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Abstract. In tile-based models of self-assembly, tiles arrive and attach
to large a aggregate according to various rules. Likewise, tiles can break
off and detach from the aggregate. The equilibrium and non-equilibrium
dynamics of this process can be studied by viewing them as reversible
Markov chains. We give conditions under which certain chains in this
class are provably rapidly mixing, or quickly converging to equilibrium.
Previous bounds on convergence times have been restricted to homoge-
neous chains where the rates at which tiles attach and detach are inde-
pendent of the location. We generalize these models to allow rates to be
location dependent, giving the first rigorous results of fast convergence
to equilibrium for a heterogeneous tile-based growth models.
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1 Introduction

In tile-based self-assembly models, tiles are constructed so that specified pairs
are encouraged or discouraged to join together. This model was first introduced
by Wang [11] and was shown to be a universal model of computation. Win-
free [12] and others studied the model in the context of DNA computation by
constructing tiles made of double-crossover strands, where the sides of each tile
could be encoded with single-stranded DNA and tiles are more or less likely to
form bonds according to the number of complementary base pairs on their corre-
sponding sides. See, e.g., [5, 77, 12] for more details. Here we are concerned with
determining the rate of convergence to equilibrium of some simple self-assembly
processes.

In particular, we consider a lattice-based growth model consisting of three
types of tiles: a seed tile placed at the origin, border tiles that form the left and
bottom border of an n x n region, and interior tiles that can be placed in the
remaining part of the region. We assume that the border forms quickly after a
seed tile appears, and we restrict to a growth model in which interior tiles can
attach to the aggregate if their left and bottom neighbors are present, whereas
they can detach if their right and upper neighbors are absent. It is easy to see
that the only shapes that can be formed are tiles that are neatly packed into
the lower-left corner of the region so that the upper border forms a staircase
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walk that travels to the right and down (see Fig. 1). We refer to the ratio of the
attach and detach rates as the bias of the growth process.
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Fig. 1. A pair of tilings connected by a single move of the Markov chain.

N

Variants of this growth model have been previously considered in order to
study various aspects of self-assembly. For example, Baryshnikov et al. [2] con-
sider a non-reversible version of this process when n is large to determine the
limiting shape, and note that the behavior is captured by a TASEP (totally
asymmetric simple exclusion process). Majumder et al. [8] initiated the study of
the reversible process in the finite setting where tiles are allowed to detach as
well as attach to the aggregate.

It has been noted for many models that dynamics of self-assembly can be
viewed as a Markov chain, and the convergence rate of the chain captures the
rate that the assembly process tends towards equilibrium (see, e.g., [1, 7, 8, 6]).
Majumder et al. [8] prove that the reversible growth process described above
is rapidly mixing (i.e., it converges in time polynomial in n) in two and three
dimensions if tiles attach at a much faster rate than they detach. In fact, the
same two-dimensional process had been studied previously by Benjamini et al.
[3] in the context of biased card shuffling and biased exclusion processes. They
give optimal bounds on the mixing time of the chain of O(n?) for all fixed values
of the bias. Subsequently, Greenberg et al. [7] discovered an alternative proof
establishing the optimal bound on the mixing rate for any fixed bias in two
dimensions. This new proof is much simpler, and moreover it can be generalized
to higher dimensional growth processes provided the bias is not too close to one.

A common feature of all of these previous results is that all interior tiles are
always treated identically. Thus, the rate at which a tile is allowed to attach or
detach from the large aggregate is independent of the position of the tile. This
is a severe shortcoming since in reality several properties of the growth pro-
cesses can affect these rates, including the particular encodings on the sides of
the double-crossover molecules comprising the tiles, as well as the relative densi-
ties of different tiles that can be attached in various positions. Mathematically,
the problem becomes more intriguing as well. Physicists refer to this property
whereby the bias is location dependent as “fluctuating bias,” and it has been
noted that methods that allow us to analyze systems with fixed bias do not
readily generalize to the fluctuating setting.



In this paper we consider the heterogeneous setting where the bias of a tile
depends on its location. The state space {2 us the set of valid tilings of the n x n
region where the upper/right boundary is a staircase walk starting at (0,n)
and ending at (n,0). Let a(z,y) and B(x,y) be the probabilities of adding and
removing a tile at position (x,y) for the heterogeneous model. We call A\, , =
alz,y)/B(z,y) the bias at position (z,y).

The self-assembly Markov chain M g4 tries to add or remove individual tiles
in each step and is formalized below. We give the first rigorous proofs that
the chain is rapidly mixing for various settings of the {)\; ,}. In particular, we
derive optimal bounds on the mixing time if A, , > 4 for all (z,y) and we give
polynomial bounds on the mixing time when A, , > 2.

