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Abstract

In this paper we develop tools for analyzing the rate at which a re-

versible Markov chain converges to stationarity. Our techniques are useful

when the Markov chain can be decomposed into pieces which are them-

selves easier to analyze. The main theorems relate the spectral gap of

the original Markov chains to the spectral gap of the pieces. In the first

case the pieces are restrictions of the Markov chain to subsets of the state

space; the second case treats a Metropolis-Hastings chain whose equi-

librium distribution is a weighted average of equilibrium distributions of

other Metropolis-Hastings chains on the same state space.

1 Introduction and Main Results

Suppose you are studying a reversible Markov chain on a state space Ω, and you
want to estimate its spectral gap (loosely, the rate it which the chain converges
to equilibrium). The overall chain may be hard to analyze, but it may be made
up of “pieces” that are easier to analyze. If the chain moves from piece to piece
efficiently, and if each piece equilibriates rapidly, then one would expect the
entire chain to equilibriate rapidly. This is the spirit of our main results.

Let Ω be the state space of our Markov chain. We want to consider discrete
and general state spaces simultaneously. For the reader who is primarily inter-
ested in the discrete case, we shall try to limit our measure-theoretic notation.
In particular, we shall say things like “B is a subset of Ω” when we really mean
“B is a measurable subset of Ω.”

To discuss probability densities on our state space, we need a reference mea-
sure λ on Ω. (For example, if Ω is discrete, then λ can be counting measure,
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while if Ω = Rn, then λ can be Lebesgue measure.) If ρ is a probability density
function (with respect to λ) on Ω, then the associated probability of a set B ⊂ Ω
is denoted

ρ[B] :=

∫

B

ρ(x)λ(dx) .

(If λ is counting measure, then this says ρ[B] :=
∑

x∈B ρ(x).)
Let P (x, dy) be the transition probability kernel of a Markov chain on Ω that

is reversible with respect to a probability density π. (In many examples this
kernel can be written in the form p(x, y)λ(dy), where p is a transition density.)

To set up the framework for our first main theorem, we first describe the
“pieces” of the chain P . Let A1, . . . , Am be subsets of Ω such that ∪Ai = Ω.
(In general, these subsets will not be pairwise disjoint.) For each i = 1, . . . ,m,
we define a new Markov chain on Ai by rejecting any transition of P that would
leave Ai. The transition kernel P[Ai] of the new chain is given by

P[Ai](x,B) = P (x,B) + 1{x∈B}P (x,Aci ) for x ∈ Ai, B ⊂ Ai. (1)

It is easy to see that P[Ai] is reversible (on the state space Ai) with respect to
the measure whose density is proportional to the restriction of π to Ai.

Next define

Z :=

m
∑

i=1

π[Ai], (2)

and define the “maximum overlap” Θ of the covering {A1, . . . , Am} by

Θ := max
x∈Ω

|{i : x ∈ Ai}| (3)

(where | · | denotes cardinality). Then we see that

1 ≤ Z ≤ Θ ≤ m. (4)

Next, we introduce a crude model of the movement of the original chain
among the “pieces”. We consider a state space {a1, . . . , am} of m points rep-
resenting our m pieces. We define the following transition probabilities for a
discrete Markov chain on this finite state space:

PH(ai, aj) :=
π[Ai ∩ Aj ]

Θπ[Ai]
for i 6= j (5)

and PH (ai, ai) = 1 −
∑

j 6=i PH(ai, aj).
To describe the rate of convergence to equilibrium, we shall use the spec-

tral gap. Suppose R is a Markov chain that is reversible with respect to the
probability measure ρ. Let Eρ denote the expectation with respect to ρ:

Eρf =

∫

f(y) ρ(dy) . (6)
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The spectral gap of R, Gap(R), is defined by

Gap(R) := inf
f

∫ ∫

|f(x) − f(y)|2 ρ(dx)R(x, dy)
∫ ∫

|f(x) − f(y)|2 ρ(dx)ρ(dy)
(7)

where the inf is over all non-constant functions f (i.e. functions that are not
constant almost surely with respect to ρ) such that Eρ(f

2) < ∞. Notice the
denominator equals twice the variance of f(X), where X is a random variable
whose distribution is ρ.

The spectral gap is important because it can be viewed as determining the
speed of convergence of the Markov chain to equilibrium. Very roughly, a chain is
close to equilibrium after a few multiples of 1/Gap(R) iterations. Alternatively,
once a chain is in equilibrium, k/Gap(R) consecutive observations of the chain
will be “statistically equivalent” to k independent samples from the equilibrium
distribution of the chain. (See for example Sokal and Thomas (1989), Diaconis
and Stroock (1991), Welsh (1993, Section 8.4), or Madras and Slade (1993,
Section 9.2.3).)

