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Markov chain decomposition is a tool for analyzing the convergence rate of a com-
plicated Markov chain by studying its behavior on smaller, more manageable pieces
of the state space. Roughly speaking, if a Markov chain converges quickly to equilib-
rium when restricted to subsets of the state space, and if there is sufficient ergodic
flow between the pieces, then the original Markov chain also must converge rapidly
to equilibrium. We present a new version of the decomposition theorem where the
pieces partition the state space, rather than forming a cover where pieces overlap,
as was previous required. This new formulation is more natural and better suited to
many applications. We apply this disjoint decomposition method to demonstrate the
efficiency of simple Markov chains designed to uniformly sample circuits of a given
length on certain Cayley graphs. The proofs further indicate that a Markov chain for
sampling adsorbing staircase walks, a problem arising in statistical physics, is also
rapidly mixing.

1. Introduction

Markov chain Monte Carlo methods have become ubiquitous for sampling combinatorial
structures. Given a large (finite) set €2, we define a Markov chain whose transitions consist
of small local changes in the structures that allows us to move from one element to any
other in Q. The (possibly directed) graph G with V(G) = Q and edges representing the
transitions of the chain is called the Markov kernel, and the Markov chain performs a
random walk on this graph. One popular way to sample from Q according to a probability
distribution 7 is to use the Metropolis algorithm. Letting A denote the largest degree of
G, the Metropolis transition probabilities are P(z,y) = 55 min{l, = Z)} for z # y and

(z)
(z,y) € E(G). With these transition probabilities the Markov chain is time-reversible and
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we may view G as an undirected graph where the edge (z,y) has weight m(z)P(z,y) =
w(y)P(y,z). If G is also connected then we are ensured that the chain has 7 as its
stationary distribution, so starting at any state in  and performing the random walk
on G according to these probabilities, we converge to the distribution 7.

For this Markov chain to be useful for sampling it must be that after a small number
of transitions the resulting distribution on  is close to the desired distribution 7. Much
recent work has focused on the task of deriving bounds on the mizing time of Markov
chains, i.e. the number of iterations until the distance between the current distribution
and 7 is smaller than ¢, for some € > 0. A Markov chain is rapidly mizing if the mixing
time is bounded above by a polynomial in n and loge™!, where n is the size of each
element in ().

1.1. Decomposition of Markov chains

Popular methods for bounding the mixing time include coupling and path coupling [2, 4],
comparison of Markov chains [3, 13], and bounding the conductance or other isoperimetric
constants related to a chain [5, 16]. Each of these methods, while successful in many
situations, are specialized and demand strong characteristics of the chain to provide
useful bounds. Decomposition is a recent tool that has proven useful in the analysis of
Markov chains and can be used in conjunction with any of these other methods [9, 10].
The decomposition method relates the mixing rate of a Markov chain to the mixing rate
of simpler chains restricted to each of the pieces and to a measure of the ergodic flow
between the pieces. Typically the restrictions of a Markov chain on these pieces are easier
to analyze with the above methods than the original chain, so decomposition provides a
systematic top-down approach towards bounding the convergence rate of a chain.

The main contribution of this paper is a new version of the decomposition theorem
based on a disjoint partition of the state space. Our new technique is similar to the
decomposition theorem of Madras and Randall [9, 10], but is more natural and can be
simpler to apply. Suppose the state space can be naturally partitioned into sets {2;}.
Further, suppose that the Markov chain is rapidly mixing when restricted to any of the ;.
Finally, suppose that a projection (defined in Section 3.2) of these sets is rapidly mixing,
suggesting that it is easy to travel from any of the €; to any other €1;. Then we can
conclude that the original Markov chain is rapidly mixing as well. This is quite similar in
spirit to the Madras-Randall result, however their decomposition theorem requires that
the {Q;} form a cover and must in fact have considerable overlaps. We have found that
the new theorem is far more natural for several applications. The key idea is that the
restrictions and projection chain are often much simpler than the original Markov chain,
so that the other more standard methods (like coupling) are easier to apply to these
simpler chains. The examples we consider in this paper show that using decomposition
allows us to prove rapid mixing for some Markov chains where other established methods
fail to show this directly.

1.2. The models
We explore this new decomposition technique by studying Markov chains on the set
of closed, fixed length circuits on various Cayley graphs. Circuits are walks in a graph
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that begin and end at a specified (root) vertex. In our first application, we consider
circuits in Z? with 2n edges that start and end at the origin. We can think of the d-
dimensional lattice as the Cayley graph of an infinite abelian group with d generators.
Every path in the lattice is a product of generators and their inverses, one per edge, and
the words corresponding to different trajectories from the origin to a particular point are
equivalent words in the group. Circuits then correspond precisely to the trivial words
that are equivalent to the identity in the group.

One method for uniformly sampling circuits is to define a Markov chain on this state
space. We study a Markov chain that, in a single step, either transposes two adjacent
edges of the walk, replaces an adjacent pair of edges in the a and then a~! direction
with a pair in the b,b~! direction, for two generators (or basis vectors) a and b, or does
nothing. Both nontrivial transitions can be regarded as “bending” a part of the circuit so
as to change the orientation of two neighboring edges. This local Markov chain connects
the state space. We examine whether it converges quickly to stationarity by appealing
to the disjoint decomposition method.

A second example we study is sampling circuits with 2n edges in infinite d-regular
trees. The d-ary tree can be interpreted as the Cayley graph of the nonabelian free group
with d generators, where every generator is its own inverse. Again circuits are the trivial
words in the group.

The approach we use to generate circuits in trees is indirect and based on a relation-
ship between circuits and another combinatorial structure called staircase walks, defined
below. We define a Markov chain on the set of staircase walks, and show that it converges
quickly to the stationary distribution. In fact, it is possible to sample staircase walks ac-
cording to specified weights and then assign labels to the edges of the walk corresponding
to generators of the nonabelian group; these labeled walks then represent circuits in the
d-ary tree and can be sampled uniformly by suitably weighting the walks.

Staircase walks (also called Dyck paths) are walks in Z* from (0,0) to (n,n) which
do not fall below the diagonal z = y. Rotating by 45°, they correspond to walks from
(0,0) to (2n,0) which take diagonal steps by adding (1,1) or (1,—1) at each step and
which never fall below the z-axis (see Figure 1). The number of staircase walks is C'(n),
the nth Catalan number, which can be calculated exactly, so sampling can be performed
recursively without a Markov chain. However, we are also interested in a simple Markov
chain on the set of staircase walks as it has proven useful for sampling other combinatorial
objects including triangulations [12] and planar matchings [8, 18]. The Markov chain
consists of “mountain/valley” flips, defined by choosing i € [2n] and, if the ith step of
the walk is a local optimum (a mountain), inverting it so that it is a local minimum (a
valley), or vice-versa.
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Figure 1. A staircase walk (n = 9)

A weighted version, studied in the statistical physics community, assigns weight A\* to a
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staircase walk which hits the z-axis k times[14, 15]. The Gibbs measure normalizes these
weights so that the probability of a walk w is w(w) = %, where the sum is taken
over all walks v and k, is the number of times v hits the z-axis. When A = 1 this is just
the uniform probability where m(w) = 1/C(n). Taking A < 1 favors walks which tend to
avoid the z-axis, and taking A > 1, known as adsorbing walks, favors walks which hit the
z-axis many times. It was shown by van Rensburg [14] that there is a phase transition at
A = 2: when ) < 2, the walks wander O(y/n) away from the z-axis, whereas when \ > 2
the walks never wander more than o(y/n) away.

The mountain/valley Markov chain can be modified to incorporate the weights so that
the stationary distribution is the Gibbs measure. The Markov chain for circuits on the
d-ary tree turns out to be very closely related to this mountain/valley chain on staircase
walks, where we take A = d/(d—1). The circuits arise from labeling the northeast edges of
staircase walks with generators of the Cayley graph, representing the possible directions
of steps away from the root. The weighting arises from the observation that northeast
edges incident to the z-axis must have d choices, corresponding to the d generators
representing possible directions away from the root of the d-ary tree, while all other
edges have only d —1 choices, as one generator will take a step back towards the root and
only d—1 will take steps away. We define this correspondence more carefully in Section 6.

It is straightforward to show that the mountain/valley chain is rapidly mixing when
A < 1. Wilson [18] gives a tight bound of O(n®(logn +log 1)) when A = 1, which also
provides an upper bound in the case A < 1.

When A > 1 a simple coupling argument is insufficient. Informally, for coupling to
succeed we need to construct a coupled Markov chain so that close configurations tend
to come closer together. However, in the adsorbing case, pairs of walks that differ near
the z-axis will tend to diverge initially.

1.3. Outline of the decompositions

In this paper, we show the Markov chains on the set of circuits in Z? and the moun-
tain/valley chain for staircase walks (in particular the case A > 1) are both rapidly
mixing. The disjoint decomposition method is integral in our analysis of these chains.

For circuits in Z¢ we partition the state space C of all circuits into sets Cx, where
X = (x1,22,---,24). Each walk in Cx has exactly z; positive steps in the direction x;,
for all 4. Showing the restriction to each set is rapidly mixing follows using path coupling
and is very similar to the analysis of Bubley and Dyer [1] for linear extensions of partial
orders.

The projection chain arising from this partition is a random walk on an integer simplex,
the collection of non-negative solutions to the integer equation x1+x2+- - -+x4 = n, where
site X = (x1,---,24) has stationary probability proportional to (w1,w1,z2,2zz,---,zd,wd)‘
Rapid mixing of this projection follows from another application of path coupling. Taken
together, these results imply rapid mixing of the original chain on all of C.

The analysis of the mountain/valley chain on staircase walks is more complicated.
We first decompose the state space S into |J Sy, where Sy, is the set of staircase walks
which hit the z-axis exactly k times. First we show that |Si| is log—concave in k. This
immediately implies that the projection (according to the decomposition theorem) is
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mixing in polynomial time, so it suffices to show that the Markov chain restricted to Sk,
M, , is rapidly mixing for each k.

To show that Mg, is rapidly mixing, we apply the decomposition theorem a second
time. This time we partition the state space (i.e., the set of staircase walks which hit
the z-axis exactly k times) into (”;1) sets according to which k points on the z-axis
the paths hit. The conditional distribution on elements of each of these (";1) sets is
uniform. Hence, showing that M is rapidly mixing when restricted to any of these sets
is straightforward and follows from the unbiased case when A = 1.

The projection arising from the second decomposition can be viewed as an interesting
particle process: we want to sample from the (";1) ways to place k particles on the
z-axis between 0 and n so that each configuration occurs with probability proportional
to II;C(x;), where x; is the length of the gap between the ith and i + 1st particles, and
C(n) is the nth Catalan number. The Markov chain arising from this projection is quite
natural: choose (i,d) € [k] x {{,7} and move the ith particle in the left or right direction
according to d with the appropriate Metropolis probability.

This particle process isolates the difficulty in the original mountain/valley Markov
chain on weighted staircase walks; indeed a simple path coupling argument fails on this
simpler chain as well for an analogous reason. The final step of our analysis is noticing
that a heat bath algorithm is easy to define for this particle system which does have
the desirable properties. Namely, it converges to the correct stationary distribution and,
moreover, we can show it mixes in polynomial time. By a standard comparison argument
we can show that the mixing rate of the heat bath algorithm is close to the mixing
rate of the original particle process. Hence, we can apply the decomposition theorem
for a second time, thereby establishing the polynomial-time mixing rate of the original
mountain/valley chain on the entire state space of staircase walks, as desired.

