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Abstract

Algorithms based on Markov chains are ubiquitous across scientific disciplines as
they provide a method for extracting statistical information about large, complicated
systems. For some self-assembly models, Markov chains can be used to predict both
equilibrium and non-equilibrium dynamics. In fact, the efficiency of these self-assembly
algorithms can be related to the rate at which simple chains converge to their station-
ary distribution. We give an overview of the theory of Markov chains and show how
many natural chains, including some relevant in the context of self-assembly, undergo
a phase transition as a parameter of the model representing temperature is varied. We
illustrate this behavior for the non-saturated Ising model in which there are two types
of tiles that prefer to be next to other tiles of the same type. Unlike the standard Ising
model, we also allow empty spaces that are not occupied by either type of tile. We
prove that a local Markov chain that allows tiles to attach and detach from the lattice,
the rate of convergence is fast at high temperature and slow at low temperature.

1 Introduction

Markov chain Monte Carlo methods are used in many areas of science as a computational
tool for studying large, combinatorial sets. A Markov chain is a process that simulates
a random walk moving among configurations in the large set, just like shuffling a deck
of cards. Even though each configuration might have only a relatively small number of
neighbors, a Markov chain may be designed so that it converges to desirable distributions
over the entire space of configurations. The time required for the chain to converge to (close
to) this equilibrium distribution, known as the mixing time, tells us whether a particular
Markov chain is an efficient tool for sampling. For a state space that is exponentially
large in the size of the input, we require that the chain comes close to the equilibrium
distribution in only polynomial time in order for this sampling method to be effective.

Markov chains provide a natural tool for understanding many DNA-based self-assembly
models. One popular model uses DNA strands to construct “tiles” that have particular
single-stranded DNA sequences along each of its four edges (see, e.g., [20]). If two tiles
have complementary sequences on opposite edges, then the base pairs along these edges
encourage the tiles to attach by forming bonds, while tiles that have very few complemen-
tary base pairs are less likely to attach. Informally, the likelihood of each configuration
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(or tiling) is given by the Gibbs distribution, a function of the number of complementary
base pairs along the edges of all the tiles and the temperature. At high temperature any
pair of tiles has similar probability of attaching along an edge, but at low temperature
pairs with many complementary base pairs along each edge of the tiling are much more
likely to attach along these bonds. Thus, at high temperature tilings look quite random,
while at low temperature they tend to look very ordered.

If we put our set of tiles in a closed system where they self-assemble into tilings, we
expect that the likelihood of a tiling will be given by the Gibbs distribution. Markov chains
simulate the non-equilibrium dynamics of the tiling model as it approaches stationarity. At
each step we allow any tile to attach or detach according to the probabilities determined by
markings on the edges of the tile and its neighbors. Glauber dynamics are a general class
of local Markov chains that connect any two configurations that have Hamming distance
one (i.e., they differ only at a single tile).

For simplicity, in this paper we shall consider a particular tiling model where there are
two tile types, A and B, that are designed so that each tile prefers to be next to other
tiles of its same type. This is very reminiscent of the Ising model of statistical physics,
where lattice points are assigned a spin of {+,−} and similar spins prefer to be next to
each other. However, in the tiling model under consideration we also allow lattice squares
to be unoccupied, represented by a third symbol, 0. This corresponds to a non-saturated
Ising model where tiles A and B each prefer to be next to tiles of their own type, and
in addition, neighbors of any type (A or B) are preferable to empty space. The relative
strength of these preferences are a function of the temperature and are very strong at low
temperature and weak at high temperature. We define these models more carefully in
Section 2.

The local Markov chain (i.e., the Glauber dynamics) iteratively picks a lattice square
at random. If there is a tile present, it can remove it (change it to a 0). If there is no tile
present, it tries to add a tile by changing the 0 to an A or a B. Note that in the model
considered here, we disallow moves that allow a lattice square to change from an A tile to
a B tile in a single step since this is unrealistic in the tiling scenario. However, we note
that including such moves would not change the results we derive in any qualitative way.

A critical consideration in the design of a Markov chain is its rate of convergence to
stationarity, known as its mixing time. A chain is rapidly mixing if it converges in poly-
nomial time and slowly mixing if it requires exponential time to approach stationarity.
The physical interpretation of these self-assembly models provides insights into their equi-
librium structure, as well as the efficiency of various Markov chain dynamics. Typically,
local chains are found to be rapidly mixing at high temperature and slowly mixing at low
temperature. For example, this behavior is known for Glauber dynamics on the standard
Ising model. At sufficiently high temperature, Ising configurations will tend to be half +
and half –, and the local Markov chain can be shown to be rapidly mixing (see, e.g., [14]).
However, at sufficiently low temperature, with high probability, Ising configurations will
have an overwhelming predominance of one spin. To move from a mostly + configuration
to a mostly - one requires moving through a configuration that is half + and half –, but
this set of configurations is exponentially unlikely [23]. This reveals an exponentially small
cut (or bottleneck) in the state space that indicates the chain will require exponential time
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to converge to equilibrium [8].
We show that similar results hold for the non-saturated Ising model. To simplify the

proofs, we consider the model on the n × n torus, but the same results can be shown for
regions without periodic boundary conditions as well. Specifically, we show the following
two theorems:

Theorem 1. The mixing time of the local Markov chain defined for the non-saturated
Ising model on an n× n toroidal lattice region at sufficiently high temperature is at most
p(n, log(1/ǫ)), for some polynomial p.