To make the preceding intuitive descriptions more precise, we review the
following well-known properties, although they will not be required for the rest
of the paper. For measures µ1 and µ2 on the state space Ω, let ||µ1 − µ2||2 be
the norm defined by

||µ1 − µ2||
2
2 =

∫

Ω

|f1(x) − f2(x)|
2 ρ(dx)

where fi is the density of µi with respect to ρ (i.e., fi is the Radon-Nikodym
derivative dµi/dρ). For a probability measure µ and nonnegative integer n,
let µRn be the distribution of Xn, where X0, X1, . . . is a Markov chain with
transition kernel R and the distribution of the initial state X0 is µ:

(µRn)(A) =

∫

Ω

Rn(x,A)µ(dx) (A ⊂ Ω).

Let Γ = 1 − Gap(R). Then for every nonnegative integer n,

||µRn − ρ||2 ≤ Γn||µ− ρ||2 .

This says that the sequence of measures µRn converges exponentially rapidly to
the equilibrium measure ρ. Moreover, Γn ≤ exp(−nGap(R)), with approximate
equality in the usual case that Gap(R) is small. These assertions formalize the
first assertion in the preceding paragraph. We note that convergence in the ||·||2
metric implies convergence at the same rate in the “total variation” norm

||µ1 − µ2||Total Variation = sup
A⊂Ω

|µ1(A) − µ2(A)|
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(Roberts and Rosenthal (1997), Roberts and Tweedie (2000)). The second
assertion of the preceding paragraph corresponds to the fact that for every
function f such that Eρ(f

2) <∞, we have

|Cov(f(X ′
n), f(X ′

0))| ≤ ΓnVarf(X ′
0)),

where X ′
0, X

′
1, . . . is the Markov chain given by R and started in equilibrium

(i.e. X ′
0 has distribution ρ). See Section 9.2.3 of Madras and Slade (1993) for

further discussion of this correspondence.
In this paper, we shall use the size of the spectral gap as our sole measure of

speed of convergence to equilibrium. Our concern is not so much with proving
whether or not a spectral gap is nonzero (i.e.. whether or not a chain converges
exponentially or not). Indeed, in many interesting discrete problems the Markov
chains are finite and then positivity of the spectral gap follows immediately
from irreducibility. In such situations one is more concerned with estimating
the size of the spectral gap. In a typical discrete problem, the size of the state
space Ω is exponentially large in the size of the problem description (e.g., the
state space may be a class of subsets of a given set), and the goal would be to
choose an element of the state space at random according to a given distribution
ρ. A Markov chain would be constructed whose equilibrium distribution is ρ,
knowing that running the chain for “long enough” would result in a state that
was “almost” distributed as ρ. The spectral gap determines how long “long
enough” would be. If the spectral gap is exponentially small in the size of
the problem, then we would have to run the chain for an exponentially long
time; such a chain is said to be “slowly mixing”. If the Markov chain approach
is to be feasible, then we generally would like a spectral gap whose size is
polynomial in the size of the problem. Such a chain is said to be “rapidly
mixing”. Sinclair (1993) gives a more careful description of these terms but we
shall be content with less formality as our main results will be stated without
using this terminology.

Our first main theorem shows that if our crude model PH approaches equilib-
rium rapidly, and if the restrictions of P to each piece Ai approach equilibrium
rapidly, then the original chain approaches equilibrium rapidly.

Theorem 1.1 (State Decomposition Theorem) In the preceding framework,
as given by Equations (1)–(5), we have

Gap(P ) ≥
1

Θ2
Gap(PH)

(

min
i=1,...,m

Gap(P[Ai])

)

. (8)

This theorem is useful when a Markov chain appears too difficult to analyze
directly, but there is a natural decomposition of the state space into pieces
for which the analysis is more tractable. Moreover, the decomposition allows a
hybrid approach to showing rapid convergence of a Markov chain, using different
techniques to bound the mixing rates of different pieces.
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Theorem 1.1 decomposes the state space of the Markov chain, while our
second result decomposes its equilibrium distribution. It applies specifically to
reversible Metropolis-Hastings chains, which we now define. Let R(x, dy) be
the transition kernel of a Markov chain on Ω that is reversible with respect to
a probability density ρ. Let ζ be another probability density whose support is
contained in the support of ρ. Then the “Metropolis-Hastings chain for R with
respect to ζ” is the new Markov chain whose transition kernel R[ζ] is defined by

R[ζ](x, dy) = R(x, dy) min

{

1,
ζ(y)ρ(x)

ζ(x)ρ(y)

}

if y 6= x

R[ζ](x, {x}) = 1 −

∫

Ω\{x}

R[ζ](x, dy) (9)

(If the denominator ζ(x)ρ(y) is 0, then we take R[ζ](x, dy) = 0.) It is easy to
check that R[ζ] is reversible with respect to ζ. The kernel R is often called the
“proposal kernel”. The idea is that R[ζ] works by proposing a move and then
computing a ratio that determines the probability with which the proposed move
is “accepted”. It is this acceptance scheme that ensures that ζ is the equilibrium
distribution. We remark that the Metropolis-Hastings chain is usually defined in
the more general case that does not even require R to be reversible (see Section
3), but the reversible case reduces to Equation (9).

