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Models from Statistical Mechanics
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What does a “typical” element look like?

e Evaluate thermodynamic properties.
e Determine properties of “typical’ elements.

e Estimate the cardinality of a set.
(“Markov chain Monte Carlo™)

A
/
. j@:

KL

»




Random Sampling Using Markov Chains
)
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Thm: If a finite, reversible M.C. M with
transition probs P is ergodic on (), then it
converges to a unique stationary distribution.

The Metropolis Algorithm:
Thm: If P is defined so that

Plz,y) = %min (12(—3) |

then the stationary distribution will be 7.

...But for how long must we run the chain?
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Bounding Convergence Time

Def: The total variation distance

Il = max (x(4) — '(4))

Def: The mixing time is

7(€) = max min{t : ||P'(z,-), 7||v} < e
X

Def: A Markov chain is rapidly mixing if

7(e) < poly(n,e").

spectral gap — Gap(P) = A\ — | M9,
(path) coupling A1 > ol > o> A,
canonical paths / flows

conductance / isoperimetry

comparison

decomposition

stopping rules



Examples:

The efficiency and limitations of various
sampling algorithms for:

1. Lattice paths
2. Dimer models and 3-colorings

3. lIsing / Potts models



Example 1: Lattice paths




Example 1: Lattice paths

Find a shortest path in R C 72
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The Mountain/Valley Chain
Repeat:

e Pick vertical line uniformly.

e [f path intersect is “mountain” or “valley,”
invert it with probability 1/2;
else do nothing.

(This is ergodic for any simply connected R,
and the stationary distribution is uniform.)



Coupling (To bound convergence rates)

For a Markov chain M = (Q, P, n):

Def: A coupling is a stochastic process
(Xt, Y1) on €2 x 2 s.t.:

1. Xt and Y} are each faithful copy of M;
2. If X3 = Y; then X1 = Va1,

Def: The coupling time

T = max E [min{t : Xy = Y| X0, Yp}].
X0,¥0

Thm: [Aldous]

7€) < ¢Tle .
r r

mixing time coupling time



Proof of Fast Mixing

Pr

Pg

To couple, choose the same vertical line and
the same direction for both processes.

1. Initially, vol = vol [Py, Pg] = n.
*2. E [Avol] < 0.
3. Pr|vol changes in 1 step] > %
(if vol # 0).
4. vol = 0 & paths agree.

= Mixing Time < O(n?).



Pf. cont.: (* E[Avol] <0 )

B G

B
G G

On P;: Label Mtns w/ G; Valleys w/ B.
On Py: Label Mtns w/ B; Valleys w/ G.

?
B [Avol] = o [(#B) — (#0)] < 0



Ex. 2: Lozenge tilings

The dimer model on the triangular lattice

S1 4]
S92 2
S3 t3

The “routing” interpretation



Two Markov chains on lozenge tilings

Markov chain 1: Glauber dynamics

Repeat: Repeat:
e Pick v €, §5; e Pick p on one of the
e Add/remove the “cube” paths uniformly;

at v w.p. %, if possible. o Invert Mountain/Valley,
wW.p. % if possible.
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Two Markov chains on lozenge tilings

Markov chain 1: “Tower’ moves

Repeat: Repeat:
e Pick v €, §5; e Pick p on one of the
o Invert “tower” (ht h) paths uniformly;
at v w.p. %, if pos. e Invert the Mtn/val tower,
w.p. % if possible.
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Analysis of Markov chain 2 (Towers)
[Luby, R., Sinclair]

Ry
S1 1
S9 tQ
S3 tg
Rp

1. Initially, vol = vol [Ry, Rg] = n'®.

*2. E [Avol] < 0.
3. Pr |vol changes in 1 step| >

(if vol # 0).

4. vol = 0 & paths agree.

1
n

= Mixing Time < O(n?).



On P;: Label Mtns w/ G; Valleys w/ B.
On P,: Label Mtns w/ B; Valleys w/ G.

change due to inversion

prob of inversion
}

( Z hy (Qh ) Z hi (th)> -

bad ¢ good ¢

E [Avol]=

=]
—_

= = (#B) — (#G)) < 0

—> The tower chain is rapidly mixing.