Theorem 2. The mixing time of the local Markov chain defined for the non-saturated
Ising model on an n × n toroidal lattice region at sufficiently low temperature is at least
exp(ψ(β)n) where ψ(β) > 0.

This outline of the paper is as follows. In Section 2 we formalize the self-assembly and
statistical physics models discussed. In Section 3 we review the fundamentals of Markov
chains and more precisely define the local Markov chain we consider here. Finally, in
Sections 4 and 5, we prove Theorems 1 and 2 to show the difference in the behavior of the
Markov chain at high and low temperatures.

2 Self-assembly and pairwise influence models

2.1 DNA-based self-assembly

Self-assembly is a process in which large numbers of simple objects aggregate into larger
structures in somewhat predictable ways. One exciting approach that has received much
attention is tile-based self-assembly. In tiling models, tiles are designed with markings
on each side so that two tiles are more likely to join together along an edge if they
have identical markings. Wang studied such tiling systems and showed that they form a
universal model of computation [26], making them an appealing object of study.

The primary challenge, then, is to define a set of marked tiles so that tiles are likely to
assemble into large aggregates, and so that markings determine which tiles are most likely
to line up. The approach taken by Seeman [7, 20], Winfree [24], and others is to use DNA
double-crossover molecules in order to construct marked tiles with DNA sequences on each
side. We construct these sequences so that pairs of tiles we want next to each other have
large numbers of complementary base pairs along their matched edges, with the likelihood
of their attaching being given by their hybridization energies. See, e.g., [7, 19, 20, 24, 25]
for more details.

Here we are interested in a theoretical abstraction that captures the fundamental
features of this model. We imagine we have a large (infinite) supply of rectangular tiles
of various types. These tiles have markings on each of their four sides, and there are
well-defined energies describing how likely it is for a pair to line up along any of their
edges. For example, imagine we have two types of tiles, A and B. If the sides of A are
complementary to each other but not to B and the sides of B are complementary to each
other but not to A, then tiles of the same type will tend to cluster together. Moreover, this
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Figure 1: Tiles A and B designed so that each tile prefers to be adjacent to a tile of the
same type.

preference is amplified at low temperatures and dampened at high temperatures. Such a
tiling is illustrated in Figure 1.

Note that we may create the DNA sequences along the sides of the tiles so that there
are only a small number of complimentary pairs that align when A touches B, but many
(or all) that are complimentary when A touches A or when B touches B along any of
their sides. For ease of analysis, we restrict to the model where tiles meet only when
opposite sides perfectly line up, so we can think of tiles as occupying unit squares in the
two-dimensional Cartesian lattice.

2.2 General pairwise influence models

The tile-based self-assembly algorithms are an example of a broad class of models studied
in statistical physics that we can describe as pairwise-influence models, also known as
Markov Random Fields. Each nearest-neighbor pair of tiles is given a weight representing
how favorable it is for the two tiles to bond to one another along their nearest sides. It
will be convenient to think of the arrangement on the dual lattice, so vertices are assigned
labels A,B or 0. Then the “energy” of an edge in the dual is precisely the bond strength
between the two tiles corresponding to the endpoints of the edge.

More precisely, suppose we are given a graph Λ = (V,E), say the n × n Cartesian
lattice with periodic boundary conditions. This is just the torus where (x, y) is connected
to (x±1, y) and (x, y±1), with all operations taken mod n. Let Ω = {1, ..., q}V be the state
space and define a symmetric set of weights {wi,j = wj,i} for each pair i, j ∈ {1, . . . , q}.
Then give each configuration σ ∈ Ω a weight

w(σ) =
∏

u,v:(u,v)∈E

wσ(u),σ(v).

Normalizing, we get a probability distribution

π(σ) =
w(σ)

∑

τ∈Ω w(τ)
.

For notation, for a set S ⊆ Ω, we let π(S) =
∑

σ∈S π(σ).
By adjusting the values for wi,j we can favor certain pairs of nearest neighbors and

discourage others. For example, if for i, j ∈ {1, . . . , q} we let wi,j = 1 when i 6= j and let
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wi,i = 0 for all i, the probability distribution arising is precisely the uniform distribution
on the set of proper q-colorings.

