to handle cases when the distances can
be exponentially large and the expected change in dis-
tance is small (or even zero). We show that it suffices
to show that the expected change in the absolute value
of the distance is proportional to the current distance,
and with this condition the mixing time is polynomi-
ally bounded. We apply this new theorem to the biased
Markov chain M in Section 4.

Theorem 3.3. Let φ : Ω × Ω → R+ ∪ {0} be a metric
that takes on finitely many values in {0}∪ [1, B]. Let U
be a subset of Ω × Ω such that for all (Xt, Yt) ∈ Ω × Ω
there exists a path Xt = Z0, Z1, . . . , Zr = Yt such that
(Zi, Zi+1) ∈ U for 0 ≤ i < r and

∑r−1
i=0 φ(Zi, Zi+1) =

φ(Xt, Yt).
Let M be a lazy Markov chain on Ω and let (Xt, Yt)

be a coupling of M, with φt = φ(Xt, Yt). Suppose there
exists β ≤ 1 such that, for all (Xt, Yt) ∈ U ,

E[φt+1] ≤ βφt.

1. If β < 1, then the mixing time satisfies

τ(ε) ≤
ln(Bε−1)

1 − β
.

2. If there exists κ, η ∈ (0, 1) such that
P [|φt+1 − φt| ≥ ηφt] ≥ κ for all t provided
that Xt /= Yt, then

τ(ε) ≤
⌈

e ln2(B)

ln2(1 + η)κ

⌉ ⌈
ln ε−1

⌉
.



Again, there are two main differences between The-
orem 3.2 and Theorem 3.3. The first is that Theorem 3.3
allows for non-integer metrics, provided that φ takes on
a finite set of real values and we have the condition that
for all X, Y ∈ Ω, φ(X, Y ) < 1 implies φ(X, Y ) = 0.
This requires merely a minor change to the proof of
Theorem 3.2 [7]. We use the fact that φt /∈ (0, 1) to
ensure that

E[φt] ≥ P(Xt /= Yt),

even though the values of φt might not be integral.
The second difference is that β can be close to (or

equal to) one while B can be exponentially large, the
case in which both parts of Theorem 3.2 are insuffi-
cient for deriving polynomial bounds. We modify the
original proof of the second half of the theorem, es-
sentially replacing the original distance φ(Xt, Yt) with
ln(φ(Xt, Yt)). There are some technical lemmas con-
cerning the expectation and variance of the logarithm,
which we present below, but the novelty of Theorem
3.3 is more in the statement of the result than a new
method of proof.

Note that including this case of β = 1 and expo-
nential B requires a strong bound on the variance of φt.
Without this bound on variance, Theorem 3.3 is not
true; if φ0 = 2n and φt+1 = φt − 1 for all t ≥ 1, then
clearly it will take time exponential in n for φt = 0.

3.2 Proof of Theorem 3.3 In order to prove the
new path coupling theorem to handle exponential met-
rics, we define a new variable ψ, which is essentially
ln(φ). If we hope to prove a chain is rapidly mix-
ing by looking at ln(φ), we need to bound the time
to reach ln(0) = −∞, and the expected time could
be unbounded. In particular, in order to bound the
convergence time, we need that the sequence {ψt} has
bounded differences. We fix this using the assumption
that φt /∈ (0, 1), so we need only to bound the time un-
til we reach a negative value for ln(φt). Accordingly, we
define

ψt =

{
ln(φt) if φt > 0,

−2 ln 2 if φt = 0.
.

This means that ψt ∈ [−2 ln 2, ln(B)]. The particular
value for ψt when φt = 0 is chosen to satisfy the
following lemmas. In Lemma 3.1 below, we show
that if the expected distance is non-increasing, then
the expected value for ψt+1 is also non-increasing. In
Lemma 3.2, we show that if that the variance of the
distance is proportional to the current distance, then
the variance of ψt is at least a constant. Together,
these lemmas suffice to prove Theorem 3.3 following the
arguments in the proof of [11] exactly.

Lemma 3.1. With ψt defined in terms of φt as above,
if φ satisfies

E[φt+1 − φt] ≤ 0,

then ψ satisfies

E[ψt+1 − ψt] ≤ 0.

Proof. If φt = 0, then φt+1 = 0, and the lemma is
trivially true. Therefore we assume φt /= 0.

Given the value of φt, let {r0, r1, r2, . . . , rN} be the
possible values for φt+1, each occurring with probability
{ζ0, ζ1, ζ2, . . . , ζN}. That is, P[φt+1 = ri|φt] = ζi, with∑N

i=0 ζi = 1. Assume r0 = 0.
As our chain is lazy, P[φt+1 = φt] ≥ 1/2. Therefore

we find that ζ0 ≤ 1/2. Now,

E[ψt+1|ψt] = ζ0(−2 ln 2) +
N∑

i=1

ζi ln2(ri)

= −2 ln 2ζ0 + ln

(
N∏

i=1

rζi

i

)

≤ −2 ln 2ζ0 + ln

(∑N
i=1 ζiri

1 − ζ0

)

= ln (E[φt+1|φt]) − 2 ln 2ζ0 − ln(1 − ζ0)

≤ ln (E[φt+1|φt])

≤ lnφt = ψt,

where the first inequality is by the Arithmetic-
Geometric Mean Inequality and the second follows from
the fact that (ln(1 − ζ0))/ζ0 ≥ −2 ln 2 for ζ0 ∈ (0, 1

2 ).