For our second theorem, suppose that the chain of interest, P , is a Metropolis-
Hastings chain for a proposal chain R with respect to a desired equilibrium
density ζ (i.e. P = R[ζ]). Also suppose that ζ can be expressed as a convex
combination of a small number of densities φ0, . . . , φD (i.e., ζ is a “mixture den-
sity”). Think of running a Metropolis-Hastings chain for each φj , using the same
proposal kernel R as in the original P . (These chains R[φj ] are the “pieces” of
the original chain.) If the φj ’s have some “overlap” in a sense that we describe
below, then we can bound the gap of the original chain in terms of the gaps of
the Metropolis-Hastings chains for the φj ’s.

Roughly speaking, a large overlap in the following theorem corresponds to
the rapid mixing of PH in the preceding theorem. For example, suppose that
φi has substantial overlap with φi+1 and with φi−1. If each “piece” is rapidly
mixing, then a chain which starts in the ith piece will soon move into a region
where φi and φi+1 (or φi−1) overlap. In this way the process can move from
one piece to another reasonably efficiently.

Theorem 1.2 (Density Decomposition Theorem) Let φ0, . . . , φD be prob-
ability densities on Ω (with respect to a common reference measure λ), and let
a0, . . . , aD be positive numbers that add up to 1. Define the mixture density

φmix :=

D
∑

j=0

ajφj . (10)
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Let R(x, dy) be a Markov chain that is reversible with respect to a probability
density ρ(x) on Ω. Let Gapj (respectively, Gapmix) be the spectral gap of the

Metropolis-Hastings chain R[φj ] (respectively, R[φmix]). Finally, assume that
neighboring φj ’s have some “overlap”: that is, assume

∫

min{φj(x), φj+1(x)}λ(dx) ≥ δ (j = 0, . . . , D − 1) (11)

for some δ > 0. Then

Gapmix ≥
δ

2D
min

j=0,...,D
ajGapj . (12)

The paper is organized as follows. The rest of Section 1 describes applications
of our main results. Theorem 1.1 is closely related to an unpublished result due
to Caracciolo, Pelissetto and Sokal. In their framework, the decomposition of
the state space arises in the context of simulated tempering. We give a brief
introduction to this sampling method and state their result (Theorem 2.1) in
section 2. In section 3 we introduce the method of umbrella sampling and state
a result due to Madras and Piccioni (1999). In section 4 we prove Theorem 1.1
(the State Decomposition Theorem) using the results from the previous two
sections. Theorem 1.2 is proven in section 5 and is independent of the rest of
the paper. Finally, Appendices A and B prove Theorem 2.1 and Proposition 3.2
respectively.

1.1 Sampling independent sets

As a simple application of Theorem 1.1, we will consider a Markov chain for
sampling independent sets. Let G be a graph with vertex set V and edge set
E. An independent set is a subset I of V with the property that no two vertices
of I are joined by an edge of G. Let Ω be the collection of all independent
sets, and let Ωi be the collection of all independent sets of cardinality i (for
i = 0, 1, . . . , |V |). Finally, let γ be a positive real number.

The hard core model with parameter γ is the probability distribution hγ on
the collection of all independent sets defined by

hγ(I) =
γ|I|

Zγ
(I ∈ Ω)

where Zγ is the normalizing constant
∑

J∈Ω γ
|J|. This is a model of identical

particles with short-range mutual repulsion: The particles can be located at the
vertices of G, but a particle at a given vertex forbids any other particle at any
adjacent vertex. The parameter γ controls the number of particles; for example,
it is not hard to see that the expected size of I is an increasing function of γ.