Extensions

Thm: [R., Tetali] Glauber dynamics (MC 1)
is also rapidly mixing on 3-colorings.

By the Comparison Thm of [Diaconis, Saloff-Coste] .

Same ideas also work for 3-colorings (with
fixed boundary cond'ns) and domino tilings.
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Example 3: Ising and Potts models

The Ising Model ceQ={+ -}V
_______ 44— (Hamiltonian)
e e A R
e (Gibbs measure) (6 =1/T)
PR e m5(0) = 1)/ 7
t_l_t::::t:: (Partition function) /
P «Z5= Y )

o’e)

Energy landscapes:
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Glauber dynamics on Ising configurations

Repeat: :fi::;ii‘
e Pick v uniformly; 44—
e Change the sign of v — - — -+

(going from o to T) +4++—-—=+—-—
. 7(7) - — T = = — 7+ —

W.p. mm(l, W(U)> _____ 4+ 4+ +
- ==+

For S C €, let by = > _zesyes T(@)P(z,y)
ZxESﬂ-(aj)

® = min &g
S: w(S)g%

Thm: [Jerrum, Sinclair]

@2
o < Gap < 29.




By =0 v I

By—1

By—2

Bo

Tempering / Swapping

@ _ QM—I—l
B = 140
mi(o3) = mg,(03)

(o) = [12omi(oy)

-

The Swap Algorithm

Repeat:

\_

w.p. 1/2: Do a LEVEL move:
Pick ¢; update o;

w.p. 1/2: Do a SWAP move:
Pick (i,7+ 1);
“swap" gy and 041

g = (007---70i70i+17---70M)

g = (007---70i+170i7---70M)




Swapping on the Mean-Field Ising Model

In the Mean-field model, the underlying graph

Thm: [Madras, Zheng| Swap is fast for
the mean-field Ising model for all [5.



Q/

Thm: Gap( P

/f \

Restrlctlons”

Disjoint Decomposition
Caracciolo, Pelisetto, Sokall],
Madras, R.],
Martin, R.]

Projection

m(a;) = m(A;)
Plaja5) = ), ~ 7(4)
A
A

) > 5 Gap( P )(min; Gap( F; ))

DN —



Tempering / Swapping

Bu = 0

UI
MI

By-1

By—2

Bo

@ . QM—l—l
b; = ﬁﬁ
mi(oi) = mg(0;)

(o) = [y mi(0:)

-

-

Def: The trace
Tr: Q — {0, 1}M+1
Tr(a) — (b())abM)1

= 0 if g; is mostly —;

1 if o; is mostly +.
: y,

b;
b;




Thm: [Madras, Zheng] Swap is fast for
the mean-field Ising model for all (5.

Pf. (sketch) (using decomposition)

Partition )
= OM+1 according to Trace

Rest/rAns Projection

@ (L1, 1)

W)

oo
: Hypercube

Fixed Trace



Swapping (Tempering): the Magic Answer?

The Potts Model o c 0 — {R,B,G}N

(Hamiltonian)

- Z 00 =97

’LN]

(Gibbs measure) (B =1/T)
o ms(0) = 11\ /75

(Partition function)

« 7y = Z PH (o)

o'eq)

[Bhatnagar, R.] The swap algorithm
can be slow for the mean-field 3-state Potts
model.

(Because of the first order (discontinuous)
phase transition.)

Moreover, it can be exponentially slower
than fixed-temperature Glauber dynamics !!!




Comments

1. There is a different way to sampling Ising states:

[Jerrum, Sinclair|: 3 an efficient algorithm for
estimating the partition function of an Ising
system on any graph for any (3.

[R., Wilson|: 3 an efficient sampler for the
Ising model for any graph, any (3.

(But almost nothing is known for Potts!)

2. Phase trans'ns also exist for the uniform dist'n:

[Luby, Vigoda]: Glauber dynamics is fast
for the Independent Set model on R C Z2.

[Galvin, Kahn] Above some sufficiently large
dimension, Glauber dynamics is exponentially
slow for the Independent Set model on Z¢.




Future challenges ...

1. Characterize which sampling problems are
computationally intractable.

2. Determine when specific Markov chain
algorithms are inefficient.

3. Develop new techniques for anayzing po-
tentially fast chains.

4. Design fast(er) Markov chains.
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