These models were originally defined to represent simple physical systems. An energy
function on the space of configurations is defined by a Hamiltonian H(σ). For mod-
els where the energy is determined solely from nearest-neighbor interactions, H(σ) =
∑

(u,v)∈E g(σ(u), σ(v)), for some function g. Just like a spring relaxing, systems tend to
favor configurations that minimize energy, where this preference is controlled by temper-
ature. Each configuration in Ω is given a weight

w(σ) = e−βH(σ),

where β = 1/T is inverse temperature. Thus, for low values of β the differences between
the energy of configurations are dampened, while at large β these differences are magnified.
Taking wi,j = eg(i,j) reconciles these two definitions.

The likelihood of each configuration is then given by

π(σ) = w(σ)/Z,

where Z =
∑

τ w(τ) is the normalizing constant known as the partition function. This
probability measure is known as the Gibbs (or Boltzmann) distribution. Taking derivatives
of the generating function Z (or lnZ) with respect to the appropriate variables allows us
to calculate many of the interesting thermodynamic properties of the system, such as the
specific heat and the free energy.

2.3 Saturated and non-saturated Ising models

The Ising model is a standard model of ferromagnetism studied in statistical physics.
Given a graph Λ on n vertices, the state space is defined by the 2n ways of assigning +
or − spins to each of the vertices. In the ferromagnetic Ising model, the Hamiltonian is
defined so as to favor configurations which tend to have equal spins on the endpoints of
its edges; the antiferromagnetic Ising model prefers unequal spins on the endpoints. For
σ ∈ {±}n, the Hamiltonian of the ferromagnetic Ising model is given by

HS(σ) =
∑

(u,v)∈E

Jσ(u),σ(v),

where J+,+ = J−,− > 0 and J+,− = J−,+ = 0. We define β = 1/T as the inverse
temperature. Then the stationary probability of σ is

πS(σ) =
eβHS(σ)

ZS
,

where ZS is the normalizing constant. It is common to have a slightly different definition
of the Hamiltonian, but we note that this definition can be seen to be equivalent with a
change in variables. For an informal introduction to the Ising model, see [5].

The Ising model can be thought of as a fully-packed, or saturated, self-assembly model
with two tiles A and B (corresponding to + and −) occupying lattice squares, where
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Figure 2: The non-saturated Ising model.

each tile prefers to be next to others of the same type (regardless of direction). In this
abstraction, we imagine that every square is occupied by one of the two tile types. To
define the model, we create tiles with DNA sequences along the sides so that the bond
strengths satisfy wA,A = wB,B > wA,B = wB,A over all edges. Setting wA,A = eβJ and
wA,B = 1, we have precisely the Ising model as defined above.

A simple modification of the standard Ising model makes it more fitting for a tile-
based self-assembly modes in which configurations can include empty spaces. In the non-
saturated Ising model, empty spaces are represented by a third tile type 0. Then for
σ ∈ {A,B,0}n, we define the Hamiltonian as

HU(σ) =
∑

(u,v)∈E

Jσ(u),σ(v),

where JA,A = JB,B > JA,B = JB,A > J0,x = Jx,0 = 0 for x ∈ {A,B,0}. As before, we
take β to be inverse temperature, and define the Gibbs distribution as

πU(σ) =
eβHU (σ)

ZU
,

where ZU is the normalizing constant. This generalization helps capture the way that tiles
will assemble and pull apart at equilibrium according to the temperature. Thus, a tile of
either type most prefers to be next to another tile of the same type, but it also prefers to
have its neighbors occupied rather than unoccupied, even if it is with a tile of the other
type. This is demonstrated in Figure 2.

For simplicity, we can let wx,y = eβJx,y for all x, y ∈ {A,B,0}. This gives us symmetric
pairwise interactions wA,A = wB,B = λ > wA,B = µ > wA,0 = wB,0 = w0,0 = 1. We can
now describe the stationary probability of a configurations σ as

π(σ) = πU (σ) =
λ#matchµ#differ

Z
,

where #match is the number of nearest neighbor pairs that are both assigned A or both
assigned B, and #differ is the number of pairs where one tile is A and the other is B. It
is this representation we will be using in the proofs that bound the mixing times.
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3 The basics of sampling

We are going to study the non-saturated Ising model by simulating a Markov chain whose
states correspond to allowable configurations. We design a local chain that adds or removes
individual tiles in each step, where the transition probabilities are defined so that the chain
converges to the Gibbs distribution. Our interest will be in the mixing time of this chain,
or the time it takes for the chain to get close to equilibrium. In this section we review the
basics of Markov chains, including the main techniques we use to bound the mixing time
of our chain at high and low temperatures.