Lemma 3.2. If there exist constants κ, η ∈ (0, 1) such
that

P[|φt+1 − φt| ≥ ηφt] ≥ κ,

for φt /= 0, then

E[(ψt+1 − ψt)
2] ≥ ln2(1 + η)κ.

Proof. Let ζ0 = P[φt+1 = 0] and let A be the event that
φt+1 /= 0. From our assumption, we have that

κ ≤ P[|φt+1 − φt| ≥ ηφt]

= 1 · ζ0 + P[|φt+1 − φt| ≥ ηφt | A ] (1 − ζ0).

Now, because ψt+1 = ln(φt+1) when φt+1 /= 0, condi-



tioning on A we find

P[|φt+1 − φt| ≥ ηφt | A ]

= P

[
φt+1

φt
− 1 ≥ η | A

]
+

P

[
φt+1

φt
− 1 ≤ −η | A

]

= P [ψt+1 − ψt ≥ ln(1 + η) | A ] +

P [ψt+1 − ψt ≤ ln(1 − η) | A ]

≤ P [|ψt+1 − ψt| ≥ ln(1 + η) | A ] .

Since φt ≥ 1, we have ψt ≥ 0, so |− 2 ln 2−ψt| ≥ 2 ln 2.
Now let m = ln2(1+η), so m < ln2(2) since η < 1. This
yields

E[(ψt+1 − ψt)
2]

= (−2 ln 2 − ψt)
2ζ0 +

∑

%∈Ω,% '=0

(ln(2) − lnφt)
2

P[φt+1 = 2]

≥ (2 ln 2)2ζ0 +

mP
[
(ψt+1 − ψt)

2 ≥ m | A
]
(1 − ζ0)

≥ (2 ln 2)2ζ0 + m

(
κ − ζ0

1 − ζ0

)
(1 − ζ0)

=
(
(2 ln 2)2 − m

)
ζ0 + mκ

> mκ + 3ζ0 ln2 2

> ln2(1 + η)κ.

We are now ready to prove Theorem 3.3 by following
the method of [11], replacing φt with ψt.

Proof of Theorem 3.3. Part (1) follows directly from
the proof of Theorem 3.2 in [7], while allowing for non-
integer valued metrics.

For part (2), define the process

Z(t) := (ln B − ψt)
2 − Qt,

where Q = ln(1 + η)2κ − 1
2 . Examining the expected

difference between Z(t) and Z(t + 1), we have

E[Z(t + 1) − Z(t)]

= E[(lnB − ψt+1)
2 − (ln B − ψt)

2] − Q

= E[−2 lnB(ψt+1 − ψt) + ψ2
t+1 − ψ2

t ] − Q

= −2 lnBE[ψt+1 − ψt]

+ 2E[ψt+1ψt] + E[(ψt+1 − ψt)
2] − Q

≥ −2 lnB · 0 + 2E[ψt+1ψt] + (ln(1 + η)2κ) − Q,

where the last inequality follows from Lemmas 3.1

and 3.2. Since the chain is lazy, we have

E[ψt+1ψt] ≥
1

2
(−2 ln 2)ψt +

1

2
ψ2

t

≥
ln 2

2
(−2 ln 2 + ln 2)

≥ −
1

4

Hence E[Z(t+1)−Z(t)] ≥ − 1
2 +(Q+ 1

2 )−Q ≥ 0. Also,
since the differences Z(t + 1) − Z(t) are bounded, we
can conclude that {Z(t)} is a submartingale. Let

T x,y = min{t : φt = 0}
= min{t : ψt = −2 ln 2}.

Then T x,y is a stopping time for Z(t), so we may apply
the Optional Stopping Theorem for submartingales to
deduce that

E[T x,y] ≤
1

Q
[ψ0(2 lnB − ψ0) + 4 lnB + 2]

≤
2(lnB)2

Q
.

It follows from Theorem 3.1 that

τ(ε) ≤ ,
2e(lnB)2

Q
-,ln(ε−1)-,

and this proves the theorem.

4 Rapid mixing of the biased Markov chain

To prove Theorem 2.1 showing that the biased Markov
chain Mmon is rapidly mixing, we return to the coupling
of (σt, ρt) that simply supplies the same (v∗, b, p) to
both σt and ρt. We let U be the set of downsets that
differ on a single tile. However, instead of the Hamming
distance, we consider

φ(σ, ρ) =
∑

x∈σ⊕ρ

(
√

λ)m−x·u∗

,

where m := maxy∈R y · u∗.
We will show that this distance metric satisfies

non-negative contraction in φt, which is one of the
requirements for Theorem 3.3. However, before we
can prove that the distances decrease on average, we
examine those moves which can increase the distance.