Our overall goal for this paper is to describe this new decomposition theorem and show
how it may be applied. It should be noted that there are alternative, recursive methods for
sampling circuits in Cayley trees (and, more generally, adsorbing staircase walks) based
on generating functions. The objective of this paper is to provide insight into these very
natural local Markov chains and ways to analyze their mixing rates. Our interest stems
primarily from their similarity to many other local Markov chains used when analytical
methods are not available. We also note that we have not tried to optimize the bounds
on the mixing rates of these Markov chains.

1.4. Related work
In the time period between the appearance of the preliminary version [11] of this work
and the preparation of this newer, expanded version, other decomposition results have
appeared. In particular, using an inductive type of argument, Jerrum and Son [6] have
given a better upper bound on the mixing time for the random walk on the basis exchange
graph of a balanced matroid. That chain is an instance of what the authors call a 7-
recursive chain, and their argument establishes a bound on both the spectral gap and
log-Sobolev constant for this type of Markov chain.

Building on that work, Jerrum, Son, Tetali, and Vigoda [7] give a general decomposition
result for bounds on the spectral gap and log-Sobolev constants using similar restriction
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and projection chains as those defined in this paper. Their result, however, relies on
considering the Dirichlet form that defines the spectral gap, and the entropy-like quantity
that appears in log-Sobolev inequalities. Interested readers are invited to consult those
references for details on their methods and the applications they consider.

2. Mixing machinery

In what follows, we assume that M is an ergodic (i.e. irreducible and aperiodic), reversible
Markov chain with finite state space (2, transition probability matrix P, and stationary
distribution 7.

The time a Markov chain takes to converge to its stationary distribution, the mixing
time of the chain, is measured in terms of the distance between the distribution at time
t and the stationary distribution. Letting P!(x,y) denote the ¢-step probability of going
from z to y, the total variation distance at time ¢ is

1
t _ t
|1P*, 7|l = 5 max EEQIP (z,y) — m(y)|.
Yy

For £ > 0, the mizing time 7(¢) is
r(e) = min{t : [|PY y7lley < &,V > £},

We say a Markov chain is rapidly mizing if the mixing time is bounded above by a
polynomial in n and log %7 where n is the size of each configuration in the state space.

It is well known that the mixing rate is related to the spectral gap of the transition
matrix P. We let Gap(P) = Ao — |A1| denote the spectral gap, where Ao, A1, ..., Ajg|—1
are the eigenvalues of P and 1 = A9 > |A| > || for all ¢ > 2. The following result
relates the spectral gap with the mixing time of the chain (see, e.g., [16]):

Theorem 2.1. Let 7, = mingcq 7(x). For all € > 0 we have
(a) ( ) = Gap(P) log(w*s)
(b) T( ) - 2Gap(P) log( )

Remark. For simplicity, we typically add self-loops with probablhty to each point
in the state space, ensuring that A; > 0 as well as the aperiodicity of the Markov chain.

We give a brief review of some of the techniques that are used to bound the mixing time
(or spectral gap) of a Markov chain, before introducing our new method in Section 3.2.

2.1. Path coupling

A coupling is a new Markov chain on  x Q with the following properties: Instead of
updating the pair of configurations independently, the coupling updates them so that the
two processes will tend to coalesce, or “move together” under some measure of distance,
but each process, viewed in isolation, is just performing transitions of the original Markov
chain M. Also, once the pair of configurations agree at some time, the coupling guarantees
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they agree from that time forward. The mixing time can be bounded by the expected
time for configurations to coalesce under any valid coupling.

More simply, path coupling lets us bound the mixing time by analyzing a subset of
Q x . The method of path coupling is described in the next theorem, adapted from [4].
We use the notation (z',y") for the configuration obtained from the pair (x,y) after one
step of the coupling.

Theorem 2.2. [4] Let ® be an integer valued metric defined on Q2 x Q taking values
in {0,...,D}. Let U be a subset of Q x ) such that for all (z,y) € Q x Q there exists a
path t=wg,w1,...,wr =y between x and y such that (w;,w;y+1) € U for 0 < i < k and

>
=

P (wi, wit1) = 2(2,9).

Il
<

Define a coupling (z,y) — (z',y") of M on all pairs (z,y) € U. Suppose that there exists
a <1 such that E(®(2',y")) < a®(z,y) for all (z,y) € U.

(a) If a < 1 then the mizing time of M satisfies

log(De™!

r(e) < B ),

(b) If « =1 (alternatively, E (®(z',y") — ®(z,y)) < 0) and there exists n > 0 such that
Pri®(z',y") # ®(z,y)] > n for dll (z,y) # («',y'), then the mizing time satisfies

re) < [%1 Mloge=].

Remark. In the above theorem, it is assumed that the pairwise coupling on U may
be extended to a complete coupling (or a grand coupling), where at each time step there
is a random function Fj, defined on the whole state space, such that ' = Fi(x) and
y' = Fi(y). For example, in a simple random walk on [n] = {1,2,...,n}, the rule may
be to flip a coin showing ‘heads’ and ‘tails’ with equal probability and try to move left
or right depending on if heads or tails appears on the coin. In this case, it may not
necessarily be true that there is an 7 in part (b) of the theorem that bounds the change
in distance away from zero. In order to circumvent this problem, as will be necessary to
apply the path coupling lemma later on, we may utilize the following trick at the cost to
the running time of only a small constant factor. Before each iteration of the chain, for
each state in 2, we flip another coin that shows heads and tails with equal probability,
and the coin flip at each site is independent of all the others. If the coin shows heads,
we perform the transition as usual, otherwise we stay at that state. Using this rule (or
a variation of it), we can ensure the existence of 5 > 0, so that (b) applies to obtain a
bound on the mixing time.

2.2. The comparison method
The comparison method [3, 13] is useful for relating the mixing rates of two similar
Markov chains. It is powerful in cases where it is easier to analyze a Markov chain if
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some auxiliary moves are added or some transition probabilities are altered or amplified,
but then it is necessary to derive bounds on the original Markov chain.

Let P and P two reversible Markov chains on the same state space ) with the same
stationary distribution 7. It is assumed that the mixing time, 75(¢), of P is known (or a
suitable bound) and we desire to obtain a bound for the mixing time, 7p(¢), of P.

Let E(P) = {(z,y) : P(x,y) > 0} and E(P) = {(z,y) : P(2,y) > 0} denote the sets of
edges of the two chains, viewed as directed graphs. For each z,y with 13(33, y) > 0, define
a path 7., using a sequence of states = wo,w1,...,wr = y with P(w;,w;41) > 0, and
let |v,,| denote the length of the path. Let I'(z,w) = {(z,y) € E(P) : (z,w) € Yzy} be
the set of paths that use the transition (z,w) of P. Finally, define

1

A= max _ 7(z)P x,
(z,w)EE(P) W(Z)P(Z,U)) F(zzw) |’ny| ( ) ( y)

The following is from [13, Thms. 3 & 4] and closely follows the work in [3]:

Theorem 2.3. With the above notation, we have
(a) Gap(P) > %Gap(P).
(b) Assuming that Ay (P) > %, for 0 < e <1 we have that

4log(1/(em))
= Togtif)

where T, = mingeq 7(x).

Another useful lemma relates the gap of two chains more directly. This result follows
immediately from the “functional definition” of the spectral gap (e.g. see [10, Eq. (7)]):

Lemma 2.4. Let P and P be Markov chains on the same state space, each reversible
with respect to the distribution w. Suppose there are constants c1 and co such that
a1 P(z,y) <P(z,y)<caP(z,y) for all x #y. Then c;Gap(P) < Gap(P) <caGap(P).

2.3. The decomposition method

The Madras-Randall decomposition method [10] offers a different approach for bounding
the mixing time of a Markov chain and will be the main motivation behind our analysis
in this paper. The intuition behind this method is that we look at subsets of the state
space and show that the Markov chain restricted to each subset is mixing. Then, if the
sets overlap enough (and cover all of Q), we can deduce a bound on the mixing rate of
the original chain on the entire state space.

Following [10], let Q4,...,Q,, be subsets of Q such that U;Q; = Q. We are interested
in two classes of induced Markov chains. The first is a set of restricted Markov chains,
obtained by restricting M to each subset (2;, i.e., any move of M that would take us
from an element z € Q; to some y ¢ Q; is rejected. In particular, the restriction to €; is
a Markov chain, M;, where the transition matrix Pq; is defined as follows: If x # y and
z,y € ; then Po,(z,y) = P(z,y); if z € Q; then Po,(z,2) =1-3 o ., Po.(2,y).
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The second Markov chain is the projection My of the cover {Qy,...,Q,,}, defined
on the set [m] = {1,...,m}, where each point i is associated with the set ;. Let
O = max,eq |{i : z € Q;}|- The transition matrix Py for Markov chain My is defined
by letting Pr (i, j) = “gogil for i # j, and Pr(iyi) = 1= %, Pu(i,j)- The limiting
distribution p of this chain is given by p(i) = 7(2;)/Z, where Z =}, " . 7(z) < ©.
From [10] we have

Theorem 2.5. [10] In the preceding framework,

1
Gap(P) > g5 Gap(Py) _min Gap(Py,).

=1,....m

3. A new decomposition result

Our goal is to give a method, analogous to that in Section 2.3, but using a partition of
into disjoint pieces. We relate the spectral gap of the original chain to the spectral gap of
the restriction to each set in the partition, and that of a new projection of this partition.
We first briefly introduce the framework that Caracciolo, Pelisetto, and Sokal (CPS) use
in the context of simulated tempering (see [10] for further details).

3.1. The CPS tempering method

Let P denote a transition matrix of a Markov chain on the finite state space 2 that is
reversible with respect to the probability distribution #. Suppose that the state space
is partitioned into m disjoint pieces €;,...,Q,,. For each i = 1,...,m, define Py,, the
restriction of P to §2;, by rejecting jumps that leave £2; (as in Section 2.3). Let m; be
the normalized restriction of 7 to €, i.e., m;(A) = @ where b; = 7(Q;). Let @ be
another transition matrix that is also reversible with respect to «. Define Q to be the
following aggregated transition matrix on the state space [m)]:

Qi) =7 3 w@)Q,y).

E z€Q;,
yeQ;

We note that _ —
biQ(zaJ) = bJQ(Jal)

so @ is reversible with respect to the probability measure b = (b1, ..., by) on [m].