Consider the following Markov chain on Ω, which produces a sequence I0, I1, . . .
of independent sets by randomly inserting or deleting one vertex at a time, or
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exchanging two vertices by inserting one and deleting the other in a single step.
To formalize the transitions P of this new chain, we let V ∗ = V ∪ {v∗} be the
original vertex set augmented with one auxiliary vertex; this vertex will enable
us to encode which type of move (i.e., insertion, deletion or exchange) we are
attempting. Let It ⊂ V be the independent set at time t. Pick two vertices
(ut, vt) uniformly at random from V ∗ × V ∗. If vt = v∗, we attempt to delete
ut: i.e., if ut ∈ It, then set It+1 equal to It \ {ut} with probability min{1, γ−1}.
If ut = v∗, we attempt to insert vt: i.e., if vt ∈ V \ It, and if vt is not adjacent
to any vertex of It, then set It+1 equal to It ∪ {vt} with probability min{1, γ}.
Finally, if ut, vt 6= v∗, we attempt to exchange ut and vt: i.e., if ut ∈ It and vt
is not adjacent to any vertex in I \ {ut}, then set It+1 equal to (I \ {ut})∪ {vt}
with probability 1. With all remaining probability, set It+1 equal to It. It is
not hard to see that this Markov chain is irreducible, aperiodic, and reversible
with respect to hγ .

The work of Luby and Vigoda (1997, 1999) implies that this chain is rapidly
mixing if γ ≤ 2/(∆ − 2), where ∆ is the maximum number of neighbors of
any vertex in G. It has been shown by Borgs et. al. (1999) that this chain is
slowly mixing on some graphs if γ is sufficiently large. The problem is that large
values of γ cause the particles to get too crowded, which makes it hard for the
configurations to change much. We shall see that if we limit the total number
of particles to a moderate value n∗ (defined below), then this crowding does not
occur even if γ is very large, and the modified chain mixes rapidly.

Let n∗ = b|V |/2(∆+1)c, and let Ω∗ be the collection of all independent sets
with at most n∗ vertices:

Ω∗ =

n∗

⋃

i=0

Ωi .

Let P ∗ be the restriction of the above Markov chain P to Ω∗ (i.e. if |It| = n∗

and ut = v∗, then It+1 = It with probability one). Then P ∗ is irreducible on
Ω∗, aperiodic, and reversible with respect to the restriction of hγ to Ω∗. We
shall show that P ∗ is rapidly mixing for every γ ≥ 1/(∆ + 1). The results of
Luby and Vigoda (1999) can be extended to show that P ∗ is also rapidly mixing
for γ ≤ 2/(∆− 2), so we can conclude that this Markov chain converges quickly
for all values of γ > 0.

Our strategy for bounding the convergence rate of the Markov chain P ∗ on
independent sets can can be described as follows. Let Ai = Ωi ∪Ωi+1, whereby
Ω∗ = ∪ Ai is a decomposition of the state space into overlapping pieces, as
required for theorem 1.1. We consider in turn the restrictions P ∗

[Ai]
to Ai, for

all i, as well as the projection P ∗
H . A lower bound on the spectral gap for each

of these Markov chains will establish a bound for the original Markov chain P ∗,
appealing to theorem 1.1.

We first establish a bound on the mixing time of each of the restricted
Markov chains P ∗

[Ai]
. This Markov chain performs exchanges, additions, and

deletions, but always stays in the set of independent sets of size i or i+1 on the
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input graph G = (V,E). Consider a new graph G′ = (V ′, E) which augments
the vertex set with an isolated vertex x. The independent sets of size i + 1 in
G′ correspond bijectively to the set of independent sets of size i or i+ 1 in G; if
x is in the independent set, then its removal defines an independent set of size
i in G, and if x is not in the independent set, removing x from the graph leaves
an independent set of size i + 1. Furthermore, taking this vertex x to be the
auxiliary vertex in the description of the Markov chain, the transitions of P ∗

[Ai]

can all be described as exchanges in G′ which keep the number of vertices in
the independent set fixed at i+1. A variant of this new Markov chain based on
exchanges was analyzed by Bubley and Dyer (1997), who show that it is rapidly
mixing when i+1 ≤ n∗. More precisely, letting n = |V |, we derive the following
bound on the spectral gap.

Theorem 1.3 Let Ai = Ωi ∪ Ωi+1, for 0 ≤ i ≤ n∗ − 1, and let P ∗
[Ai]

be the
restriction of the Markov chain P ∗ to this set. Then

1/Gap(P ∗
[Ai]

) ≤ cn2dln(n)emax(γ2, γ−2),

for some constant c.

Next, we consider the chain P ∗
H on {a0, . . . , an∗−1}. Clearly Θ = 2. Observe

that P ∗
H(ai, aj) = 0 whenever |i− j| > 1. We also have

P ∗
H(ai, ai+1) =

hγ(Ωi+1)

2(hγ(Ωi) + hγ(Ωi+1))
(0 ≤ i < n∗ − 1),

P ∗
H (ai, ai−1) =

hγ(Ωi)

2(hγ(Ωi) + hγ(Ωi+1))
(0 < i ≤ n∗ − 1).