3.1 The local Markov chain for the non-saturated Ising model

We first define a graph K that connects the state space, known as the Markov kernel.
We will consider local or Glauber dynamics that connect pairs of configurations that have
Hamming distance one. This means that in a given step, the chain can pick any position
and change the type that is there. For the non-saturated Ising model it might make
the most sense to connect two configurations of Hamming distance one only if one of
the configurations has a tile of type 0 in the position of disagreement — recall that 0

represents an empty position, so these moves correspond to tiles of type A or B attaching
or detaching from the larger configuration. Notice that the Markov chain connects the
state space even if we disallow directly changing a tile from type A to type B.

To define the transition probabilities of the Markov chain M on the edges of K, we
refer to the desired stationary distribution π. In the case of the non-saturated Ising model,
π is just the Gibbs distribution. The Metropolis-Hastings algorithm dictates transition
probabilities which force the Markov chain to converge to π [15]:

P (σ, τ) =
1

2∆
min

(

1,
π(τ)

π(σ)

)

,

for all (σ, τ) neighbors in K, where ∆ is the maximum degree of Λ.
To implement moves of the Markov chain M for the non-saturated Ising model, we start

at any initial configuration and repeat the following. If we are currently at configuration σ,
we choose a triple (F, S,R) uniformly, where F is a face in the lattice, S is one of the three
tile types A,B or 0, and R is a real number in [0, 1]. Define τ to be the new configuration
with the tile at face F in σ changed to S. If the move from σ to τ is allowable, then we
accept the move if R ≤ π(τ)

π(σ) . (Recall that in our model tiles cannot change directly from

A to B without first changing to a 0.) Otherwise we remain at σ.

Note that in the ratio p = π(τ)
π(σ) , the individual Gibbs probabilities might be very

difficult to calculate due to the normalizing constant, but the ratio of probabilities depends
solely on S, F and its neighbors. This allows us to efficiently calculate the transition
probabilities. For example, if we have a 0 tile surrounded by four A tiles, and we try to
change it to an A, then we accept this move with probability min(1, λ4) = 1; if we then
try to reverse the move by changing an A surrounded by four A tiles to a 0, then we
accept the move with probability min(1, 1/λ4) = λ−4.
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Figure 3: A move in the Markov chain M for the non-saturated Ising model.

3.2 Mixing times

It is easy to verify for a finite Markov chain that if the kernel is ergodic (connected and
aperiodic), then π is the unique stationary distribution. This means that if we start at any
vertex in K and perform a random walk according to the transition probabilities, we will
eventually converge to the desired distribution π. For this approach to be useful, we need
the chain to converge sufficiently rapidly to π so that after a small, polynomial number of
steps, our samples will be generated according to a distribution which is provably close to
π. With this property we have a method for efficiently sampling.

More formally, let P t(x, y) denote the t-step transition probability from x to y.

Definition 1. The total variation distance at time t is

‖P t, π‖ = max
x∈Ω

1

2

∑

y∈Ω

|P t(x, y) − π(y)|.

Definition 2. For any ε > 0, the mixing time τ(ε) is

τ(ε) = min{t : ‖P t′ , π‖ ≤ ε,∀t′ ≥ t}.

A Markov chain is rapidly mixing if the mixing time is bounded above by a polynomial
in the size of the state space and log 1

ε . When the mixing time is exponential in the size
of the space, we say the chain is slowly mixing.

3.3 Tools for bounding mixing times

Our proofs of Theorems 1 and 2 rely on two fundamental techniques in the analysis
of Markov chains, namely coupling and conductance. We use a coupling argument to
show that our Markov chain is rapidly mixing at high temperature, and we bound the
conductance to show that the chain is slowly mixing at low temperatures. We start by
outlining these methods.

One of the most popular methods for bounding mixing times is coupling, both because
of its elegance and its simplicity.

Definition 3. A coupling is a Markov chain on Ω × Ω defining a stochastic process
(Xt, Yt)

∞
t=0 with the properties:
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1. Each of the processes Xt and Yt is individually a faithful copy of the Markov chain
(given initial states X0 = x and Y0 = y).

2. If Xt = Yt, then Xt+1 = Yt+1.

Condition 1 means that each process, viewed in isolation, is just simulating the proba-
bilities as prescribed by the original chain – yet the coupling updates them simultaneously
so that they will tend to coalesce, or move closer together according to some notion of
distance. Once the pair of configurations agree, condition 2 guarantees they agree from
that time forward.

The coupling (or expected coalescence) time can provide a good bound on the mixing
time of M if it is a carefully chosen coupling.

Definition 4. For initial states x, y let

T x,y = min{t : Xt = Yt | X0 = x, Y0 = y},
and let ET x,y denote its expectation. Then we define the coupling time to be T =
maxx,y ET x,y.

The following result relates the mixing time and the coupling time (see, e.g., [1]).