2 The Mixing Time of the Self-Assembly Markov Chain

The growth process is defined so that the rate of adding a tile at position (z,y)
is a(z,y) and the rate of removing that tile is 8(z,y). We are interested in the
case where \; , = a(z,y)/B(z,y) > 1 for all z,y. Since the chain is reversible,
there is a unique stationary distribution, and it is straightforward to see the
chain converges to
H(m,y)eo )‘z,y

Z )
where Z =3 [1(4,4)er Ay is the normalizing constant. Our goal is to sample
configurations in {2 according to the distribution .

We can now formalize the Markov chain Mg 4. At each time step, we pick a
vertex v uniformly along the upper border of the aggregate, each with probability
1/(2n) since the border has length 2n. It will be convenient in the analysis to
add a self-loop probability at each position, so we flip a coin and if the coin lands
on heads we try to add a tile at v and if the coin is tales we try to remove the
tile at v.

To define the transition probabilities of M g4, we use the Metropolis-Hastings
probabilities [9] with respect to . The transitions are

(o) =

1/(4n), if 7 =0Ut,, for some tile t; ;
1/(4nXs ), if 0 =71Ut,, for some tile t; ,;
Msa(o, 1) = 1/_( > ’y)M N i ! Y
AT SA(Uu T )7 nLo=rT;
0, otherwise.

The time a Markov chain takes to converge to its stationary distribution, or
the mizing time, is measured in terms of the total variation distance between
the distribution at time ¢ and the stationary distribution (see, e.g., [7]). Our goal
is to show that the mixing time of the chain Mg, is bounded by a polynomial
in the size of the region being tiled. We can show this provided the lower bound
on the bias is not too close to one. We briefly state our results and outline
the two general techniques used, deferring complete proofs for the full version
of the paper. We believe these approaches can be generalized to many other
self-assembly models.



2.1 Coupling Using A Geometric Distance Function

Theorem 1 Let A\r, > 1 be a lower bound on the bias and let \y be an upper

bound satisfying
2 _ 1)1 ;
Ay = (\/E 1) lf)\L<4.

If, for all x,y, we have A\, < Ay y < Ay, then the mizing time of Mgsa satisfies
7(e) = O(n?Ine™t).

In particular, this theorem gives the optimal bound on the mixing time when
the lower bound Az, on the bias everywhere is at least four.

This result is obtained by the path coupling method (see [4]) using a carefully
defined distance metric. As in [7] which deals with the homogeneous case (i.e.,
fixed \), we use a geometric distance metric, with the following additional defi-
nition. For any tile T = (z,y), let diag(v) =  + y. Then we define the distance

function ¢ to be
¢(Uu p) _ Z ,ydiag(?)72n7
v=(z,y)EcDp

where v = %(1 + %) We can now verify that any pair of tilings at Hamming
distance 1 (e.g., Fig 2 (a)) ¢ is decreasing in expectation during moves of the
coupled chain. This is sufficient to bound the mixing time of the chain following
the arguments in [7].
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Fig. 2. (a) Example of tilings at Hamming distance 1; (b) A staircase walk with 5 good
(increasing) moves and 4 bad (decreasing) moves with respect to the highest tiling T’
(c) A region R where the tiles along the upper boundary have bias greater than 2,
whereas the other tiles are unrestricted.

2.2 Hitting Time to the Maximal Tiling

Using a different approach based on hitting times we can show that the chain is
rapidly mixing provided the bias everywhere is at least 2.

Theorem 2 Suppose that for all positions (x,y), 2 < A,. Then the mixing time
of Mga satisfies
7(e) = O(n® In(ne™1)).



The proof of this theorem relies on the monotonicity of Mg with respect
to the trivial coupling. In other words, if (¢, p¢) are coupled and oy C p;, then
after one step of the coupling, o411 C py41. This implies that the coupling time
is bounded by the time to hit the highest configuration T' starting from the
bottom configuration B, and we can show that this will happen quickly because
the distance to T is always non-increasing in expectation (see Fig. 2 (b)).

In fact, something more general is true. The tile biases can vary widely ev-
erywhere, as long as the upper boundary of the region has bias at least A\, = 2
(see Fig. 2 (c)). This surprising result says that the pull of the upper boundary
tiles is strong enough to ensure a fast hitting time to the highest configuration.

Theorem 3 Let R be an n X n region. Suppose that for every (x,y) € R the bias
Azy > 1. Define the upper border S = {(x,n) € R} U{(n,y) € R} and suppose
that for all (z,y) € S, we have Ay y > 2. Then

7(e) = O(n® In(ne™1)).
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