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Abstract. Algorithms based on Markov chains are ubiquitous across
scientific disciplines as they provide a method for extracting statistical
information about large, complicated systems. For some self-assembly
models, Markov chains can be used to predict both equilibrium and non-
equilibrium dynamics. In fact, the efficiency of these self-assembly algo-
rithms can be related to the rate of convergence of simple chains. We give
an overview of the theory of Markov chains and show how many natural
chains, including some relevant in the context of self-assembly, undergo
a phase transition as a parameter of the model representing temperature
is varied.

1 Introduction

Markov chain Monte Carlo methods are used in many areas of science as a
computational tool for studying large, combinatorial sets. A Markov chain is an
algorithm that simulates a random walk moving among configurations in the
large set, just like shuffling a deck of cards. Even though each configuration
might have only a relatively small number of nearest neighbors, a Markov chain
is designed so that it converges to desirable distributions over the entire space of
configurations. The rate of convergence to this equilibrium distribution, known
as the mizing rate, determines whether a particular Markov chain provides an
efficient tool for sampling. For a state space that is exponentially large in the size
of the input, we require that the chain comes close to the equilibrium distribution
in only polynomial time in order for this sampling method to be effective.

Recently there has been great success in providing rigorous proofs that cer-
tain Markov chains are efficient, and insights from these proofs have guided the
design of creative alternative algorithms for sampling. Surveys of some of these
proof techniques can be found in [5, 7, 8, 12, 17]. On the other hand, under-
standing when various Markov chains fail to converge in polynomial time can
shed light on the limitations of many natural sampling algorithms, including
many tile based DNA self-assembly protocols. We illustrate such a dichotomy
in the convergence time of a Markov chain by considering the well-known Ising
model from statistical physics, as well as a variant arising in the context of
self-assembly.
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This abstract is meant to give a brief introduction to some of the main con-
cepts underlying the design and analysis of efficient Markov chains. In section 2
we provide formalization for the pairwise-influence models that arise in both
statistical physics and DNA-based self-assembly, in particular the Ising model
and a variant. In section 3 we review the fundamentals of Markov chains and in
section 4 we discuss the behavior of a natural chain for sampling Ising configura-
tions. In particular, we show that this chain will be efficient at high temperatures
and inefficient at low temperatures because of a phase transition in the model.
Finally, in the last section we discuss possible ways to remedy this by designing
alternative chains for sampling Ising configurations.

2 Self-assembly and pairwise influence models

2.1 DNA-based self-assembly

Self-assembly is a process in which large numbers of simple objects aggregate
into larger structures in predictable ways. One exciting approach that has re-
ceived much attention is tile-based self-assembly models. In tiling models, tiles
are designed with markings on each side so that two tiles are more likely to
join together along an edge if they have identical markings. Wang studied such
tiling systems and showed that they form a universal model of computation [22],
making them an appealing object of study.

The primary challenge, then, is to define a set of marked tiles so that tiles are
likely to assemble into large aggregates and so that markings determine which
tiles are allowed to line up. The approach taken by Seeman, Winfree and others
is to use DNA double-crossover molecules [4] to construct marked tiles with DNA
sequences on each side [20]. Tiles we would like to have next to each other are
defined to have large numbers of complementary base pairs along their matched
edges, with the likelihood of their joining determined by hybridization energies.
See, e.g., [4,15,16,20,21] for more details.

Here we are interested in a theoretical abstraction that captures the funda-
mental features of this model. We imagine we have a large (infinite) supply of
rectangular tiles of various types. These tiles have markings on each of their four
sides, and there are well-defined energies saying how likely it is for pair to line
up along any of their edges. For example, imagine we have two types of tiles,
A and B. If the bottom and left sides of A are complementary to the right and
top sides of A, and B has similar characteristics but is not similar to A, then
tiles of the same type will tend to cluster together. Moreover, this preference is
amplified at low temperatures and dampened at high temperatures. See figure 1.