Theorem 3. The mixing time satisfies τ(ǫ) ≤ ⌈T e ln ǫ−1⌉, where e is the base of the
natural logarithm.

While coupling is potentially a powerful technique, it is often prohibitively cumbersome
to measure the expected change in distance between two arbitrary configurations. The
method of path coupling, introduced by Bubley and Dyer, greatly simplifies this approach
by showing that we really need only consider pairs of configurations that are close according
to some metric on the state space [3].

The idea behind path coupling is to consider a small set U ⊆ Ω × Ω of pairs of
configurations that are “close” according to some distance metric ϕ. Suppose that we
have shown that the expected change in distance is decreasing for all of the pairs in U . To
now reason about arbitrary configurations X,Y ∈ Ω, we define a shortest path z0, z1, ..., zr
of length r from X = z0 to Y = zr, where (zi, zi+1) ∈ U for all 0 ≤ i < r. If we define U
correctly, then ϕ(X,Y ) =

∑r−1
i=0 ϕ(zi, zi+1). Then by linearity of expectation, the expected

change in distance between X and Y is the sum of the expected change between the pairs
(zi, zi+1). Each of these has been shown to be at most zero, so the total distance is at
most zero. Of course, after the update there might be a shorter path between the new
configurations X ′ and Y ′, but this just causes the new distance to be even smaller.

The following version of the path coupling theorem is convenient [6].

Theorem 4. If there exists β < 1 such that

E[ϕ(xt+1, yt+1)] ≤ βϕ(xt, yt),

for all (xt, yt) ∈ U , then the mixing time satisfies

τ(ǫ) ≤ ln(Bǫ−1)

1 − β
,

where B = maxϕ.
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A second method for estimating the convergence time of a Markov chain is bounding
the conductance of the chain [8, 11]. The conductance can be used to upper or lower bound
the mixing time of a chain, although here we will use it only to show that our Markov
chain is slowly mixing at low temperature.

For any set S ⊂ Ω, let

ΦS =

∑

x∈S,y/∈S Q(x, y)

π(S)
,

where Q(x, y) = π(x)P (x, y) is regarded as the “capacity” of the edge (x, y) and π(S) =
∑

x∈S π(x) is the weight of the set. Note that for any reversible chain, Q(x, y) = Q(y, x).
We now define the conductance as

Φ = min
S:π(S)≤1/2

ΦS .

If a Markov chain has low conductance, then there is a small cut in the state space that
will cause a bottleneck in the mixing time. The conductance theorem due to Jerrum and
Sinclair [8] and Lawler and Sokal [11] characterizes when a Markov chain mixes rapidly or
slowly. We will use the use the lower bound from this theorem.

Theorem 5. For any reversible Markov chain with conductance Φ,

τ(ǫ) ≥ 1 − 2Φ

2Φ
ln

1

ǫ
.

Thus, to show that a chain is slowly mixing, it suffices to demonstrate that there is a
“bad cut” in the state space that requires exponential time to cross. This is the approach
we will take in Section 5.

4 Rapid mixing at high temperature

In this section we consider the convergence rate of the Markov chain at high temperature.
Using the notation of the previous section, we can now state Theorem 1 more precisely.

Recall that µ = eβJA,B and λ = eβJA,A = eβJB,B are the edge weights of a configuration,
with µ < λ. We are given fixed values for the Jx,y which are determined by the number
of base pairs in our tiling model as well as the number of complementary base pairs on
opposite sides of the x and y tiles. Then at high enough temperature (or small β), µ and
λ will both be close to one, while at low temperature (large β), µ and λ will both be large.
We show the following theorem.

Theorem 6. If 1 < µ < λ < 8/7, then the mixing time τ(ǫ) of M on the non-saturated
Ising model on the n× n square toroidal lattice is O(n2 ln 1/ǫ).

Notice that Theorem 1 follows as a corollary.
To prove M is rapidly mixing for λ and µ close to 1, we use a coupling argument; we

create a new Markov chain which acts on pairs of configurations in Ω×Ω, and show that
the time until any two configurations become equal under this coupling is polynomial in
n. To define the coupling, we choose a triple (F, S,R) exactly as before, but now, given
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a pair of configurations (σt, ρt) at time t, we apply the move defined by he triple to both
configurations at once, getting a new pair (σt+1, ρt+1).

We define the distance d(σ, ρ) as the minimum number of moves of M to go from σ
to ρ. (Note that this is slightly different than the Hamming distance, as changing a single
face from A to B requires two moves.) Using Theorem 4, the path coupling theorem, we
may restrict our examination to the pairs that are distance 1. If we show that, for any
such pair, the expected distance decreases after a single move, this will show rapid mixing.

Lemma 1. Let σt and ρt be configurations such that d(σt, ρt) = 1. Then, for every λ < 5
4 ,

E[d(σt+1, ρt+1)] ≤ 1 − 1

36n2
.