Theorem 3.1 ([10], Thm A.1). Assume Q is positive semi-definite. Let Q'/? denote
the nonnegative square root of ). Then
Gap(Q'/*PQ"*)>Gap(Q) min Gap(Po,).
i=1,...,m
3.2. Disjoint decomposition
We use Theorem 3.1 to derive a bound on the spectral gap of P. Note that we assume
the eigenvalues of P are all non—negative. Recalling our previous remark following The-

orem 2.1, we assume that P(x,z) > % for all z € Q. This ensures that the eigenvalues of
P are non-negative.
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Theorem 3.2. Let Po, be as above, and let P be defined as above with P in place of
Q. Then
1 _
Gap(P) > 5Gap(P) min Gap(Pa,).

i=1,...,m

Proof. Take () = P in Theorem 3.1 above. This gives the inequality
Gap(P?) > Gap(P) . rlnin Gap(Pq;). (3.1)
i=1,...,m

Note that the eigenvalues of P? are the squares of the eigenvalues of P. Since Gap(P) =
1 —)\; and Gap(P?) =1 — M, we find that Gap(P) = 1 — /1 — Gap(P?).
To complete the proof, consider the function 1 — /1 — z. The Taylor series of this
function is
1-vV1—-z = 1$+1$2+i$3+i$4+-'-. (3.2)
2 8 16 128
From (3.2) we see that 1 — /1—z > 1z for z > 0. Taking z = Gap(P?) gives us the
inequality Gap(P) = 1 — /1 — Gap(P?) > 1+Gap(P?). Multiplying (3.1) by %, we obtain
the result. 0

Remark. We may justify taking Q = P in Theorem 3.1 by working in the inner
product space £2(7), the set of all square summable functions on €. In this setting, the
inner product for two functions f and g is defined as

(f,9) =D f@)g(@)m(x).
€N
Since P is the transition matrix of a reversible Markov chain, it defines a self-adjoint
operator on £2(7), i.e.,

(Pf,9)=(f,Pg) Vfgel(n)
where Pf(z) = }2, cq P(z,y)f(y). Thus, in this space, P is a positive semi-definite
matrix (operator), P'/2 is well-defined, and we can apply Theorem 3.1.

We also derive a useful corollary. One difficulty of directly applying Theorem 3.2 is
that we must find (or bound) the spectral gap of the aggregate chain P. Suppose instead,
keeping the same Markov kernel, we replace the matrix P with a transition matrix Py
on the set {1,...,m}, with Metropolis transitions, i.e.,

W(Qj) }
()"

In the expression for the transition probabilities, A is the maximum degree of the vertices
in the Markov kernel of P, i.e. the maximum degree in the graph having vertex set [m]
and edges (i,7) where P(i,j) > 0. In our corollary, the essential idea is that the sets
{Q;} have large boundaries, so that we can cross from one set to another efficiently. To
formalize this, let

. 1
Py (i, 5) = A min{1,

0i(Q;) = {y € Q; : Az € Q; with P(z,y) > 0}.



Disjoint decomposition of Markov chains and sampling circuits in Cayley graphs 11

Note that 0;(€;) denotes the set of all elements in Q; that can be obtained from some
element of 2; by one step of the Markov chain M.

Corollary 3.3. With Py defined as above where A is the mazimum degree of the
Markov kernel (of this projection chain), suppose there exists § > 0 and v > 0 such that

(a) P(z,y) > B for allz ~y in P.
(b) w(0;(25)) > ym(§Y;) for all pairs i ~ j in the Markov chain defined by P.
Then

Gap(P) > fyA Gap(Pu) min_ Gap(Pa,).

i=1,....,m

Proof. Note that

> w(@)P(z,y) > w(@)P(x,y)
T€Q;, z€8; (),
yeQ; y€8; (2

= Y  wPy= (3.3)
z€8;(Q;),
y€0:(2;5)

> Y wyB (3-4)
Y€ (Q;)
> Pym(Q) (3.5)
where (3.3) follows from reversibility and inequalities (3.4) and (3.5) follow from condi-
tions (a) and (b). Multiplying by ﬁ, we see

—— 1 () .
P = p > 72 > 28vAP, .
(.4) = 2o g m(@)P@,y) 2 By gy = 28YAPu(,)
yeﬂlj’
Therefore, by Lemma 2.4, we have Gap(P) > 28vA Gap(Pys). Using this bound on
Gap(P) in Theorem 3.2 gives us the result. O

Remark. This corollary may indeed be thought of as one of many possible corollaries
of Theorem 3.2. For example, condition (a) of the corollary may appear exceedingly
restrictive. It might happen that there are transitions of the chain for which the transition
probabilities are exponentially small. This would mean that 3 is exponentially small, and
the corollary would not give a useful lower bound on the spectral gap of P. In these cases,
we might choose to disregard these small transition probabilities (with a possible slight
alteration to the value of v) to obtain better results than this general corollary may
initially supply us.

Similarly, it may be possible that a more careful analysis, or insight into the Markov
kernel of the chain, might lead to a better result in passing from (3.3) to inequality (3.4)
in the proof of the corollary, thereby obtaining a tighter lower bound on the sum in (3.3).
For example, suppose we replace condition (a) with a stronger condition of the form “For
all 4,j € [m],i # j and all y € 9;(;), we have Eweaj(gi) P(y,z) > B.” This condition
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might be helpful in passing from (3.3) to (3.4) to get a better lower bound on the spectral
gap of P.

4. Sampling circuits in Z¢

Our first application of the disjoint decomposition method of Section 3.2 is that of sam-
pling circuits in Z%. We fix a vertex in Zd, which we call the origin, and wish to sample,
uniformly at random, from the set of circuits in Z¢ with 2n edges, i.e., closed walks of
length 2n that begin and end at the origin.

We may represent each circuit in Z? as a string of letters using the symbols ay, - . ., ag
and a7?,..., agl where a; denotes a unit step in the positive direction of the ith coor-
dinate and ai_l a unit step in the corresponding negative direction. Note that since we
consider circuits in Z?, the number of occurrences of a; in the string equals the number
of occurrences of a; ' for all i.

Fix n > 1 and let C denote the set of all circuits with 2n edges. We note that |C| =
> ( 2n ) where the sum is over all non—negative solutions to x; + 2+ ---+

T1,T1,L2,L2;..-;Td>Td
g =n.

4.1. The Markov chain on circuits in Z¢

The Markov chain M on C consists of transpositions which swap neighboring elements
of the string, and rotations that change a neighboring pair of elements a;, a; ! to a pair
ak,agl. Let 0 € C denote a circuit, and oy, i € [2n], the elements of ¢ (in the string
representing o). In what follows, we use notation like “t €, T” to mean that ¢ is selected

uniformly at random from the set T'. The Markov chain on C is:
One step of Markov chain M:

1. Pickt €, {1,...,2n—1},b €, {0,1}.
2. ¢ If b = 0, then if 0y = a; and o¢41 = a;l for some ¢ € {1,...,d}, then choose
k €y {1,...,d} and with probability 1/2 set ¢ = a; and 041 = aj, '
o If b =1, then with probability 1/2 transpose o, and oy41.
e In all other cases, do nothing.

The procedure outlined above shows that the transition probabilities for M are:

1

Zd(Zn—1) if 04, 0 differ by a rotation,

P(oy,02) = 4(2;—_1) if o1, 05 differ by a transposition, (4.1)

1-— Ea';ﬁal P(o1,0") if o1 = 03.

This Markov chain is ergodic and aperiodic (there are self-loops at each state with prob-
ability at least 1/2). Also, since the transition probabilities are symmetric, we easily see
that the limiting distribution 7 is uniform on C.
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4.2. Bounding the mixing time of M

We apply the disjoint decomposition method of Section 3.2 to obtain a bound on the
mixing time of M. The partition C is based on the number of steps in each coordinate
direction. More precisely, let o € C be a circuit and let z; denote the number of times a;
(and hence a; ') appears in o. The trace, tr(o), is defined as tr(o) = (z1,%2,...,zq). Let
C denote the set of all possible traces, i.e., the set of possible solutions in non—negative
integers to z1 + 2 + - - - + 4 = n. We see that |C| = (""*~") since this is the number of
distinct traces. With X = (z1,...,24) denoting a trace, we use Cx to denote the subset
of C where each element has trace X. The collection of restricted Markov chains My,
with transition matrices Px, one for each set Cx, only allow transpositions of letters in
the string o, keeping the number of each a; (and ai_l) fixed. The projection chain can be
represented by an integer simplex where each vertex represents a trace in C and neighbors
in the chain are vertices whose traces have an ¢! distance of 2.

4.2.1. The restrictions We first examine the mixing time of the restricted chains
M x. We shall see that the mixing time of the restrictions follows from previous work by
Bubley and Dyer [1] on sampling linear extensions of partial orders.

The set of circuits with fixed trace X can be seen to be the number of ways of inter-
leaving x; copies of a; and a;l, for each i. Up to multiplicities, the set of circuits is just
the set of permutations on this multiset. To account for multiplicities, however, we can
think of the set of x; copies of a; as x; distinct elements a;1 < a;2 < ... < a;4; and the
copies of a; ' as A;1 < .. < A, Let Tx be the set of total linear orders consistent
with this set of partial orders. The following lemma is easy to verify:

Lemma 4.1. There is a bijection between Cx, the set of circuits with trace X, and Tx,
the set of total orders.

Moreover, the restricted Markov chain M x performs a walk on the state space T'x of
total orders by performing random transpositions (with at least a 3/4 self-loop probability
at each state because rotations are disallowed in the restricted chain). Such a chain was
studied previously by Bubley and Dyer [1]. Together with part (b) of Theorem 2.1, we
get this result:

Theorem 4.2. The transposition Markov chain Px has mizing time O(n3(logn +
loge™")). Consequently we have Gap(Px) > ;% for some constant ¢ (for all possible
traces X ).

Proof. For the proof of the mixing time, the reader is referred to [1]. We only describe
how to obtain the lower bound on the eigenvalue gap, given the upper bound on the
mixing time. For 0 < & < 1, Theorem 2.1(b) tells us that

Gap(Px) > %”{)) log(2) L.

Since Px has self-loop probabilities of at least 3/4, this implies that A (Px) > 1/2.



14 R. Martin and D. Randall

Hence, there is some constant ¢y > 0 such that

Co 1

Gap(P,) > ————+——log(2 .
This inequality must hold for all 0 < £ < 1, so in particular we can take ¢ = %, which
gives the stated bound on the eigenvalue gap of Px. [

4.2.2. The projection As described above, the projection of the partition is a random
walk on an integer simplex in Z*. With the previous notation, we let X = (z1,...,2q) de-
note an element of C (a trace). The stationary probability of X is 7(X) = (,, .. *",  )/Z
where the normalizing constant is Z = 3 ( vt enas)s and the sum is over all non-
negative solutions to ¢; + g2 + - - - + ¢4 = n. The transitions in the projection are moves
where we choose i,j €, {1,...,d} and b €, {—1,+1}, then add b to z; and —b to z;,
provided this resulting vector still lies in the simplex. In keeping with the decomposi-
tion strategy of Corollary 3.3, we want to use Metropolis transitions for this chain and
add self-loop probabilities to ensure aperiodicity. For simplicity, we analyze this Markov
chain indirectly. In order to apply path coupling to show rapid mixing, we first con-
sider a modified chain with slightly different transition probabilities; rapid mixing of the
Metropolis projection chain follows by a simple comparison of transition probabilities
using Lemma, 2.4.