Notice in particular that P ∗
H(ai, ai) = 1/2 for i = 1, . . . , n∗ − 2. We shall

show below that P ∗
H (ai, ai+1) ≥ P ∗

H(ai, ai−1) for each i = 1, . . . , n∗ − 2 and
P ∗
H(a0, a1) ≥ 1/4 (when γ ≥ 1/(∆ + 1)). Thus P ∗

H is essentially a nearest-
neighbor random walk on {0, 1, . . . , n∗ − 1} with nonnegative drift; hence using
the Optional Stopping Theorem for submartingales (see, e.g., Luby, Randall
and Sinclair (1995)), it is rapidly mixing.

Theorem 1.4 Let γ ≥ 1/(∆+1). Then the Markov chain P ∗
H is rapidly mixing

with
1/Gap(P ∗

H) ≤ c′n2,

for some constant c′.

Theorems 1.3 and 1.4 together with theorem 1.1 (the State Decomposition
Theorem) allow us to conclude that the original chain P ∗ on Ω∗ is rapidly
mixing, as claimed.
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Theorem 1.5 The Markov chain P ∗ on Ω∗, the set of independent sets of size
at most n/2(∆ + 1), is rapidly mixing for all values of γ ≥ 1/(∆ + 1), with

1/Gap(P ∗) ≤ c′′n4dln(n)emax(γ2, γ−2),

for some constant c′′.

It only remains to show that P ∗
H(ai, ai+1) ≥ P ∗

H(ai, ai−1) for each i =
1, . . . , n∗−2 and that P ∗

H (a0, a1) ≥ 1/4 when γ ≥ 1/(∆+1). Fix such a γ. Since
hγ(Ωj) = γj |Ωj |, it suffices to show that γ|Ωi+1| ≥ |Ωi| for i = 0, . . . , n∗ − 1.
Fix such an i and let N (i) be the number of pairs of independent sets (I, J)
such that I ∈ Ωi, J ∈ Ωi+1, and I ⊂ J . For each J ∈ Ωi+1, there are exactly
i+ 1 vertices of J that can be deleted to give a suitable I ; therefore

N (i) = |Ωi+1|(i+ 1).

Conversely, for each I ∈ Ωi, there are at least |V | − i(∆ + 1) vertices that are
not adjacent to (or equal to) a vertex of I ; adding any such vertex to I gives a
suitable J . Therefore

N (i) ≥ |Ωi|
(

|V | − i(∆ + 1)
)

.

Combining the above two inequalities gives

|Ωi| ≤ |Ωi+1|
(i+ 1)

|V | − i(∆ + 1)

≤ |Ωi+1|
n∗

|V | − n∗(∆ + 1)

≤ |Ωi+1|
|V |/2(∆ + 1)

|V | − |V |/2

= |Ωi+1|
1

∆ + 1
≤ |Ωi+1|γ,

which was what we wanted to prove.
A simpler Markov chain which has also been studied in the context of in-

dependent sets is based on just insertions and deletions (without allowing ex-
changes). The analysis of P ∗ above can be used to infer that this simpler Markov
chain is also rapidly mixing on Ω∗ by using the comparison method of Diaconis
and Saloff-Coste (1993). We refer the reader to Randall and Tetali (1998) for
a description of how the comparison method can be applied in the context of
independent sets.

1.2 Other applications

For another example, imagine a Markov chain defined on a state space Ω = ∪Ωi,
where the pieces Ωi form a partition. Moreover, assume the sizes |Ωi| are uni-
modal as a function of i. (For example, let Ω be the set of matchings of some
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underlying graph G, and Ωi is the set of matchings of size i. A simple, ergodic
Markov chain on the state space of matchings can be defined by adding, remov-
ing or exchanging edges in a single transition; see Broder (1986) and Jerrum
and Sinclair (1989) for details. In this example |Ωi| is always a logconcave,
and therefore unimodal, function of i.) Defining Ai = Ωi ∪ Ωi+1, the Markov
chain PH(ai, aj) is a one dimensional random walk with bias towards the mode.
Therefore Theorem 1.1 provides a bound on the spectral gap of the Markov
chain in terms of the restricted Markov chains P[Ai]. (In the case of matchings,
Jerrum and Sinclair’s method directly bounds the the spectral gap of the Markov
chain, and hence this decomposition is not necessary for that application.)