2.2 General pairwise influence models

The tile-based self-assembly algorithms are an example of a broad class of models
studied in statistical physics that we can describe as pairwise-influence models.
Each nearest-neighbor pair of tiles is given a weight representing how likely they
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Fig. 1. Tiles A and B designed so that each tile prefers to be adjacent to a tile of the
same type.

are to bond to each other. This abstraction is most appropriate when the tiles
form a regular lattice so we can think of their placement in the lattice as an
assignment to the vertices. Then the “energy” of an edge is precisely the bond
strength between the two tiles occupying the endpoints of the edge.

More precisely, suppose we are given any n-vertex graph G = (V, E), say
the n x n grid. Let 2 = {1,...,¢}"™ be the state space, where f : V — {1,...q}
assigns a value from the set {1,...,q} to each vertex in the graph. We define a
symmetric set of weights {X; ; = X;;} for each pair 4,5 € {1,...,¢q} and give
each configuration o € (2 a weight

wo)= ]  Xrw.rw-
u,v:(u,v)EE

Normalizing, we get a probability distribution

w(o)
ZTEQ ’lU(T) ’

By adjusting the values for X; ; we can favor certain pairs of nearest neighbors
and discourage others. For example, letting X; ; = 1 for all i # j and letting
X;,; = 0 whenever ¢ = j, the probability distribution arising from the pairwise
influence model is precisely the uniform distribution on the set of proper g¢-
colorings.

These models were originally defined to represent simple physical systems.
An energy function on the space of configurations is defined by a Hamiltonian
H(o). For models where the energy is determined solely from nearest-neighbor
interactions, H (o Z(u Zl)e g f(o(u),0(v)), for some function f. Just like a
spring relaxing, systems tend to favor conﬁguratlons that minimize energy, where
this preference is controlled by temperature. Each configuration in (2 is given a
weight

w(o) =

w(o) = e PHE),

where 8 = 1/T is inverse temperature. Thus, for low values of § the differ-
ences between the energy of configurations are dampened, while at large § these
differences are magnified. Taking X; ; = /(%9 reconciles these two definitions.



The likelihood of each configuration is then given by
m(0) = w(0)/Z,

where Z = 3~ _w() is the normalizing constant known as the partition function.
This is known as the Gibbs (or Boltzmann) distribution. Taking derivatives of
the generating function Z (or In Z) with respect to the appropriate variables
allows us to calculate many of the interesting thermodynamic properties of the
system, such as the specific heat and the free energy.

We can use this formalization to represent many familiar models by adjusting
the values for X ; so as to favor certain pairs of nearest neighbors and discourage
others. For example, treating all edges uniformly and letting X; ; = 1 for all i # j
and letting X; ; = 0 whenever ¢ = j, the probability distribution arising from
the pairwise influence model is precisely the uniform distribution on the set of
proper g-colorings.

Moreover, we can easily modify the pairwise influence model to make it more
amenable to problems arising in the context of self-assembly. Think of G as a
directed graph by letting E be a set of ordered pairs. Then, for each directed
edge (u,v) € E, we let {Xz.(f;.’v)} be the energy on the edge for an assignment oin
which o(u) =i and o(v) = j, and each configuration o € 2 is given a weight

_ (u,v)
wo)= JI X5
e=(u,v)€EE

Again normalizing, we get a probability distribution:

w(o)
o) = <29
2 reqw(T)
In most physical models X Z.(;‘-’v) is taken to be uniform over all edges (u,v) € E,

so the superscript is suppressed. We include in here because it allows us to
treat energies over directed edges individually as is necessary for tile models. In
particular, we can allow one set of energies for tiles that lie next to each other
vertically and another if they are next to each other horizontally.

2.3 Saturated and non-saturated Ising models

The Ising model is a standard model of ferromagnetism studied in statistical
physics. Given a graph G on n vertices, our state space is defined by the 2" ways
of assigning spins +1 or —1 to each of the vertices. In the ferromagnetic Ising
model, the Hamiltonian is defined so as to favor configurations which tend to
have equal spins on the endpoints of its edges; the antiferromagnetic Ising model
prefers unequal spins on the endpoints. For o € {£+}", the Hamiltonian is given
by
e (uw)er d(o(u)=0(v))
(o) = . ,




where Z is the normalizing constant and é(a = b) = 1 if @ = b and is 0 otherwise.
For an informal introduction to the Ising model, see [3].