Let X = (z1,...,24) and Y = (y1,...,yq) denote two elements of C. The distance
between X and Y, denoted §(X,Y), is the smallest number of transitions that must be
performed to change one into the other. This can also be written as

d
1 1
S(6Y) = 51X Y] = 2 3 loi — i
i=1
where || - ||; denotes the £* metric.
If X = (z1,-..,%i,---,Tj,...,2q) and Y = (zq,...,2; + 1,...,2; — 1,...,24) (so
0(X,Y) = 1) the transition probability in the Metropolis projection chain, Py, is

7(Y) T zj

Pu(X,Y) = ;?min{l, %} = g il (7 -)%) (4.2)

since the maximum degree in the projection chain is 2d>.

As mentioned, we first show a Markov chain with different transition probabilities is
rapidly mixing, then use the comparison method to show that Py is rapidly mixing. With
X and Y as above, differing by a single transposition, the new chain Pj, has transition
probability

, 1 1
Py, (X,Y) = SE @12 (4.3)
In other words, the denominator is determined by the coordinate that increases in the
transition. (As usual, we define Py (X,X) =13,y P)/(X,Y).) The change from
4 to 8 in the denominator of (4.3) is for a technical reason that arises in the proof
of Lemma 4.4 below. Doing this ensures that Py, (X,X) > 3/4 for all X, and hence
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A1(Pys) > 1/2. We note that detailed balance is satisfied, i.e.,
AY) o o PL(XY)

X)) ‘z+1  PLY,X)

This ensures that Pj, has the same stationary distribution 7 as Pys.

Now we use path coupling to bound the mixing time of this modified chain. In the
notation of Theorem 2.2, we take U C C x C to be the pairs (X,Y) with §(X,Y) = 1.
We couple by choosing the pair of indices ¢ and j and b € {—1,+1}, and try to update
X and Y simultaneously by adding b to z; and y; and —b to z; and y;, according to the
transitions of Py, (assuming they give new elements of C).

Lemma 4.3. Let (X,Y) € U. Under one step of the coupled Markov chain we have
B(X',Y") < (1 - qrpig)5(X, V).
Proof. Since §(X,Y) = 1 there exists some k and k' such that y, = zx + 1 and
Yy = T — 1. Without loss of generality, we may assume that k¥ = 1 and k' = 2. We
consider three cases, depending on the choice of the indices ¢ and j under the coupling
described above.

Case 1: If |{3,j} N {1,2}| = 0, then both processes accept the move with the same
probability, so §(X',Y') = 1.

Case 2: If |{i, 7} N {1,2}| = 1, we shall see that the expected change is also zero. Assume
without loss of generality that i = 1 and j = 3, and first consider the case where b = +1.
It may happen that 23 = 0. In this situation, we can change neither X nor Y (i.e. X' = X
and Y' =Y), so the distance remains unchanged. So now assume that z3 > 1.

In this case we move from X to X' = (z1 + 1,22,23 — 1,...,24) with probability
m and from Y to Y’ = (21 + 2,72 — 1,23 — 1, ...,24) with probability m.
Since Py, (X, X") > P;,(Y,Y"'), with probability P;,(Y,Y’) we update both X and Y;
with probability Py, (X, X’)— P3,(Y,Y") we update just X; and with all remaining prob-
ability, we update neither. In the first case we end up with X’ and Y”, in the second we
end up with X’ and Y, and in the final case we stay at X and Y. In all cases, these
pairs are unit distance apart, so the expected change in distance is zero. If b = —1,
then Py (X,X") = Py, (Y,Y") = m, where X" = (z1 — 1,29,23 + 1,...,24)
and Y = (x1,22 — 1,23 + 1,...,z4). If both moves are allowable (i.e., z; > 1), the
coupling keeps the updated configurations unit distance apart. If z; = 0, then X will not
change (since the update will give a negative first coordinate), and in this case we have
Y" =(0,z2 — 1,23 + 1,...,24). Noting that §(X,Y") = 1, the updated configurations
still have unit distance.

Case 3: If |{i,j} N {1,2}| = 2, then we show that the expected change in distance
is at most zero, and is, in fact, strictly negative. Assume without loss of generality
that 4 = 1,5 = 2, and b = +1. The probability of moving from X to X" = (z; +
1o — 1,...,2q) =Y is Py, (X, X") = m. The probability of moving from Y

toY" = (z1 4+ 2,22 —2,...,2q) is Py, (Y,Y") Therefore, with probability

_ 1
= 3122
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P, (Y,Y") we update both configurations, keeping them at unit distance, and with
probability P (X, X") — P, (Y,Y") > m we update only X, decreasing the
distance to zero. (Note that if 2o = 1, then ¥ cannot move to Y"', but X can still
be updated to X" =Y, and the bound given is still valid.) When b = —1, a similar
argument shows that there is again a small chance of decreasing the distance.

Summing over all three cases yields the lemma. [

Using Theorem 2.2 with a = 1 — m, noting that §(X,Y) < n for all X and Y,
together with Theorem 2.1, we have the following result.

Lemma 4.4. The Markov chain P}, is rapidly mizing and
(a) TP, (€) = O(d?*n?(logn +loge™")).
(b) Gap(Pj,) > # for some constant c'.

Proof. Part (a) follows from Theorem 2.2 immediately, using the bound on §(X,Y)
above and a as described.

For part (b), we can proceed as we did in Theorem 4.2. ;From Theorem 2.1(b), we
know that

A (Py,) _
Gap(Py;) > —M1og(2¢)7.
(Ip( M) = 2TPJ’W(E) Og( 5)
Here we use the fact that A;(P;;) > 1/2 we mentioned earlier. Combining this with the
bound on the mixing time just established, we have
k

> -

~ 2-2-d?n3log(n/e)
for some positive constant k. Since (4.4) must hold for all 0 < € < 1, as in Theorem 4.2
we may take & = 7~ to establish the lower bound on Gap(P};). U

Gap(Py) -log(2¢) ! (4.4)

Finally, using the comparison method, the original Metropolis chain Py, for the pro-
jection is seen to be rapidly mixing. In fact, since all transitions of Pys are as large as
those of Pj, (recall expressions (4.2) and (4.3)), by Lemma 2.4 we have the same bounds
for PM.

Theorem 4.5. The projection chain Py on C is rapidly mizing and

(a) Tp,, (€) = O(d?n3(logn + loge™1)).
(b) Gap(Pyr) > #, for some constant ¢'.

Putting together this result with the previous observation about the restricted chains
gives us this theorem:

Theorem 4.6. The Markov chain M on the set C of all circuits of length 2n in Z¢ is
rapidly mizing. Furthermore, assuming n > d, we have

(a) Gap(M) > %, for some constant ¢'".
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(b) Tam(e) = O (dn®(2nlog(2d) + loge 1))

Proof. In the notation of Corollary 3.3, we need to determine (bounds for) 8 and +.
Looking back at the transition probabilities of M (equation (4.1) in Section 4.1), we note
that 8 > g5 If 6(X,Y) = 1, where X = (z1,...,24) and Y = (z1,..., 2+ 1,...,3; —
1,...,24), we need to determine what fraction of words in X are neighbors of words in
Y to find a bound for «y. This fraction is exactly the likelihood that a word in C'x has an
a; followed by an aj_l. This is at least 1/(2n), hence v > 1/(2n).

Finally, provided n > d, the Markov kernel of the projection chain has maximum
degree A = 2d? (otherwise the maximum degree is A = 2n?).

Combining these bounds with Theorems 4.2 and 4.5 for the restrictions and the pro-
jection chain, we obtain the bound that

1 c c "
>_— . .94%. >
Gap(M) 2 8nd 2n d?n® n® = dn8
This establishes (a), and (b) follows using the first part of Theorem 2.1 and noting that
|C| < (2d)", hence (in the notation of that theorem) log(1/m.) < 2nlog(2d). [

5. Weighted exclusion processes

Before we present our next application of the decomposition theorem, we take a combi-
natorial excursion to study a certain exclusion process. These results will provide tools
necessary for Section 6 where we discuss sampling circuits in d-regular trees. Moreover,
since exclusion processes are such fundamental models, we believe that the mixing results
obtained here are independently interesting.

An exclusion process is a stochastic process involving a graph, typically a lattice, where
some of the vertices are occupied by single particles. Over time, particles can move
about, but two particles can never occupy the same location simultaneously. We will
consider a weighted model in which each configuration is assigned a weight. Our goal is
to sample configurations with probabilities proportional to their weights. In other words,
we would like to define a Markov chain that has as its stationary distribution probabilities
proportional to these weights. Naturally, we want to bound the mixing rate of the chain.

The weighted exclusion process we study is motivated by the applications in Section 6.
In particular, consider a set of n sites arranged in linear order, k of which contain par-
ticles, and let Qj denote the set of all (}) such configurations. In what follows it will
be convenient to augment each configuration with sites at locations 0 and n + 1, each
containing a fixed particle. Let f = {f;} denote a sequence of positive numbers for i > 0.
Using this sequence, we assign a weight to each o € Q, that is wt(o) = fo, foo - forsn
where z; € {0,...,n — k} is the number of unoccupied sites between particles ¢ and
i+ 1fori=1,...,k+ 1. Normalizing, we have a probability distribution p on Qj, with
plo) = %(:) where Zy, = ) 1 cq, wt(o'). For example, if f; = 1, Vi, then p is the uniform
distribution on €, but, for our application in this paper we are more interested in the
non-uniform case. To sample from Q according to p, we define a Markov chain having
p as its stationary distribution and aim to show this chain is rapidly mixing.
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5.1. A particle process with nearest-neighbor dynamics

A natural Markov chain Mg on Qy, called nearest-neighbor (or Glauber) dynamics,
consists of picking a particle at random and moving it one space to the left or right
(provided the destination is unoccupied). We note that the two particles we added at sites
0 and n+ 1 are fixed and cannot move. For o € Qj, we use o(i) to denote the position of
particle ¢, and we define the distance between pairs 01,02 as §(o1,02) = Y, |01(i) —02(3)|,
the sum of distances between corresponding particles. We use Metropolis transitions for
the nearest-neighbor dynamics. We let o1 denote the current particle configuration, and
o9 denote the configuration after one step of the chain M.

One step of the nearest-neighbor Markov chain Mg;:

1. Select a particle uniformly at random (excluding the two fixed particles), and a direc-
tion d €, {¢,r}, where £ means “left” and r “right”. Let ¢’ denote the configuration
obtained from o7 by moving the chosen particle one step in the direction d if the
destination is unoccupied. If the destination is occupied, set ¢’ = o7.

2. With probability 4 min{1, 2473} set oy = o’

3. In all other cases, set o9 = 7.

With the chain defined above, the transition matrix Pg; for the Glauber chain is given
by

Zmin{l, 278} if §(01,00) = 1,

Pgi(01,02) = 0 if 6(o1,02) > 1,

1-— Zo’géal PGl(O'l,UI) if g1 = 09.
The transitions ensure that Mg is aperiodic since Pg;(o,0) > % for all o € Q.

Our approach to establishing a bound for the mixing time of M is indirect. We first
define a new Markov chain that includes some non-local moves and show this chain is
rapidly mixing. Using the comparison method of Section 2.2 we can then hope to establish
rapid mixing for the simpler Glauber chain. In subsequent sections, we demonstrate the
heat bath chain is rapidly mixing when the sequence f is log—concave, or is log—convex
and satisfies an additional condition.