More complicated applications have been worked out, and we shall give only
brief descriptions of them here. Madras and Randall (1996) gave a different
proof of a bound similar to Theorem 1.1, but that paper worked with conduc-
tances instead of spectral gaps, and the multiplicative factor in their inequality
was not as good as the Θ−2 that appears in the present Theorem 1.1. (That pa-
per then applied the result to a Markov chain for three-colorings on the square
lattice, but the application contained an error; to our knowledge designing an
efficient sampling algorithm for three-colorings remains open.) Madras and Pic-
cioni (1999) used Theorem 1.2 to analyze an implementation of the method
of “simulated tempering” to a special “witch’s hat” distribution, as originally
studied empirically in Geyer and Thompson (1995). Zheng (1999) uses both
of our main results to study the Metropolis-coupled Markov chain method of
Geyer (1991) (see Orlandini (1998) for interesting recent applications of this
method). Cooper et. al. (2000) have applied our results to show that the Wolff
chain for the Potts model is rapidly mixing on an n× O(1) × ...× O(1) grid.

2 Simulated Tempering

The method of Simulated Tempering was proposed independently by Marinari
and Parisi (1992) in the physics literature and Geyer and Thompson (1995) in
the statistics literature (see Madras (1998) for a review). To explain the idea,
consider the following motivating example from statistical physics. Let G be a
graph, and let Ω be the set of all functions from the vertex set ofG into {−1,+1}.
The Ising model on G is a certain family of probability distributions on Ω
parametrized by a real number β which determines the strength of interactions
between neighboring vertices. (There is often a second parameter, the “external
field”, but we shall fix it equal to 0.) When β = 0, the distribution is simply the
uniform distribution on Ω. When β is large, then the distribution is “bimodal”:
with high probability, we see either lots of +1’s and few −1’s, or vice versa. How
does one sample from this model by Markov chains? The simplest way is by the
single-spin Metropolis algorithm (Section 3): pick a vertex at random and try
to change the sign at that vertex. Accept the change with a certain probability
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(which is easy to compute). When β equals 0, the change is always accepted,
and the Markov chain is rapidly mixing. When β is close to 0, the chain is also
rapidly mixing. However, when β is large, the chain takes exponentially long
to get from one “mode” to the other, and it mixes exponentially slowly (see for
example Madras and Piccioni (1999)). To set the stage for simulated tempering,
let φ1 be the distribution with β = 0, φm the distribution for a given large β,
and φi (i = 2, . . . ,m− 1) be distributions at equally spaced intermediate values
of β. For each i, the Ti that we shall introduce below will be the Metropolis
chain for the corresponding φi. The description for this example will continue
below after the general framework is developed.

In the general Simulated Tempering framework, we have a state space Ω with
m different probability densities φ1(x), . . . , φm(x) (with respect to a common
reference measure λ(dx)). For each i, let Ti(x, dy) be a transition kernel that is
reversible with respect to φi.

Next we define the “augmented” state space S by including the “labels” 1
through m:

S = Ω × {1, . . . ,m}. (13)

For each i = 1, . . . ,m, define

Si = Ω × {i} = {(x, i) : x ∈ Ω} . (14)

Thus S1, . . . ,Sm forms a partition of S. Define the transition probability kernel
P on S as follows:

P((x, i), (dy, j)) =

{

0 if j 6= i
Ti(x, dy) if j = i

(15)

Notice that this kernel does not permit transitions from one Si to another.
Next, suppose that we associate a positive number ci with each φi, such that

∑m
i=1 ci = 1. These “weights” permit us to define the transition kernel Q on S:

Q((x, i), (dy, j)) = δx(dy)
cjφj(x)

∑m
l=1 clφl(x)

(16)

Thus, Q keeps x the same, but chooses the label according to the weighted
probabilities of x under the different densities. Observe that Q2 = Q.

Define the probability measure ψ on S by

ψ(dx, i) = ciφi(x)λ(dx) ((x, i) ∈ S). (17)

One can check that both Q and P are reversible with respect to ψ. Notice that
the marginal probability of the “label” i is ci, and the marginal distribution of
the “configuration” x is

φ̄(x) :=
m
∑

l=1

clφl(x) (18)
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Therefore we can view Q as replacing the current label by sampling from the
conditional distribution of the label given the configuration x.

The simulated tempering method is the repeated alternation of Q with P .
So we could describe it as the Markov chain corresponding to QP or to PQ,
or to QPQ (recall that Q2 = Q). We shall use the version QPQ, since it is
reversible with respect to ψ (it inherits this property from Q and P).

(To understand what is happening, we shall refer again to the Ising model.
Applying P causes us to update the configuration from Ω by the Metropolis
chain corresponding to the current value of the label i. Then we apply Q,
which permits the current value of the label to change. Then we apply P again,
updating the configuration according to the Metropolis chain corresponding to
the new value of the label. And so on. The intuition is the following: The label
will do a “random walk” on {1, . . . ,m}. When the label equals m, we observe
configurations that have been sampled from φm, which is what we want. When
the label is 1, or close to 1, the chain is mixing rapidly, so that the next time
the label gets back up to m we can expect to see a configuration that is pretty
different from the last time that the label equaled m. We can make sure that the
chain spends enough time with the label taking both extreme values; indeed,
in the long run, the fraction of time spent with the label equal to i is ci. If
this intuition is correct, then the overall chain should be rapidly mixing. This
seems to work well in practice, although there are some substantial issues of
implementation that arise. The rapid mixing of this procedure has been proven
for the Ising model on the complete graph, but not on the more interesting
graphs corresponding to Euclidean lattices. See Madras and Piccioni (1999) for
more details.)