Proof. Configurations σt and ρt differ at a single face F ∗. Without loss of generality, we
may assume σt(F

∗) = A and ρt(F
∗) = 0.

When performing the move prescribed by the triple (F, S,R) to the pair (σt, ρt), the
distance only changes if F is F ∗ or a neighbor of F ∗. In all other cases, the Markov chain
performs the same change to σt and ρt, and d(σt, ρt) = d(σt+1, ρt+1).

On the other hand, if F is F ∗ or one of its neighbors, the distance might increase or
decrease by 1 after the move. To show that the expected distance is decreasing, we first
lower bound the probability of it decreasing, and then upper bound the probability of it
increasing.

The two moves on which we may decrease the distance are when F = F ∗ and S is
either A or 0. In the first, ρt is changed to σt while σt remains the same. Therefore ρt+1 =
σt = σt+1. In the second, σt is changed to ρt while ρt stays the same, so σt+1 = ρt = ρt+1.
The probability of choosing an appropriate F and S, and an R high enough that the move
succeeds, is

1

n2

1

3
min

(

1,
π(σt)

π(ρt)

)

+
1

n2

1

3
min

(

1,
π(ρt)

π(σt)

)

.

As π(σt) ≥ π(ρt), this probability is lower bounded by 1
3n2 + 1

3n2λ4 .
There are many moves that potentially increase the distance. The first is when F = F ∗

and S = B. Then the move automatically does nothing to σt, but might further change
ρt+1. This occurs with at most probability 1

n2

1
3 .

Another move that may increase the distance is choosing a face F ′ adjacent to F ∗.
Here, the range of acceptable R might be larger for one configuration than the other,
so one configuration’s move succeeds while the other’s fails. Such a difference occurs if
σt(F

′) = ρt(F
′) 6= 0. Then, when F = F ′ and S = 0, the Markov chain changes π(σt) by

a factor of (at most) λ more than it changes π(ρt). The probability of succeeding on ρt
but not σt is the difference of their two chances of success, which is at most 1

n2

1
3(1 − 1

λ).
As there are only four neighbors of F ∗, we have

E[d(σt+1, ρt+1) − d(σt, ρt)] ≤
1

3n2
+

4

3n2

(

1 − 1

λ

)

− 1

3n2
− 1

3n2λ4
.

Substituting for λ, we have the lemma.
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We may now prove Theorem 6, that the chain is rapidly mixing when λ and µ are
sufficiently close to 1.

Proof. We appeal to the path coupling theorem, Theorem 4. The set U ⊂ Ω×Ω is the pairs
of configurations with distance 1. Notice that for any arbitrary pair of configurations with
distance d, there is a path of length d that connects them where nearest neighbors along
the path have distance 1. We now know from Lemma 1 that we can set B = 1− 1

36n2 < 1.
The theorem follows.

5 Slow Mixing at low temperature

We now turn our attention to the low temperature case, when λ and µ are both large and
λ is much greater than µ. When λ/µ is large, there is a large penalty to the stationary
probability each time an A tile is placed next to a B tile, or when we have a 0. We will
show that when this ratio is large enough, typical configurations will be dense and will
have a predominance of A tiles or B tiles. This allows us to show there is a bottle-neck
in the state space, implying that the chain is slowly mixing due to small conductance.
Specifically, we show the following theorem.

Theorem 7. If λ
µ > 28, then there exists constant c > 1 such that the mixing time of M

on the non-saturated Ising model on the n× n square toroidal lattice is Ω(cn).

The proof will be facilitated by a careful partition of the state space to define the bad
cut. To move from a configuration which is dominated by type A tiles to a configuration
which is dominated by type B tiles, M must pass through a configuration where there
is no dominating type. Intuitively, these configurations without a dominating type are
heavily penalized when A and B interact often. We therefore partition the state space
into three sets, and show that the set of configurations with no dominating type forms a
bottle-neck.

However, in defining these sets, instead of dividing the state space according to, say,
the relative number of tiles of type A or B, we take the approach of [17] and focus on
finding the simplest possible description of the cut to simplify the subsequent analysis.
We define middle set ΩF as configurations that have a “fault line”: a long path consisting
entirely of “unfavorable” edges, where either a tile is unoccupied or where A meets B.
We formalize these definitions momentarily, but any configuration with such a path will
be penalized for each edge, and therefore have very low stationary probability.

The key idea is that the state space Ω now can be partitioned into three sets ΩA, ΩF

and ΩB . Any configuration that does not have a fault line can be shown to have a large
connected component of a single type of tile crossing the lattice region; these configurations
(which actually comprise the majority of Ω) lie in ΩA or ΩB according to the tile type.