5.2. A particle process with heat bath dynamics

A second natural Markov chain on €, is heat bath dynamics. The transitions differ from
nearest-neighbor dynamics in that particles may move more than one space at a time, but
can never pass over another particle in doing so. We again use o7 to denote the current
particle configuration, and o2 for the configuration after one step of the heat bath chain.
Recall that o1 (j) denotes the location of particle j in the configuration oy .

One step of the heat bath Markov chain Mpgpg:

1. With probability %, set 09 = 0.
2. Otherwise,

e Select a particle uniformly at random (excluding the two fixed particles). Suppose
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we select particle 5. Let m = o1(j + 1) — 61(j — 1) — 1. Then m is the number of
sites between particles j — 1 and j + 1.

e Remove particle j.

e Replace particle j in location o4 (j — 1)+t to obtain o2, where ¢ is selected according
to the probability distribution

Pr(t:i):% Vie{l,...,m}

and Z =Y 1", fi_1fm—s is the normalizing constant.
Step 1 is introduced for technical reasons (namely, to ensure that A;(Pgp) > § which
we use later on), and it only slows down the chain by a factor of four. We see that in
one step of Mgp we remove a particle and reinsert it between its neighbors according
to the desired conditional distribution. The transition probabilities of M gp are

ﬁ@ if 01,0 differ solely at particle j,
Pyp(0o1,02) =4 0 if 0y, 0 differ by two or more particles, (5.1)

1-— ZU,;,EUI Pyp(o1,0') if o1 =02,

where z; is the number of empty sites between particles j and j 4+ 1 in o2 and Z is the
normalizing constant defined above in step 2 of this chain. It is important to reiterate
that the ordering of the particles in the interval does not change during the transitions.
Any particle that moves must remain between its neighbors and cannot jump over them.

Finally, note this Markov chain is reversible and the stationary probabilities are those
defined earlier, namely p(0) = fo, fos "+ fowss/Zk, Where Zp = 37 fy, fyo -+ fyus, is the
normalizing constant and the sum is over all non—negative solutions to y1 +y2 + ... +
yr+1 = n — k. Having defined the heat bath Markov chain, we prove it is rapidly mixing
for some natural classes of sequences. The general approach we use is to apply path
coupling to show this.

5.3. Log—concave sequences

A log—concave sequence is one satisfying f;_1 fiy1 < f7? for all i. For these sequences,
the configurations having the largest weight (stationary probability) are those where
the particles are distributed as evenly as possible in the range of sites. Intuitively, this
suggests that regardless of the initial arrangement of the particles, they will tend to
spread out over time.

We have already defined a distance metric on {2, and note that 0 < d(o1,02) < k(n—k)
for any pair 01,09 € Q. We examine the heat bath dynamics using path coupling. In
the notation of Theorem 2.2 we take U C Qj X 2 to be pairs (01, 02) with d(g1,02) = 1,
so the pair differs by a single (nearest-neighbor) transition.

Figure 2 shows parts of two configurations with k particles, differing only at particle j.
In our coupling, if particle j is chosen in the first step of the move, we can reinsert it at
the same position in each configuration, decreasing the distance by one. Also, choosing
any other particle except j — 1 or 7 + 1 allows us to reinsert it at the same position
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Jj-1 J Jj+1
[ ] o [e] [ ] o [ ] o [e] [ ] o [ ]
[ ] o [e] [ ] o [e] [ ) [e] [ ] o [ ]
=1 J J+1

Figure 2. Typical situation for path coupling

in each configuration with identical probabilities, leaving the distance unchanged. So we
need to consider how to couple the moves if we choose particle j—1 or j+ 1. For example,
consider Figure 3 which shows the configuration of Figure 2 with particle j — 1 removed.
When we couple the chains together, it would be very bad to replace particle j — 1 at
the first position in o; and at the fifth position in o5 since the new distance between the
configurations is now four where it was previously one.

The dashed lines of Figure 3 indicate how we would like to couple the moves. Replacing
particle j — 1 between its neighboring particles in the manner indicated either keeps

o2 e O O .
i=2 a1 @ a3 @ a5
Figure 3. The coupling for the particle system

the distance between the pair of configurations unchanged or increases it by only one.
We show such a coupling is possible by demonstrating majorization inequalities for the
transition probabilities a; and b; for the pair of configurations.

Referring to Figure 3 as a representative case, let m denote the number of sites between
particles j —2 and j in o1, 80 m = 01(j) —01(j —2) — 1. For i € [m] let b; = fi—1fm—i/Zs
be the probability to insert particle j — 1 at position ¢ between j — 2 and j in the upper
configuration oy, and for i € [m+1],let a; = fi—1 fm+1-i/Za be the probability to insert
particle j—1 in the lower configuration o5, where Z, = 3" | fi—1 fm—; is the normalizing
constant for o1 and Z, = E:’;{l i—1 fm+1—; is the normalizing constant for o5. We have
the following surprising combinatorial lemma:

Lemma 5.1. Suppose f = {f;} is a log—concave sequence. With a; and b; as above, for
all t € [m], we have

t+1

¢ ¢
Zai < Zbi < Zai-
=1 =1 =1

Proof. We need only verify the first set of inequalities,

m—t m—t
Z a; < Z bi, (5.2)
=1 =1

since they imply the remaining ones. To see this, recall that both sequences are symmetric,
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i.e., @; = Gmy2 ; and b; = b1, and that Z;"Jlrl ai = Yo, b; = 1. This tells us that

t m+1 t+1
Zb,—l— Z b; _1—21; <1—Zaz—1— Z az-:Zai.
=1 i=t+1 1=t+2 =1

We spend the remainder of the proof verifying the inequalities in (5.2). In other words,
recalling the definitions of a; and b;, we want to show

Sisg fifmei _ Lm0 Fifm s
m — m—1
Zi:o fifm—i Zj:o fjfm—j—l

or, equivalently,

t—1 m—1 m t—1
O fifm- (O fifmej1) < O fitm-d)Q_ fifm—j1)- (5.3)
i=0 7=0 =0 7=0

Case 1: t < m/2. Referring to equation (5.3), we have

m—t—1

t—1 t—1 t—1
LHS = O fifm)O_ fifmi=) + O fifm=)( > fifm—j1)
=0 7=0 i=0 =t
t—1 m—1 ’
+(Z fzfm z Z f]fm —j— 1
i=0

j=m—t

t— m—t—1

= Zfzfm i ffm j-1) (Zf,-fm,i)( > fifmei)
7=0 =0 j=t

Z fzfm i Zf]fm i— 1 (5-4)

i=m—t+1
We obtained this last expression by rewrltmg the third product in an equivalent manner.
Now, using the log—concavity of f, we find that for i < j,
fm—j—1fm—i < fm—jfm—i-1,

so, adding additional factors,

fifm—j1fifm—i < fifm—jfifm—i-1. (5.5)
This implies

mtl m—t—1

Z fifm—ja Zfzfm i) < ( Z fifm—i Zf,fm i1) (5.6)

Substitutlng inequality (5.6) into the second of the three products in (5.4) (and revers-
ing the roles of 7 and j), we have

mtl

t—1 t—1
LHS < (X fifm=d)(Q_ fifm—jo1) Z fifmi) Zf,fm j-1)
i=0 j=0
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m t—1
Yo fifm O fifm-j-1) < RHS.

i=m—t+1 §=0

Note that the final inequality comes from adding in the missing term(s) when i =m — ¢
in the second product.

Case 2: t > m/2. Breaking up (5.3) differently this time, we have

mtl

t—1 t—1
LHS = (Zfifm_i)(Zf,-fm_j ] Z fifm—i Zf,fm _j-1)
Z fzfm 1 Zf]fm —j— 1

i=m—t
m—t—1
- (Zfifm—i)(ijfm—j—1)+( Z Fifm)( S Fifmegt)
i=0 j=0 i=t+1 j=0
Z fifm—i Zf]fm j—1) (5.7)
i=m—t

where we have rewritten the second term with an equivalent expression.
Using the log—concavity of f with i < j, we again have (5.5) and find

t—1
Z fzfm i Zf]fm —Jj— 1 S Zf]fm —J Z fifm—i—l) (5'8)

i=m—t i=m—t
Similar to before, we swap the roles of ¢ and j in the final expression of (5.8), and then
use it to bound the third product in (5.7). This gives the new inequality

m—t—1

t—1 t—1 m
LHS < O fifm O fifmi 1)+ (D fifm (Y, fifmj1)
1=0 7=0 7=0

=t+1
m—1 t—1
+(Z fifm—i)( Z fifm—j—1)-
i=t j=m—t

Adding in the extra terms when 4 = ¢ in the middle product and the terms when ¢ = m
in the third one, we can combine the second and third terms to get

t—1 t—1 t—1
LHS < (Zfifm—i)(z.fjfm—j 1 Zfz.fm i ijfm j— 1 = RHS.
i=0 =0 =0

O

Lemma 5.1 allows us to couple moves in the “zig—zag” manner shown in Figure 3. We
describe the coupling for pairs 01,092 with §(o1,02) = 1. As before, we suppose that they
differ at particle j. We use the notation (o4, 0%) for the configuration obtained from the
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pair (01,02) after one step of the coupling. Let Ad(oy,02) = 6(01,0h) —d(o1,02) denote
the change in distance after one step of the coupled chain.

Coupling for the heat bath chain Mpgp:

1. Pick a particle, say particle ¢, uniformly at random.

2. Ifi ¢ {j —1,j,j + 1} we remove particle ¢ from o; and o, and reinsert it in the
same location in both, with the exact same transition probabilities (according to
equation (5.1)). In this case we have Ad(o1,02) = 0.

3. If i = j we can replace particle j in the same position in each configuration so that
they now agree. Conditioned on i = j we have Ad(o1,02) = —1.

4. Ifie{j—1,j+ 1} pick an ordered pair (u,v) according to the following probability
distribution:

Pri(u,v) = (t,0)} =Xt ar = XN b, fort=1,...,m
PT{(U:U) = (t7t+ 1)} = 2:21 br - Zizl ar fOI' t= ].,.. ., M

Here we assume that o; has the shorter interval between particles ¢ — 1 and ¢ + 1 and
m = o1(i + 1) — 01(i — 1) — 1 denotes the number of sites between the neighbors of
particle 4, and a,,b, are defined as before. Having picked the ordered pair (u,v), we
place particle ¢ at position u in o1 and at position v in o2 (between its neighboring
particles i — 1 and ¢ + 1). In this case we have Ad(o1,02) € {0, +1}.

Lemma 5.2. Suppose f = {fi} is a log—concave sequence. Let o1,00 € Qi with
0(o1,02) = 1. After one step of the coupled Markov chain we have E(Ad(o1,02)) < 0.

Proof. We have noted that selecting a particle other than j—1, j, or j+1 does not
change the distance, and that by choosing particle j the distance decreases by one. The
bad moves that increase the distance are those in which we insert j — 1 (or j + 1) at
different positions in o7 and os. If we select either of these two particles, say j—1, the
expected change in distance is

B = Z(Zbr_zar>
i=1 \r=1 r=1
= mb+(m-1bs+--+bp—ma—(m—1)az — -+ — an,.-

Recalling that b; = by, +1-; and a; = @y 42-4, We can also write
B = mby+(m—1bp_14+--+bi —mamy1 — (m—1)ap, — - — as.