This can be thought of as a fully-packed, or saturated, self-assembly model
with two tiles A and B where each tile prefers to be next to others of the
same type (regardless of direction). We can construct this by designing two tiles
such that opposite sides of each tile contains complementary sequences, and yet
each side is far from complementary to any side of the other type of tile. If the
sequences on each side are long enough, then we can arrange it so that the bond
strengths satisfy X4 4 = Xp,p > Xa,B = X(B,A) = 1 over all edges, which is
precisely the Ising model. See figure 1 for an example of an Ising configuration.

A simple modification of the standard Ising model makes it even more ap-
propriate for the tile-based self-assembly models in which configurations often
include empty spaces where there are no tiles present. In the unsaturated model,
empty spaces are modeled by introducing a third tile type (or spin) C and letting
Xa,a=XBB>Xap > Xac =Xpc = Xc,c =1 be the pairwise interac-
tions. This generalization helps capture the way that tiles will assemble and pull
apart at equilibrium according to the temperature. Thus, a tile of either type
most prefers to be next to another tile of the same type, but it also prefers to
have each of its neighbors occupied rather than unoccupied, even if it is with
the other tile. This is demonstrated in figure 2.
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Fig. 2. The unsaturated Ising model.

3 The basics of sampling

A popular method for sampling is to define a Markov chain whose states corre-
spond to the elements of the set. We first define a graph H that connects the
states space by allowing us to move between pairs of configurations which are
close under some metric. For the Ising model, local or Glauber dynamics connect
pairs of configurations that have Hamming distance one. This means that in a
given step, the chain can pick any position and change the type of tile that is
there. For the unsaturated Ising model it might make the most sense to connect
two configurations of Hamming distance one only if one of the configurations has
a tile of type C in the position of disagreement — recall that C represents an



empty position, so these moves correspond to a tiles of type A or B attaching or
detaching from the larger configuration. Notice that the Markov chain connects
the state space even if we disallow directly changing a tile from type A to type B.

To define the transition probabilities of the Markov chain on the edges of
H, we refer to the desired stationary distribution 7. In the case of the Ising
model, we want to sample from the Gibbs distribution. The Metropolis-Hastings
algorithm dictates transition probabilies which will force the Markov chain to
converge to this distibution [10]:

1 (y)

P = —min |1, —/=
for all z,y, neighbors in H, where A is the maximum degree of G. To implement,
Glauber dynamics for the Ising model, e.g., starting at configuration z, we pick
a vertex v in the lattice uniformly at random as well as a new candidate spin ¢

for that vertex; we then change the spin at v to ¢ with probability min <1 ”(y)) ,

) w(z)
if this is an allowable move (see figure 3).
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Fig. 3. A move in the local Markov chain for the unsaturated Ising model.

It is easy to verify that if the kernel is ergodic (connected) and aperiodic,
then 7 is the unique stationary distribution. This means that if we start at any
vertex in H and perform a random walk according to the transition probabilities
P, and we walk long enough, we will converge to the desired distribution #. For
this to be useful, we need that we are converging rapidly to = so that after a
small, polynomial number of steps, our samples will be chosen from a distibution
which is provably arbitrarily close to w. A Markov chain with this property is
rapidly mizing.

Let Pt(z,y) denote the t-step transition probability from z to y.

Definition 1. The total variation distance at time t is

1
Pt x|| = d pt - .
[|1P*, ]| max o EEQI (z,y) — 7 (y)|
Y

Definition 2. Let € > 0, then the mixing time 7(g) is

7(e) = min{t : ||P || < &,V¢' > t}.



M is rapidly mizing if the mixing time is bounded above by a polynomial in n
and log %, where n is the size of each configuration in the state space. When the
mixing time is exponential in n, we say the chain is slowly mixing.