In the proof, we show that it is necessary for the Markov chain to pass through con-
figurations in ΩF to move from ΩA to ΩB, and yet ΩF has exponentially smaller Gibbs
measure than each of the other two sets; this guarantees that the chain is slowly mixing
since it is enough to show that the chain has exponentially small conductance. This idea
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of using “topological obstructions” based on fault lines to partition the state space for a
proof of slow mixing has been applied previously in the context of independent sets [17]
and the standard Ising model [23].

We need to define several terms to formalize the argument. We call an edge good
if it lies between A and A or B and B, and call it bad otherwise. We use the term
noncontractible cycle to refer to any cycle on the torus that is not contractible to a point.
A fault line is a noncontractible cycle of bad edges. We say two faces of the lattice are
adjacent if they share an edge. Define an A-bridge to be a noncontractible cycle of adjacent
A faces. For any non-contractible cycle, the winding vector is an ordered pair of integers
(wx, wy), where wi represents the net number of times the cycle intersects an elementary
loop in the ith lattice direction. Define an A-cross to be a pair of A-bridges with different
winding vectors. Define a B-bridge and B-cross similarly.

Let ΩF be the set of configurations that contain a fault line. Let ΩA and ΩB be the
configurations which have an A-cross and a B-cross, respectively. We now show that these
three sets partition Ω.

Lemma 2. The sets ΩA, ΩF, and ΩB are disjoint, with ΩA∪ΩF∪ΩB = Ω. Furthermore,
for any σ ∈ ΩA and ρ ∈ ΩB, P (σ, ρ) = 0.

Proof. A key point we use here is that any two non-contractible cycles of different winding
vectors must intersect. Therefore a configuration could not have both an A-cross and a
B-cross, as their intersection would have both types of tiles. Similarly, a configuration
can’t have both a cross and a fault line, as the fault line would put a bad edge across a
bridge, contradicting the notion of a bad edge. Therefore ΩA, ΩF, and ΩB are disjoint.

To show that the three sets make up all of Ω, examine the torus after the removal
of an A-bridge. The remaining space is a non-contractible strip of the torus of the same
winding vector as the bridge. If there exists a path of adjacent A faces across this strip,
we find a new A-bridge of a different winding vector, and therefore a cross. If this path
doesn’t exist, then there must exist a fault line along the strip. Hence every configuration
is in either ΩA, ΩF, or ΩB.

Every move of the Markov chain adds or removes a tile. Moving from σ to ρ would
entail first breaking an A-cross and then creating a B-cross; this requires at least two
moves. Hence ΩF divides ΩA from ΩB .

Clearly π(ΩA) = π(ΩB) by symmetry. To show that the Markov chain has small
conductance then, we need only show that for large n, π(ΩF) < Cn, for some fixed constant
C < 1. To this end, we define a function ψ that maps configurations in ΩF to new
configurations with exponentially larger stationary probability. Although this function
will not be one-to-one, we will show that, for each configuration in Ω, the total stationary
probability of the preimage is exponentially less than the weight of the configuration
itself. This will allow us to show that ΩF is exponentially smaller than Ω, and therefore
significantly smaller than each of ΩA and ΩB.

We know that any configuration σ ∈ ΩF has at least one fault line, and possibly many.
The function ψ will select one and then will remove it by adding type A tiles everywhere
that is currently unoccupied, thereby forcing the new configuration to have much greater
Gibbs weight. This would be enough to show that π(ΩF ) were small if ψ were injective, but
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Figure 4: An example of σ, σ with bad edges highlighted, and ψ(σ).

of course it typically is not. Therefore we need to argue that for each σ ∈ ΩF , the increase
in weight of ψ(σ) is large enough to account for all the preimages in ΩF , to conclude that
π(ΩF ) is indeed small. In addition, we need to generalize the notion of a fault line to a
maximal connected component, in order to define a map that has the described properties.
This generalization is not necessary for the proofs in [17] and [16], for independent sets
and the Ising model, respectively.

Accordingly, define a fat fault to be a maximal connected set of adjacent bad edges
containing a fault line. We choose an arbitrary fat fault T of σ, say the lexicographically
first one. The function ψ will replace all of the bad edges of T with good edges.

To define ψ, first notice that the regions of the torus separated by the edges of T are
either individual faces of 0 or larger collections of faces that are bordered with entirely A

or entirely B, or A-bordered or B-bordered, respectively. To find ψ(σ), fill in every 0 face
with a A, and flip the sign of every A or B face in the B-bordered regions. Therefore
every edge that was bad in σ is between two A tiles in ψ(σ). Such a change is illustrated
in Figure 4.

Now suppose that we are given σ′ ∈ Img(ψ). Notice that in order to invert ψ to recover
σ, it suffices to have an encoding of T and a labelling of the distinct regions of T dictating
for each whether they were 0s, A-bordered, or B-bordered before the map made them all
A-bordered. In what follows we will continue to call the faces of T regions to distinguish
them from the faces of the underlying lattice.