Summing these equations and simplifying yields 8 = % By symmetry this also represents
the expected change in distance for particle j + 1.

Putting these pieces together to determine the overall expected change, we find that
E(Aé(01,02)) < ﬁ(—l + % + 1) = 0. (An inequality, as it is possible, say, that j = 2 so
there is no bad move for the fixed particle 1.) 0

The preceding lemmas result in the following theorem:



24 R. Martin and D. Randall

Theorem 5.3. The heat bath Markov chain Mup is rapidly mixing for any log—concave
sequence f = {f;} and:

(4) Tamus(€) = O(n°log(3)).
(b) Gap(Mug) > ;5 for some constant ¢ > 0.

Proof. Whenever 6(o1,02) > 0, the probability that the distance changes in one step
is at least 1/4k. The path coupling theorem gives a bound on the mixing time for the
heat bath Markov chain Mgpg on Q:

e(k(n —k—1))2 1

rp () < SN0
4k

og(2)] = O(n° log(2))

For part (b), using Theorem 2.1(b) we can lower bound Gap(Mpgg) (using the trivial
bound )\I(PHB) > %)

1 1 log()
Gap(Pup) > — log(5-) = e,
drp, () 2e nd log(%)
for some constant ¢ > 0. As this inequality must hold for every 0 < £ < 1, letting e — 0
1
(so log(z0) _, 1) we have Gap(MuB) > 5. [

log(¢)

Recall the original Markov chain Mg on €, that has nearest-neighbor dynamics. We
can use the comparison theorem to give a bound on the mixing (or, equivalently, the
spectral gap) of Mg;. Instead of trying to give a general upper bound for an arbitrary
log—concave sequence f, we will defer this task until those times that we have specified
a particular sequence.

5.4. Log—convex sequences

Another natural class of sequence to consider are log—convex sequences, those satisfying
f? < fi_1fip1 for all i. Unfortunately, the analysis we used in the previous section does
not hold for an arbitrary log—convex sequence.

The difficulty arises in that log—convex sequences can grow “too fast” so the majoriza-
tion Lemma 5.1 does not generalize to any log—convex sequence. To see this, consider a
sequence of numbers beginning 1,1,1,1, a, where a > 1 which is a log—convex sequence.
Suppose that when we remove particle j the interval between its neighbors in o5 has
five sites in it as in Figure 2. To use this same coupling argument, we would require, for
example, that o i reT < TiiiriT = 1 (showing ap < by). Yet letting
a — 00, we see this clearly cannot hold since the fraction involving a approaches 1/2. It
is clear that no coupling can overcome this difficulty.

For our purposes in Section 6, we need to consider an exclusion process whose weights
are defined by the Catalan numbers C(n) = HLH(Q:) This sequence is log—convex. We
shall see that, unlike the previous example, log—convex sequences that satisfy a suitable
restriction do permit a result analogous to Lemma 5.1. Hence, for sequences satisfying
this restriction we also have analogues to Lemma 5.2 and Theorem 5.3, meaning the heat
bath chain is rapidly mixing for such sequences.

One restriction for which the path coupling argument in the previous subsection will
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work in the log—concave case is one ruling out cases where the sequence grows “too fast.”
Let us define g; = 2221 fi—1ft—i- As before, we consider the case when d(o1,02) =
1 where the two configurations differ in the location of particle j. Referring back to
Figure 3 as a representative case, we again let m = 01(j) — 01(j — 2) — 1, for i € [m]
bi = fi—1fm—i/Zs is the probability to insert at position ¢ in o1, and for i € [m + 1] the
probability to insert at position ¢ in 02 is a; = fi—1 fm+1—i/Zs Where Zy = gm, Zo = gm+1
are the respective normalizing constants. We first show a result similar to Lemma, 5.1. In
this case, the additional condition we impose for log-convex sequences makes the proof
simpler than that for Lemma 5.1.

Lemma 5.4. Suppose f = {f;} is a log—convezr sequence and ftf—il < % for all t > 1.
Then for all t € [m] we have

Proof. We actually prove that a; < b; for all 4 € [m]. This set of inequalities implies
those in the statement of the lemma.
The first inequality comes directly from the assumption relating f and g, i.e.,

fm S gm+1
m—1 Im
implies that
a; = fOfm < fOfm—l — bl-
Im+1 9m

Using log—convexity we have

fm—l S fm ng-{—l
fm72 fmfl Im

?

so by rearranging this inequality and multiplying by fi we get
— flfmfl < flfm72

as < = b2.
Im+1 9m
Similarly, using log—convexity, we have
fm—2 < Im+1 7
fm—3 9m
SO
az = f2fm72 S f2fm73 — bg.
Im+1 9m
Continuing in this manner, we obtain the inequalities a; < b; for all i € [m)]. O

Using this lemma, we also have results analogous to Lemmas 5.1 and 5.2 for log—convex
sequences satisfying the same hypotheses, so we will not repeat them here. The proof of
the following theorem is identical to that of Theorem 5.3.
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Theorem 5.5. Suppose f = {fi} is a log—convex sequence and ftf—il < gtg% for all
t > 1. Then the heat bath Markov chain Mpyp is rapidly mizing and:

(4) Tampup(€) = O(n°log(3)).
(b) Gap(Mpug) > ;55 for some constant ¢ > 0.

6. Sampling circuits in d-regular trees

We are now prepared to return to the decomposition method. The second application
of decomposition we present is sampling circuits in d-regular trees. To do so, label the
edges of the tree as a Cayley graph so that each vertex is adjacent to one edge with each
of the d possible labels. As before, we wish to uniformly sample circuits of length 2n in
the tree.

There is a connection between this problem and another of interest to the statistical
physics community, that of sampling staircase walks according to a Gibbs distribution.
Staircase walks are paths that join (0,0) to (2n,0) using diagonal steps by adding (1,1) or
(1,—1) to the current location, and which never go below the z-axis. Letting A > 0 be a
fixed parameter, we assign a weight of A¥ to a staircase walk that hits the z-axis k times.
The Gibbs distribution normalizes these weights, giving a probability distribution on the
set of staircase walks. The key observation we use to sample circuits in a d-regular tree
is a many-to-one mapping between the set of circuits on this tree to the set of staircase
walks. A circuit of length 2n, starting at the root, has n edges leading away from the root
and n edges leading back towards the root. Whenever we are at the root we have d choices
of labeled edges; whenever we are away from the root we have d — 1 edges which move us
farther away and a unique edge which will bring us closer to the root. Hence, there are
d*(d — 1)"* walks of length 2n that hit the root k times (including the initial time, but
not the final). Using adsorbing staircase walks, sampling is easy: (1) Select a staircase
walk of length 2n according to the Gibbs measure with A = #. A staircase walk hitting

the z-axis k times appears with probability proportional to (;4)* = dk(‘(id%i;:_m. The
up edges in this walk correspond to steps in the tree that move away from the root, and
the down edges are those that move back towards the root. (2) Assign labels to the up
edges uniformly at random (from the set of d labels for edges starting from the z-axis,
and from a suitable set of d — 1 labels for edges above the z-axis), assigning labels to
the down edges that equal the label of the most recent unpaired up edge preceding it.
This gives a sequence of labeled edges corresponding to a labeled walk of length 2n in
the d-regular tree.

Using this scheme, sampling circuits in the tree reduces to the problem of sampling
staircase walks with the appropriate Gibbs measure, then labeling a staircase walk as
outlined above. For this reason, we focus on analyzing an algorithm for sampling staircase
walks. In Section 6.1 we define a Markov chain on staircase walks. In Section 6.2 we show
that path coupling suffices to show rapid mixing when A < 1, but it is precisely the case
when A > 1 that is necessary for sampling circuits in Cayley trees. In this case, path
coupling fails since the Markov chain is not contracting on the state space.

Therefore, we apply the decomposition method to analyze the Markov chain in the
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case when A > 1. In fact, we actually apply decomposition twice to establish a bound on
the mixing rate of this chain. Along the way, we make use of the analysis of exclusion
processes found in Section 5, the comparison method (Theorem 2.3 in Section 2.2), and
path coupling in some situations where it may successfully be applied.

6.1. The Markov chain on staircase walks
Fix some n > 1 and let S denote the set of all staircase walks with 2n edges. It is well
known that |S| = C(n) = 735 (>"), the nth Catalan number (see [17]).

We define a natural Markov chain M on §. This mountain/valley Markov chain has
previously appeared in [8, 12, 18]. The transitions of the chain are inversions which
replace local maxima with local minima, or vice-versa, by interchanging two edges along
the walk. If the cth point on the path is v. = (x.,y.), we call it a mountain if y._; =
Yo — 1 = y.41 and inverting it consists of setting y. = y. — 2. Likewise, inverting a valley
where y.—1 = y.+1 = y.y1 consists of setting y!. = y. + 2. The Markov chain M iterates
the following steps.

One step of Markov chain M:

1. Pick ¢ uniformly at random from {2,...,2n — 2}, and let v denote the point on the
walk whose z-coordinate is c.
2. e If v is the bottom of a valley lying on the z-axis, with probability 2(11—+/\) set Xyy1

equal to X; inverted at v. Otherwise, set X;11 = X;.

e If v is the top of a mountain, and inverting it will put it on the z-axis, with
probability 2(1—1)‘) set X;y1 equal to Xy inverted at v.

o If v is the bottom of a valley not lying on the z-axis, or if v is the top of a mountain
and inverting at v does not put it on the z-axis, with probability i set X;y1 equal
to X; inverted at v.

e In all other cases, set X¢y1 = X;.

Note that this Markov chain is aperiodic, reversible, and the stationary distribution is
k(o
the Gibbs distribution, namely 7 (o) = ’\T(), where k(o) is the number of times the walk
o touches the z-axis, and, as usual, Z =) o k(@) is the normalization constant.

We first review the easier case when A < 1.

6.2. Staircase walks with A <1

Path coupling suffices to show that the mountain/valley chain on staircase walks is rapidly
mixing when A < 1. We define our distance measure ® to be one-half of the area between
the configurations, i.e., drawing the configurations on the same set of axis bounds rectan-
gular regions between the pair of walks. The distance between the two walks is one-half
of the sum of the areas of these rectangular regions. For the coupling, we take the point
¢ in step 1 of M, and attempt to perform the same transition in each walk. To use path
coupling, we must examine a pair of walks that differ solely by a single transition of the
chain (a single square).