Finally, we define the “aggregated transition matrix” Q (an analogue of PH
defined in the Introduction):

Q(i, j) =
1

ci

∫

Ω

ciφi(x)cjφj(x)
∑m

l=1 clφl(x)
λ(dx)

= cj

∫

Ω

φi(x)φj(x)

φ̄(x)
λ(dx) (i, j = 1, . . . ,m). (19)

The next theorem says roughly that simulated tempering cannot be any
slower than the combination of the random walk on labels and the individual
chains Ti within each piece. (At first sight, this is not quite what we want to
know: In the Ising model example, Tm is very slow, but we hope that simulated
tempering is efficient. So in such cases, one would want to find different ways
to decompose the state space into pieces that are rapidly mixing. But this is
not easy to do.)

Theorem 2.1 (Caracciolo–Pelissetto–Sokal) In the framework of simulated
tempering described above, we have

Gap(QPQ) ≥ Gap(Q) min
i=1,...,m

Gap(Ti). (20)
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This theorem is from a 1992 unpublished manuscript by S. Caracciolo, A. Pelis-
setto, and A.D. Sokal. Since these three authors do not intend to publish their
manuscript in the foreseeable future, they have given us permission to present
their proof here. It appears in Appendix A.

3 Metropolis Algorithm and Umbrella Sampling

In this section we discuss two more Markov chains that are useful in Monte Carlo
simulations, and we describe some needed results from Madras and Piccioni
(1999).

First we mention the Metropolis-Hastings method. Let R(x, dy) be the tran-
sition kernel of a Markov chain on Ω. Let ζ be a probability measure on Ω. Then
the “Metropolis-Hastings chain for R with respect to ζ” is the new Markov chain
whose transition kernel R[ζ] is formally defined by

R[ζ](x, dy) = R(x, dy) min

{

1,
ζ(dy)R(y, dx)

ζ(dx)R(x, dy)

}

if y 6= x

R[ζ](x, {x}) = 1 −

∫

Ω\{x}

R[ζ](x, dy) . (21)

This is a formal definition, and we refer the reader to Tierney (1998) for a
discussion of the general situation. Fortunately, in many common situations it
is easy to interpret Equation (21). For example suppose that the measure ζ has
a density, which we shall also call ζ, with respect to some reference measure λ
(i.e. ζ(dx) = ζ(x)λ(dx)). Then:

• If R has a transition density r with respect to λ, so that R(x, dy) =
r(x, y)λ(dy), then we have

R[ζ](x, dy) = R(x, dy) min

{

1,
ζ(y)r(y, x)

ζ(x)r(x, y)

}

if y 6= x;

• If R is reversible with respect to the density ρ(x)λ(dx), then we obtain
Equation (9).

In both of these cases it is easy to check that R[ζ] is reversible with respect
to ζ. This paper only considers reversible chains, so we just need the second
case, Equation (9). The terminology “Metropolis chain” is frequently used in
the second case when ρ is constant.

The following lemma is a consequence of the definition of the spectral gap
(7). The proof is essentially the same as was given in Madras and Piccioni
(1999) for the case of Metropolis chains.
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Lemma 3.1 Let r1 and r2 be two densities with respect to λ on Ω. Suppose
that R(x, dy) is reversible with respect to the density ρ. Also suppose that there
are constants a and b such that

a ≤
r1(x)

r2(x)
≤ b (22)

for all x ∈ Ω such that r1 and r2 do not vanish simultaneously. Then the spectral
gaps of the associated Metropolis-Hastings chains satisfy

a

b
Gap(R[r2]) ≤ Gap(R[r1]) ≤

b

a
Gap(R[r2]) . (23)

Next we discuss the method known as Umbrella Sampling. Consider a prob-
ability density κ on Ω which is written as a convex combination of m other
densities: that is, there are m probability densities φ1, . . . , φm and m positive
constants c1, . . . , cm such that

∑m
i=1 ci = 1 and

κ(x) =
m
∑

i=1

ciφi(x) . (24)

Now consider a transition kernel R(x, dy) of a Markov chain on Ω that is re-
versible with respect to a probability density ρ. For each i = 1, . . . ,m, define
the transition kernel Ti(x, dy) = R[φi], the Metropolis-Hastings chain for R with
respect to φi.