We now proceed to prove several lemmas that provide the necessary bounds to put
these pieces together.

Lemma 3. Let Tm be the set of fat faults with m bad edges. The number of fat faults in
Tm is at most n216m.

Proof. For some T ∈ Tm, a depth-first search of the edges of T takes at most 2m steps.
There are at most n2 possible starting points, and 42m possible depth-first search traver-
sals.

Lemma 4. For a given T ∈ Tm, the number of labellings of the regions of T as A-bordered,
B-bordered, or 0 is at most

√
3
m
.

Proof. Every region of T is bounded by at least four edges. Each edge is on the boundary
of two regions. Therefore the number of regions is at most m/2. Hence there are at most
3

m
2 choices of labelings for each region.
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We may now use Lemmas 3 and 4 to bound the weight of the preimage of ψ.

Lemma 5. For each σ′ ∈ Img(ψ),

π(ψ−1(σ′)) < n4 28µ

λ

n

.

Proof. We first partition preimages based on the size of the fat fault defining ψ. Let
ψ−1
m (σ′) be the set of all σ such that the fat fault chosen by ψ has m edges and ψ(σ) = σ′.

The function ψ turns every bad edge of T into an edge separating A and A, thereby
increasing the weight of each by at least a factor of λ

µ . So, for each σ ∈ ψ−1
m (σ′),

π(σ) ≤
(µ

λ

)m
π(σ′).

On the other hand, |ψ−1
m,ℓ,s(σ

′)| is bounded by the number of possible fat faults T and
labellings of the regions of T . By Lemmas 3 and 4,

|ψ−1
m (σ′)| < n216

√
3
m
< n228m.

Putting these pieces together, we have

π(ψ−1(σ′)) =

n2

∑

m=n

π(ψ−1
m (σ′))

=
n2

∑

m=n

∑

σ∈ψ−1
m (σ′)

π(σ)

=
n2

∑

m=n

|ψ−1
m,ℓ,s(σ

′)|µ
λ

m
π(σ′)

<

n2

∑

m=n

n228m
µ

λ

m
π(σ′)

< n2n2 28µ

λ

n

π(σ′).

Lemma 5 allows us to now prove our main Theorem, that at high temperatures the
Markov chain mixes slowly.

Proof of Theorem 7. We will show that when λ > 28µ, ΩF has exponentially low stationary
probability, and thus the chain has exponentially small conductance.
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π(ΩF) =
∑

σ′∈Img(ψ)

π(ψ−1(σ′))

<
∑

σ′∈Img(ψ)

n4 28µ

λ

n

π(σ′)

≤ n4 28µ

λ

n
∑

σ′∈Ω

π(σ′)

= n4 28µ

λ

n

.

By Theorem 5, this implies that the mixing time is exponential in n.

6 Conclusions

We defined the non-saturated Ising model to represent a simple DNA-based self-assumbly
model consisting of two types of tiles. We then showed that the assembly is efficient at
high temperatures, where the stationary distribution allows many “errors” or unfavorable
neighbors, and the assembly is slow at low temperatures, where errors are much less
likely. This suggests that the temperature must be very carefully chosen in order to
have a meaningful stationary distribution that converges in a reasonable amount of time.
Although we prove this behavior for just this model, this type of phase transition is very
common for pairwise influence models that are widely studied in statistical physics.

In addition to helping us appreciate the dichotomy underlying the behavior of Markov
chains based on local updates, the physical models also aid our design of better sampling
algorithms. One approach that has received a lot of attention is simulated annealing
and its sampling analogue simulated tempering. Madras and Zhong [13] showed that
although sampling Ising configurations at low temperatures is known to be slow, a version
of tempering in which the temperature is raised and lowered during the simulation can be
shown to be fast and can provide samples at all temperatures; they prove this when the
underlying graph is the complete graph instead of the lattice. However, it has been shown
that for the ferromagnetic Potts model, a closely related pairwise influence model in which
there are a larger number of spins, tempering can also require exponential time [2]. This
shows that annealing algorithms must be very carefully analyzed to determine whether
they can be used for sampling.

Since it is known that locally defined chains cannot be efficient for sampling Ising
configurations at low temperature, this suggests that perhaps we should look for alternate
algorithms based on nonlocal chains. Jerrum and Sinclair found such an algorithm for
estimating the partition function of any Ising model at any temperature [9], and Randall
and Wilson showed that their algorithm can be used to sample Ising configurations [18].
These results demonstrate that the interplay between statistical physics and computer
science can bring to light new ideas in the world of sampling. It is not known whether such
results can be extended to the non-saturated model. Moreover, the sampling algorithm
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of [18] is very indirect and does not provide a natural algorithm in the context of self-
assembly. It seems worthwhile to continue to look for alternative approaches that would
be more useful in that context.
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