Lemma 6.1. Let X,Y € S with ®(X,Y) = 1. Provided that A < 1, after one step of
M we have E(A®(X,Y)) <0.
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Figure 4. Typical situations for path coupling

Proof. Consider the configurations in Figure 4, which show pieces of walks that agree
everywhere except at a single square, and let Y denote the “upper” walk. If the square is
adjacent to the z-axis as in Figure 4.A, then there are two transitions that decrease the
distance by one, inverting v in one of the walks so they now agree everywhere. Inverting
u or w in Y increases the distance by one. Every other transition not involving u, v,
or w does not change the distance between X and Y. Therefore, in this case we find
E(A®(X,)Y)) < 5.(3 + 5 — arwy — ﬁ) = 0. (This is an inequality since, in some
cases, one or both of the vertices u and w might not actually correspond to moves which
increase the distance.) The second case is if the differences between the two walks occur
a unit distance from the z-axis, as in Figure 4.B. There are also two good inversions
at v, each with probability i, and those at v and w increase the distance between X
and Y by one; all other moves preserve the distance between the pair. In this case, we
have E(A®(X,Y)) < %(2(1—1)‘) + ﬁ — 2 —2). This last expression is non-positive
if A < 1. Other situations where X and Y differ by a square that is far away from the
z-axis are neutral; two good moves decrease the distance by one, and (at most) two bad
moves increase the distance by one. Each of these moves occurs with equal probability,

so in these cases we also have E(A®(X,Y)) <0. 0

An application of Theorem 2.2 gives a polynomial bound on the mixing rate. These
details are left to the reader. We note in the case demonstrated in Figure 4.B that the
distance will increase in expectation if A > 1. We use the disjoint decomposition method
to show rapid mixing in this case.

6.3. Staircase walks when A > 1

Applying decomposition, we first partition S into sets Sy where each walk in Sy, hits
the z-axis exactly k times between the endpoints. The cardinalities |So, |Si, - - -, [Sn—1]
form a log—concave sequence (Section 6.3.2) implying the first projection chain is rapidly
mixing.

To examine the restricted chains on each of the sets Sy, we apply decomposition a
second time. We partition S by considering all walks that hit the z-axis at exactly
the same locations. Within each Sy (and, hence, in each set after further partitioning
S) the distribution is uniform over walks. Rapid mixing of the new restrictions is now
readily established using path coupling. The projection of the new partition is exactly the
exclusion process of Section 5 where the location of the particles correspond to the places
where the walks hit the z-axis. The probability of a particle configuration is proportional
to a product of Catalan numbers, so we can use the analysis in Section 5.4 as the Catalan
numbers are a log—convex sequence. Following a comparison of Markov chains, we finally
establish rapid mixing of the second projection, hence rapid mixing of the restriction to
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Sy via the new disjoint decomposition theorem. Applying that theorem again, together
with the fact that the first projection was mixing because of the log—concavity of the
sequence |S;|, we have rapid mixing on all of S. Along the way in our analysis, we also
apply the comparison method (Section 2.2). We formalize the analysis in what follows.

6.3.1. Decomposition of & The mountain/valley Markov chain M of Section 6.1 is
insufficient for sampling from Sy since we will never be able to alter the places that a
path hits the z-axis. For this reason, we need to introduce a slight variant Mon S for
the purposes of the analysis; the rapid mixing of the simpler chain M follows from the
rapid mixing of M by a very simple application of the comparison method (Section 2.2).

In this new Markov chain M there are two basic types of moves. The first type of moves
are inversions as described in Section 6.1. The second type of move consists of changing
one “propeller-like” structure into its mirror image. Letting D denote a “down” edge
and U an “up” edge, if there is a sequence of four edges DUUD, we can change it to
the sequence UDDU, or vice-versa. These moves are only allowed when one point of the
propeller touches the boundary. See Figure 5 for a pictorial depiction of this move. We
call such a change a propeller move (centered) at v.

AN
v %

Figure 5. The propeller move

More formally, M iterates these steps.

One step of Markov chain M:

1. Pick ¢ uniformly at random from {2,...,2n — 2}, and let v denote the point on the

walk whose z-coordinate is c.

2. o If ¢ = 2 and v is the bottom of a valley on the z-axis, with probability 2(11—+>\) set
X¢41 equal to X; inverted at v.

e If ¢ = 2 and v is the top of a peak and inverting it will put it on the z-axis, with
probability 2(1—)3r,\) set X;y1 equal to Xy inverted at v.

o If c€{3,4,...,2n — 2}, and v is the bottom of a valley not lying on the z-axis, or
if v is the top of a peak and inverting at v does not put it onto the z-axis, with
probability + set X;41 equal to X; inverted at v.

e If v is the central vertex of a propeller structure where the lowest point lies on the
z-axis, with probability % set X;y1 equal to X; after performing a propeller move
at v.

e In all other cases, set X;y1 = X;.

First note that M is aperiodic (X1 = X; with probability at least 3). Second, the
only time a transition is possible from a path hitting the boundary % times to one hitting
the boundary k+ 1 (respectively k— 1) times is when there is a peak (respectively valley)
at the beginning of the walk, and we select that vertex in step 1 of the chain. All other
moves of M preserve the weight of the walk.
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Having described the Markov chain, we use it to define a metric d on S. For any pair of
states X,Y € S, if P(X,Y) > 0 (so X and Y are nearest neighbors), we define d(X,Y")
to equal one-half of the area of the symmetric difference of the two staircase walks. If
P(X,Y) = 0 (i-e., moving from X to Y requires more than one move), first consider a
path of states X = wg, w1, ..., wr =Y between X and Y, where P(w;,w;+1) > 0 for each
i =20,...7 — 1; then define d(X,Y) =min E:;Ol d(w;,w;i+1) where the minimum is taken
over all paths joining X and Y. We call d the transition metric.

We apply the decomposition method of Section 3.2 to show rapid mixing of Mon S.
To do so we need to examine the projection of the partition {S;} and bound the spectral
gap for the restriction to each of the subsets Si,. We do this in the next sections following
a brief combinatorial excursion.

6.3.2. A combinatorial look at S For this subsection, we let S™ denote the set of
staircase walks with 2n edges and set s™ = |S™|. We use S to denote the subset of S™
containing those walks with k internal x-axis hits and let s} = |S;?|. These cardinalities
can be shown to be log—concave, i.e., the sequence of numbers sg,s?,sy,...,sp_; is a
log—concave sequence. This follows from two simple lemmas.

Lemma 6.2. Forn>3 and 1 <k<n-—2, s} = 32:11 + 8hp1-

Proof. We partition S;! into two sets A}, the subset of walks that begin with two edges
UD, and B}, the remaining walks in S}. We define two bijections. The first maps o € A}
to an element in S,?:ll by deleting the first two edges (the initial “bump” in the walk),
and sliding the remaining piece of o left two spaces. The second bijection is slightly more
complicated; for o € B}} let u denote the first point on the walk with y-coordinate equal
to one (this is the point with z-coordinate equal to one). Let v be the first point to the
right of u having y-coordinate one. Map o to a walk in S, ; by removing the first edge
of o, sliding the piece of o between u and v to the left and down by one unit, adding
an upwards edge at the end of this piece, and continuing the walk with the remainder of
o. See Figure 6 for an example of this mapping. It is easy to verify that each map is a
bijection. ]

//\\ N 2 VAN
y e NN

Figure 6. An example of the map from Bj to S}

Lemma 6.3. Forn>3 and1 <k<n-—2
L
Also, for n > 2,

sp=s8""1=s0"" 4. 4505 and
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sg = s1.

Proof. For the first part, we use Lemma 6.2 iteratively, so
n o __ n—1 n
Sk, = Sp_1 t Skt
— n—1 n—1 n _
- 5k—1+sk +5k+2_"'

For the second, there is a bijection between 8§ and S"~! by taking o € S, deleting the
initial and terminal edges of the walk, and shifting the walk down and to the left by one
to obtain a staircase walk joining (0,0) to (2n — 2,0).

The above statement indicates that s§ = C(n — 1), so to prove the final claim of the
lemma we want to show that s = C(n — 1) as well.

Recalling our notation that U represents an “up” edge and D represents a “down”
edge, an element of S7* can be written as a string Uw; DUws2D, where w, is a staircase
walk with 2j edges (j up edges and j down edges) and w, is a staircase walk with
2n — 2j — 4 edges for some j € {0,...,n — 2}. For each j, there are C(j) possibilities for
wy and C(n — j — 2) possibilities for w2. Hence, we have

=3 00—~ 2) = CO)Cn —2) + CWC(m ~8) + ...+ Cn — 2)C(0)

Checking the recurrence relation that defines the Catalan numbers (see [17]), we see this
sum equals C(n — 1), as desired. O

Theorem 6.4. For a fizedn > 3, si; is log—concave. In particular, for 1 <k <n —2,
sho1 sh1 < (s7)% (6.1)

Proof. We use induction on n.

For n = 3, by a simple enumeration of the possibilities, we find that s3 = s3 = 2 and
s3 =1, so that s - s3 < (s3)%.

Now assume for some n—1 that szfl is log—concave. Also, assume first that £ > 2. We
want to show that (6.1) holds. To do this, it suffices to show the inequality

o e 1 It o el SRR P (6.2)
since Lemma, 6.3 implies that (6.2) is equivalent to

SRy sy < SpTL sk (6.3)
By adding s} - si,; to both sides of (6.3), factoring, and applying Lemma 6.2, we get
(6.1).
To show (6.2), it suffices to show the set of inequalities
-1 n-1 -1 n-1
Sk_2 Sho14i S Sko1 Sk_o4i
for all 4 € [n—k—1]. These inequalities all hold by our induction hypothesis that s}~" is

log—concave. Adding them, and the extra term 32:11 . 323 to the right hand side, gives

us (6.2).



32 R. Martin and D. Randall

All that remains is the case s§ - s§ < (s7)? (when k = 1). We use that s} = s7 from
Lemma 6.3 and, from Lemma 6.2, we see s§ < sT'. Therefore, sf - s§ = s{ - s < s - sT.

O

6.3.3. Projection 1: S = US; We bound the mixing rate of the projection by appealing
to Theorem 6.4. The (disjoint) projection Pys of the partition S = UZ;&S,C is a random

walk by a “hiker” on {0,...,n — 1} with stationary probabilities p(k) = %, where
Z = Y175 N¥|Sk|, and Metropolis transitions with holding probability (at least) 1/2, i.e.,
Pag(k,j) = L min{1, 243} for j € {k—1,k+1}, Par(k, k) = 1= Pas(k—=1) = Ppr(k+1) > 4,
and Pu(k,j) =0 for J Q’ {k—1,k,k+1}. Path coupling yields the following result:

Lemma 6.5. The projection chain Py is rapidly mizing and

(a) Py (€) = O(n 2log(l))
(b) Gap(Pyr) > 25 for some constant c;.

Proof. The distance between two configurations is simply the distance between the two
hikers. Using path coupling we must consider a pair of states differing by unit distance
as in Figure 7, where the hiker is at position k in the upper configuration, oy, and k + 1
in the lower one os.

o1 o o o o o<+ —e—»o0 o o o o
b d

o2 o o o o o O<«—e—>0 o o o
k41

Figure 7. Typical situation for path coupling in Py

We couple the moves so that the hiker moves in only one of the configurations during
each time step of the coupled process, i.e., if we move the hiker left or right in o,
then we hold the hiker fixed in o3. The 1/2 holding probabilities allow us to couple
the moves in this fashion. Letting a, b, ¢, d denote the transition probabilities as labeled
in Figure 7, the expected change in distance after one move in the coupled chain is
(=1)-(a+b)+ (1) - (¢c+ d). To apply Theorem 2.2 we need to show this quantity is less
than or equal to zero, or, equivalently, show a + b > ¢+ d. Consider first the case when

A= g‘:kl With this value, we have that a = b= 1, ¢ = 2 min{1, %} < i and
d = 1min{1, W} <i.S0a+b>c+das desued
o< X< ‘ls’“l‘ we note that a = %’\“‘Z’“’j” > i’}g’:ﬁ‘ = d, where the inequality

follows using log—concavity of the sequence |Sy|. Since b =  min{1,

A\$k+1\} =1>cwe
again have a + b > ¢ + d. The last case where A > S (S o is similar, so that a + b >c+d
for all A > 0.