4 Mixing rates for pairwise influence models

The physical interpretation of pairwise influence models reveals insights into
their equilibrium structure, as well as the efficiency of various Markov chain
dynamics. Typically, local chains are rapidly mixing at high temperature and
slowly mixing at low temperature. For instance, consider the Ising model on
the two-dimensional Cartesian lattice. At sufficiently high temperature, Ising
configurations will tend to be half + and half -, and we can use a coupling
argument to show that Glauber dynamics (the local chain) is rapidly mixing
(see, e.g., [1]). At sufficiently low temperature, however, Ising configurations
will be predominantly one spin with very high probability. To move from a
mostly + configuration to a mostly - one requires moving through a configuration
that is half 4+ and half -, but these are exponentially unlikely. This reveals an
exponentially small cut in the state space that indicates the chain will require
exponential time to converge to equilibrium [5].

Similar results can be shown for the unsaturated Ising model with empty
sites, as follows.

Theorem 1. The mizing time of Glauber dynamics for the unsaturated Ising
model on an n X n square lattice region is at most polynomial in n,log(1/€) if B
is small enough.

Theorem 1 follows from a simple coupling argument (see, e.g., [1]). The idea
behind coupling is to show that there is a Markov chain on the space {2 x {2 that
evolves pairs of configurations simultaneously so that each of the marginals are
evolving with probabilities given by the Markov chain under consideration. To
show Theorem 1, we define a coupling that updates any pair of configurations by
choosing the same position and trying to change the tile at that position to the
same new tile. The coupling time, or time it takes for the pair of configurations
to become identical under these coupled moves, is an upper bound on the mixing
time. We can show that at sufficiently high temperature (low 3) the Hamming
distance between any two unequal configurations will decrease in expectation,
and this yields a polynomial upper bound on the mixing time.

At low temperature we see very different behavior.

Theorem 2. The mizing time of Glauber dynamics for the unsaturated Ising
model on an n x n square lattice region is at least exp(y(B8)n) where ¥(B) > 0 if
B is large enough.

Theorem 2 can be shown by demonstrating that there is a “bad cut” in the
state space, so it will take exponential time in expectation to get from one side of
the cut to the other. This indicates that the mixing time will be exponential (see,



e.g., [18]). We can show this cut exists using the idea of topological obstructions
introduced in [13] in the constext of independent sets. Both of these proofs follow
from arguments used previously the verify analagous theorems for the standard
(saturated) Ising model ([19,11]).

5 Conclusions

In addition to helping us appreciate the dichotomy underlying the behavior of
Markov chains based on local updates, the physical models also aid our design
of better sampling algorithms. One approach that has received a lot of attention
is simulated annealing and its sampling analogue simulated tempering. Madras
and Zhong [9] showed that although sampling Ising configurations at low tem-
peratures is known to be slow, a version of tempering in which the temperature
is raised and lowered during the simulation can be shown to fast and can provide
samples at all temperatures; they prove this when the underlying graph is the
complete graph instead of the lattice. However, it has been shown that for the
ferromagnetic Potts model, a closely related pairwise influence model in which
there are a larger number of spins, tempering can also require exponential time
[2]. This shows that annealing algorithms must be very carefully analyzed to
determine whether they can be used for sampling.

Since it is known that locally defined chains cannot be efficient for sampling
Ising configurations at low temperature, it suggests that we should look for
alternate algorithms based on nonlocal chains. Jerrum and Sinclair found such
an algorithm for estimating the partition function of any Ising model at any
temperature [6], and Randall and Wilson showed that this can always be used
to sample Ising configurations [14]. These results demonstrate that the interplay
between statistical physics and computer science can bring to light new ideas in
the world of sampling. It is not known whether such results can be extended to
the unsaturated model. Moreover, the sampling algorithm of [14] is very indirect
and does not provide a natural algorithm in the context of self-assembly. It seems
worthwhile to continue to look for alternative approaches that would be more
useful in that context.
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