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Today we introduce some basics of Percolation Theory and the FKG Inequality.

1 Percolation

Let A = Z% denote the integer lattice and B denote the set of bonds (edges) in the lattice. Let
Q = {0,1}% = [I}ep{0,1}. For w € Q, wp = 1 means that the bond b is open (occupied), and
wp = 0 means that bond b is closed (unoccupied). Also, for w € 2, we let S(w) = {b: w, = 1} be
the collection of bonds which are open. For z a vertex of A, we let ¢(z) denote the set of vertices
connected to z using edges of S(w). (L.e. ¢(x) is the connected component containing z.) We write
z <y if ¢(z) = ¢(y) (meaning that z and y are in the same connected component), and z <> oo if
le(z)| = oo.

Definition 1 Let 0 < p <1 and for any bond b let pp(1) = p, up(0) = g = 1 — p. We define the
percolation measure on a configuration, w, to be

Pp(w) = H fb(wp).-

beB

The primary questions that we are interested in are when is it likely that = <> y, and, more
importantly, when is it likely that 0 <> 0o?

Definition 2 Let Py (p) = Pp(0 <> 00). If Poo(p) > 0 we say that we have percolation.
Remarks:
1. Py (0) = 0, so there is no percolation.
2. Py (1) = 1, so there is percolation.
3. Intuitively, if Py (p) > 0, then Py (p') > 0 for p’ > p.
Definition 3 In Z¢, let P.(d) = inf{p : Py (p) > 0}.
A sketch of Py (p) versus p is given below.
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We will prove that this “critical” probability is strictly between zero and one. First, some more
definitions that we will use to do this.

Let 04(N) be the number of self avoiding walks of length N in Z¢.
Let

2=

A(d) = lim o4(N)

N—o

Note that we have d < \(d) < 2d — 1.

To see the lower bound, start at the origin, and construct a self avoiding walk by choosing one
of the d coordinates and adding 1 to that coordinate (i.e. always walk in the positive direction).
Do this for N steps. The walk constructed in this manner is self avoiding since each coordinate
position is a non-decreasing function of N (and one coordinate increases at each step). The number
of walks we can construct this way is d¥, hence o4(N) > dV.

For the upper bound, start at the origin, choose one of the 2d vertices connected to the origin,
and move there. For each step after that, choose one of the 2d — 1 other vertices joined to the
current one, and move there (i.e. don’t return to the one you just came from). The number of
walks constructed in this manner is 2d(2d — 1)V =1, so 04(N) < 2d(2d — 1)V 1.

Theorem 1 Ford > 2 we have 0 < P.(d) < 1. More specifically, ﬁ <P(d)<1- ﬁ
Proof: (P,(d) > ﬁ)
The probability that any self avoiding walk of length N consists of all open bonds is p". For any

configuration let 74(N) be the number of self avoiding walks of length N which are open. Then
Ey(1a(N)) = p¥oa(N). So

Pylp) < Py(ra(N) > 1) (for all N > 1)

Ep(a(N)) = pVoa(N)

IN N

Note that p < i suffices for the limit to be 0. In fact, as N — oo, we have that Py(p) — 0.
Therefore , Py (p) > ﬁ.

(Pe(d) <1~ x57)

First observe that showing this statement in 2-d is sufficient as P,(d) < P.(2) for d > 2 (since if we
have percolation on some 2-d sub-lattice containing the origin, then we have percolation in the d
dimensional lattice as well). Therefore, consider the restriction to two dimensions.

For any configuration w, if we don’t have percolation, then there is a simply connected circuit in
the dual lattice enclosing the component that contains the origin, where all of the bonds crossing
the circuit are closed. Let I'y be the number of simply connected circuits of length N enclosing the
origin. Then I'y < N - g4(N —1). (Why? Any circuit of length N must cross the z-axis between
(0,0) and (N,0). Then starting at (z + 3, 3) in the dual lattice, the next N — 1 edges of the circuit
must be self avoiding.) So

o0
z P, (7 closed) < Z ¢V Nog(N —1).
7:CiI’C11it N=1

(Here we note that if A(2) - ¢ < 1 then the probability of any closed circuit is finite. In fact, as
g = 0, P,(closed circuit) — 0.)
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Let Fiy be the event of no closed cicuit of length < N, and let G be the event of no closed circuit
of length > N.
Then

Y

]%n(p) f%(}ﬁvrj(;N)

= B(Fn|GN)F(GN)
> Pp(Fn)Pp(Gn)

where the last inequality follows from the FKG inequality, which we prove below. If ¢ < ﬁ,
there’s some value of N such that the probability of a closed circuit of length at least N is at most

z, ie. Py(G§) < 3 for some N. But for any finite N we have P,(Fy) > 0, hence Py (p) > 0 (if

4< x)- O

2 The FKG Inequality

We will prove the FKG inequality on finite state spaces, although it holds for general percolation
spaces.

Consider the state space 2 = Z% and A C (2 is an “event.”
Definition 4 A is an increasing event if for all w € A, if W' > w then W' € A.
Examples
1. A={w:0 ¢ oo} on the infinite lattice Z9.
2. A= {w: w has a left-right crossing} in Z2.
The FKG inequality was discovered by Harris, and by Fortuin, Kasteleyn, and Ginibre.
Theorem 2 (FKG) If A and B are increasing events, then
P,(AN B) > Py(A)Py(B).
We will prove a stronger version of this theorem. First we need a definition.
Definition 5 Let u be a probability mesaure on Q. We say that p satisfies the FKG condition if
u(aUb)u(anb) = pu(a)u(b) 1)
for all a,b € (.
We will prove a stronger version of the FKG inequality due to Holley.

Theorem 3 (FKG, Stronger Version) Let p be a probability measure on Q) that satisfies the
FKG condition (1), and let f and g be increasing functions on Q. Then

> fl@)g(a)u(a) > D" fa)u(a) > g(b)u(d).

a€ acN beQ
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Remarks:

1. P, is an FKG measure (i.e. it satisfies the FKG condition (1), with equality)

Pp(an):< p )'b\a: Py(b)
Pp(a) 1-p Pp(anb)

where b\a are the bonds which are open in b but not in a.

2. Let f = 14, i.e. the indicator for the set A, and ¢ = 1. Then, with these f and g, the
stronger version (Thm. 3) implies the first FKG inequality (Thm. 2).

In the next lecture we will see the proof of the FKG inequality.