Appealing to Theorem 2.2, noting that the maximum distance between two hikers is
at most n and n = suﬁices in the hypothesis of the theorem (either a = 4 orb= 1 for
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any value of \) we have

2
rus () < 197 1Tlog(2)] = 0(n log(2)).

O

6.3.4. Restriction 1: Mixing on S; By the disjoint decomposition theorem, it suffices
to show that the restricted Markov chains (M restricted to Sg) are rapidly mixing in
order to conclude that M is mixing on the whole state space S. We show this in the next
sections.

6.3.5. Decomposition of S;; In this section we show that M\sk, the Markov chain
restricted to Sy, is rapidly mixing. To do this we apply the decomposition method a
second time. First we partition Sy and show that /T/l\s,c is mixing when restricted to each
of set of this partition. Following that, we show the projection is mixing using heat bath
dynamics and the comparison theorem, setting the stage for Corollary 3.3.

Let T denote a subset of Sy, where each walk touches the z-axis in the same k locations.
For example, (in the case that n > 6) we can consider the set of walk that hit the z-axis
at the points with z-coordinates 2,6, and 10 in the interior between the two endpoints.
There are (”;1) ways to specify the location of k internal hits, as the z-coordinate of
each hit must be an even number. We write Sy = Ur Sk, 1, where this union is over all
(";1) ways of specifying the hits on the z-axis.

6.3.6. Restriction 2: Mixing of S 7 Let /T/l\sk’T denote the restriction of M\sk to
the set 7. We have the following result, whose proof is a simple application of path
coupling;:

Lemma 6.6. Let T be o subset of S, as above, and let X,Y € T with d(X,Y) = 1.
After one step of the Markov chain, Mg, T, on the set T, we have E(Ad(X,Y)) < 0.

Proof. This proof is similar to Lemma 6.1, except that we need only consider the
situation when the paths differ by a square that is at least distance one from the z-axis
as in Figure 8. There are two good inversions at v that decrease the distance by one, and
at most two inversions increasing the distance by one. Each of these inversions happens
with equal probability, so E(Ad(X,Y)) < 0. [

w N
NN

Figure 8. Possible transitions inside Sy 1

Lemma 6.6 gives the first piece for the path coupling theorem. If d(X,Y) > 0, the

probability of the distance changing in one step of Mg, 7 is at least 4(n1—_k), since when
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we select a vertex on the walk we may avoid choosing one that lies on the z-axis, and its
immediate neighbor to the right, as these vertices will never move.
For pairs of walks in Sk, we have 0 < d(X,Y) < (n—k—1)? — (n—k-1). For X,Y € Si.r
there is a sequence of d(X,Y") inversions that will transform one walk into the other.
By a straightforward application of Theorem 2.2, we have

Lemma 6.7. The mizing time of M\sk,T satisfies

o (@) < [nTEDeok=20
et T €
= O’ log(>)).

6.3.7. Projection 2: S, = UrSi,r The projection Py of S, = UrSk,r can be viewed
as a particle process on [n — 1]. The particles represent the places that a staircase walk
hits the z-axis. The projection of the Markov chain can be viewed as nearest-neighbor
dynamics on the set of particles which moves one particle to the left or right in each step.
Interestingly, analyzing the mixing rate of this particle process cannot be done using
a simple path coupling argument, which seems to isolate the difficulty with using path
coupling on the original mountain/valley chain. However, we may use the analysis of
exclusion processes from Section 5 to bound the mixing time of this projection.

In the framework of Section 5, we have a linear arrangement of n — 1 sites, k of which
contain particles. (There we have n sites, but the result is the same.) Denoting the
collection of all (";1) arrangements by Q, an element o €  corresponds to the set
Sk,1(s) Of all staircase walks in S that have z-axis hits at the locations determined by
the particles in o. For example, if k¥ = 3 and ¢ is the configuration with particles at sites
2, 3, and 8, then S3 () consists of all walks in S3 that hit the z-axis at coordinates 4, 6,
and 16 (recalling that walks only hit the z-axis at even coordinates). The fixed particles
added to each configuration at sites 0 and n correspond to the fixed endpoints of each
staircase walk.

In this particle process the Catalan numbers are used to define weights on each configu-
ration to count the number of paths in each set of the partition of Si. That is, the station-
ary probability p(o) of a configuration o € Q, is proportional to C(z1)C(z2) - - - C(xk+1),
where z; is the number of empty sites between particles j and j +1 in 0. The transitions
of the projection are the single site dynamics described in Section 5.1 but, as men-
tioned, path coupling fails to directly show rapid mixing. However, taking f; = C(t),
we check that the Catalan numbers satisfy the two conditions of Theorem 5.5, namely
they are log—convex, and C%(f)l) < g:’% (for t > 1) where g; = 2221 Ci— 1O —1).
Using that C(t) = H%(it) and the recurrence relation that defines the Catalan num-

bers (see [17]), it is easy to show that they are log-convex and that g, = C(t). In fact

o) < g1 Cg(t)l) follows by the log—convexity of the Catalan numbers so The-

CG-1) = g .
orem 5.5 applies and the gap of the related heat bath chain P has a lower bound of
5, for some constant c. We then lower bound the gap of the projection P using the
comparison theorem.
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Lemma 6.8. The Markov chain Py on Q with nearest-neighbor dynamics is mizing
in polynomial time and Gap(Py,) > —é73, for some constant cy.

Proof. By part (a) of Theorem 2.3 it suffices to bound the parameter A for the chains
Py, and Py to find a lower bound on Gap(Py).

A transition of the heat bath chain can be modeled by a sequence of nearest-neighbor
transitions in an obvious manner, because a particle never moves over (or through) its
neighboring particle(s). Thus, in the notation of Theorem 2.3, for any pair z,y with
(z,y) € E(Py) we see that |y,,| <n—k, and for any (nearest-neighbor) transition (2, w)
of Py, we have that [I'(z,w)| <n — k.

We also note % < ¢ k(n — k)3/2 for some constant ¢’ > 0. Here we have used

the fact that C(t) is asymptotic to 4¢/(y/7 t3/?). The ratio % has the form

C(i — 1)C(m — i)
C@i—1C(m —j)

4k - (6.4)
for somei,j € {1,...m} since z,y, z,w agree everywhere except at the position of a single
particle. We maximize this expression by taking i = 1 and j = |%]. The asymptotic
expression for the Catalan numbers, noting that m < n — k for configurations having k
particles, gives the stated bound on the ratio in (6.4).

Finally, we use the trivial bound Py (z,y) < 27 (from the heat bath transition proba-
bilities in equation (5.1) since x # y). We conclude that

A < dk(n—k)>? - (n—k)-(n—k)?* = =00n*?).

1
4k
The factor (n — k)? comes from the number of possible (z,y
and final locations of the particle in question.
Combining this with the lower bound of 5 for the eigenvalue gap of the heat bath
chain we find that Gap(Py) > —&=. U

) pairs, based on the initial

We now have shown in Lemmas 6.7 and 6.8 that the restrictions defined by the de-
composition S = UrSk, 7, as well as the projection, are all mixing in polynomial time.
Appealing to Corollary 3.3 with 8 = &= and v = 1, we find:

Lemma 6.9. The collection of restricted Markov chains M\gk on the sets Sy, are rapidly
mizing and Gap(Ms,) > == for all k € {0,...,n —1}.

]

Proof. When k£ = 0, the result of Lemma 6.7 directly applies to the mixing time of /(4\50
(as there is only one set in the “partition” of Sp). This, together with Theorem 2.1(b),
shows that
— r
Gap(MSO) > oy
for some constant r > 0.
Similarly, for k¥ > 1, Lemma, 6.7 also gives the same bound for the spectral gap of the
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restrictions, namely

— r

Gap(MSk,T) > ﬁ
for each set T in the partition of S;. Lemma 6.8 bounds the gap of the projection of
the partition of Sk, SO using the disjoint decomposition method (Corollary 3.3), recalling

that we take 8 = g~ and v = 7, we find

1 1 Co r c3
GGP(M&C) = 3n 2'2'W'$:W'
Here we have used the fact that the maximum degree of any of the projection chains P
is at least 2 (and this is achieved when k = 1). U

6.3.8. Mixing for S: The final word A polynomial bound on the mixing time for
M now follows from all of our previous work. By Lemma 6.9 the restrictions to each set
Sy are all rapidly mixing, and the mixing time of the projection followed from the log—
concavity of the sets Sy (Lemma 6.5). Using Corollary 3.3, we can bound the mixing time
of the chain M on all of S. Note that in this case we have B = TOFD /\ =y and v = 5=. Also,

since the projection chain is a simple random walk on {0, ...,n—1} (recall Sectlon 6.3.3),

we have A = 2 in this application of Corollary 3.3.

Theorem 6.10. The Markov chain M on S is rapidly mizing and Gap(ﬂ) > merE-

Finally, a simple application of the comparison theorem establishes a polynomial bound
for the mixing time of the original mountain/valley Markov chain M on S.

Theorem 6.11. The Markov chain M on S is rapidly mixing and

(a) GGP(M)_W
(b) Ta(e)=0(Nn*/?log(2)).

Proof. The only interesting case to consider is a propeller move in M. This move can
be broken into a pair of inversions in M. The propeller move occurs with probability
ﬁ, while each inversion happens with probability @n )2’?1 T Or (2n)21(1 rvE Since we
consider the case with A > 1 we have A = 2(1 + A). From Theorem 2.3(a)
Gap(M) T 39,2 Using Theorem 2.1(a), observing that m, = min,es7(x) > 7 )
log(-- =) < nlog(% 2) | we derive the stated bound on 74(e). D

we have

7. Conclusions

As probably demonstrated by this last example on staircase walks, indirect methods such
as decomposition and comparison should be used sparingly or the derived bounds on the
mixing time can be incredibly weak. We feel it is necessary to emphasize that the utility of
the decomposition method is primarily to establish whether a Markov chain converges in
polynomial time. Moreover, analysis from the decomposition method can provide insights
into why direct methods appear to fail, such as was the case with the particle processes
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arising from the second projection. In fact, isolating such underlying structures can be
instrumental for uncovering alternative direct proofs that would provide more reasonable
bounds on the mixing time.

The major benefit of the decomposition method is for initially assessing the mixing rate
of a chain by offering a top-down approach for systematically simplifying the chain into
more manageable pieces. First, simpler arguments can often be used to bound the mixing
rate of the pieces. Second, a hybrid approach is possible whereby the restrictions, for
example, are analyzed through path coupling and the projection is analyzed by bounding
some isoperimetric constant for the chain.

We leave as open problems finding rapidly mixing Markov chains for sampling circuits
on other Cayley graphs. It would also be interesting to study whether decomposition can
be used to show that chains are mixing on connected subsets of Cayley graphs, such as
a subregion of Z%, since here alternative recursive methods would no longer be possible.
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