For a pair (σt, ρt) ∈ U , there are two different
ways the distance can increase in (σt+1, ρt+1). If σt =
ρt ∪ {x}, we can increase the distance by attempting
to add a v that succeeds in σt but fails in ρt. This
occurs when v = x + ui for some i, so v is “supported”
in σt but not ρt. The other way to increase the distance



Figure 5: Downsets that differ on x, where Mmon

increases φt by adding x + ui, for any i.

between σt and ρt is to remove a v that succeeds in ρt

but not in σt. This occurs when v = x − ui for some i,
as the move creates a valid downset in ρ but not in σ.
The following lemma bounds the number of places this
can occur.

Lemma 4.1. Let (σt, ρt) ∈ Ωmon×Ωmon be neighboring
configurations such that σt = ρt ∪ {x}. Then there
are at most d choices of (v∗, b) which could cause φt

to increase.

Proof. We prove the lemma by showing that for di-
mensions i /= j, if Mmon would increase the distance
by choosing v = x + ui, then it would not increase
the distance by choosing v = x − uj . This follows
from a proof by contradiction. Suppose that Mmon

could increase the distance with x + ui. If follows that
ρt+1 = ρt ∪ {x + ui} is a valid downset, which means
that x+ui−uj ∈ ρt. On the other hand, if Mmon would
increase the distance by choosing x − uj, it is because
σt+1 = σt\{x − uj} is a valid downset, and this is only
true if x − uj + ui /∈ σt. But this contradicts the fact
σt ⊕ ρt = {x}, thereby justifying our claim.

Now it follows that in order to increase the distance,
the coupled chain may do one of three things. It can
attempt to add vertices of the form x + ui, in each
dimension i, as in Figure 5; or, symmetrically, it may
attempt to remove vertices of the form x − ui, in each
dimension i; or it may attempt to add x + ui or remove
x−ui in a single designated dimension i, as in Figure 6.
In each of these cases, there are at most d choices of v
that increase the distance. All other choices of moves
have the same effect on σt and ρt, and therefore do not
change the distance between them.

We now bound the expected increase in φt.

Figure 6: Downsets that differ on x, where Mmon

increases φt by adding the vertex above x or removing
the vertex below x.

Lemma 4.2. For each choise of v∗ and b that can
cause φt to increase during a move of the coupling, the
expected increase ot the distance is φtλ−1/2.

Proof. If the move is of the form v = x + ui for some i,
then the increase in distance is (

√
λ)m−v·u∗

= φtλ−1/2.
If the move is of the form v = x−ui for some i, then

the increase in distance is λ−(‖v‖1)/2 = φtλ1/2, and the
chance of choosing an appropriate p is 1/λ. Therefore
the expected increase is again φtλ−1/2.

This allows us to show that the expected change in
distance is at most zero.

Lemma 4.3. For φt = φ(σt, ρt),

E[φt+1 − φt] ≤ 0.

Proof. As shown in the proofs of Lemmas 4.1 and 4.2,
there are at most d choices of (v∗, b) that can increase
φt, each giving an expected increase of φt/λ1/2. There
are also two choices of (v∗, b) that can decrease φt,
corresponding to adding x to σt or removing x from
ρt. These moves each decrease the distance by φt and
they succeed with probability 1 and 1/λ, respectively.
Therefore the expected change in distance is

E[φt+1 − φt]

≤ d ·
φt√
λ
−

(
1 +

1

λ

)
φt

= −φt

(
1√
λ
−

d+
√

d2−4

2

)(
1√
λ
−

d−
√

d2−4

2

)

.

When
√

λ > 2/(d −
√

d2 − 4), the above quantity is
negative, thereby proving the lemma.



We may now prove the main theorem showing that
the biased chain converges quickly.

Proof of Theorem 2.1. We need only verify that the
requirements for Theorem 3.3 are all satisfied using the
distance metric φ defined above.

For arbitrary σ, ρ ∈ Ωmon, if x ∈ σ ⊕ ρ for some x,
then

φ(σ, ρ) ≥ (
√

λ)m−x·u∗

≥ 1.

Therefore if φ(σ, ρ) < 1, we must have that φ(σ, ρ) = 0.
We let U be the pairs of downsets that differ by a

single vertex. For arbitrary σ, ρ ∈ Ωmon, we can connect
σ to ρ by simply adding or removing the vertices in σ⊕ρ
one by one, where φ(σ, ρ) is the sum of the distances
between neighbors along this path.

Since the volume of R̂ is n, there are at most n
possible vertices in σ ⊕ ρ, so φ(σ, ρ) ≤ n

√
λ

γ
for all σ

and ρ, where γ is hte stretch of R. For any pair of σ, ρ
such that |σ ⊕ ρ| = 1, Mmon can always add the vertex
at which they differ. The appropriate v∗ is chosen with
probability 1/α and the appropriate b is chosen with
probability 1/2 (and every p succeeds when adding).
Therefore there is a 1/(2α) chance of decreasing the
distance by φt, so

P (|φt+1 − φt| ≥ φt) ≥
1

2α
.

Together, these prove Theorem 2.1 using path cou-
pling by appealing to Theorem 3.3.
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