In physical applications, the φi’s are often natural distributions from which
we want to sample, and the mixture κ is an artificial “umbrella” distribution.
Using the Metropolis-Hastings chain R[κ] to sample from κ (together with the
classical Monte Carlo technique of importance sampling) allows one to sample
from all φi’s in a single simulation run. Torrie and Valleau (1977) first realized
the power of this approach for physical systems, and it was they who introduced
the term “umbrella sampling”. See Madras and Piccioni (1999) for further
discussion. Moreover, this umbrella sampling can be far more efficient than
running the m chains R[φi] separately. It also turns out that umbrella sampling
is at least as good as simulated tempering, in the following sense.

Proposition 3.2 (Madras–Piccioni) Suppose that the above Ω, φi’s, ci’s,
and Ti’s are used to define the simulated tempering chain QPQ of Section 2
on the augmented state space Ω × {1, . . . ,m}. Then

Gap(QPQ) ≤ Gap(R[κ]) .

Note that the invariant measure of QPQ, ψ, is described in Equation (17).
Proposition 3.2 is formulated in Madras and Piccioni (1999) in a slightly different
way. It is easier to present the (short) proof than to explain how to modify it,
so we shall do this in Appendix B.
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4 State Decomposition

To prove the State Decomposition Theorem 1.1, we shall interpret it in terms
of the constructions of Section 3. We are given P (x, dy), a Markov transition
kernel on Ω that is reversible with respect to the density π(x) (all densities are
with respect to λ(dx)). We are also given A1, . . . , Am, subsets of Ω such that
∪Ai = Ω. For each i = 1, . . . ,m, let φi be the normalized restriction of π to Ai:

φi(x) =
π(x) 1Ai

(x)

π[Ai]
. (25)

Recall

Z =

m
∑

i=1

π[Ai] and Θ := max
x∈Ω

|{i : x ∈ Ai}|. (26)

Also let

ci =
π[Ai]

Z
(i = 1, . . . ,m), (27)

and define

κ(x) =

m
∑

i=1

ciφi(x) . (28)

Then κ is a probability density, and

1

Z
π(x) ≤ κ(x) ≤

Θ

Z
π(x) . (29)

Let P [κ] be the Metropolis-Hastings chain for P with respect to κ. Since P
is reversible with respect to π, we have

P [π] = P . (30)

Therefore Lemma 3.1 and Equation (29) imply that

1

Θ
Gap(P ) ≤ Gap(P [κ]) ≤ ΘGap(P ) . (31)

The restriction P[Ai] of P to Ai is the same as the Metropolis-Hastings chain

P [φi]. Let

R(x, dy) = P [κ](x, dy) and Ti(x, dy) = R[φi](x, dy) (i = 1, . . . ,m). (32)

Observe that we can write

Ti(x, dy) = P (x, dy) min

{

1,
κ(y)π(x)

κ(x)π(y)

}

min

{

1,
π(y)1Ai

(y)κ(x)

π(x)1Ai
(x)κ(y)

}

whenever x 6= y and x, y ∈ Ai. (33)
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It follows from this and Equation (29) that

1

Θ
P [φi](x, dy) ≤ Ti(x, dy) ≤ P [φi](x, dy) whenever x 6= y. (34)

Since P [φi] and Ti are both reversible with respect to φi, it follows from the
above bounds and Equation (7) that

1

Θ
Gap(P [φi]) ≤ Gap(Ti) ≤ Gap(P [φi]) . (35)

The aggregated transition matrix of Section 2 is

Q(i, j) = cj

∫

Ω

φi(x)φj (x)

κ(x)
λ(dx)

= cj

∫

Ai∩Aj

π(x)2

κ(x)π[Ai]π[Aj ]
λ(dx)

=
1

π[Ai]

∫

Ai∩Aj

π(x)2

Zκ(x)
λ(dx) . (36)

Recalling the definition of PH (Equation (5)), and using Equations (29) and
(36), we see that

PH(ai, aj) ≤ Q(i, j) ≤ ΘPH(ai, aj) for i 6= j. (37)

Since both PH and Q are reversible with respect to the same probability dis-
tribution (namely, the one whose weights are the ci’s), Equations (37) and (7)
imply that

Gap(PH) ≤ Gap(Q) ≤ ΘGap(PH) . (38)

Finally we put the pieces together:

Gap(P ) ≥
1

Θ
Gap(P [κ]) (by Equation (31))

≥
1

Θ
Gap(QPQ) (by Proposition 3.2 with R = P and ρ = π)

≥
1

Θ
Gap(Q) min

i=1,...,m
Gap(Ti) (by Theorem 2.1)

≥
1

Θ2
Gap(PH ) min

i=1,...,m
Gap(P [φi]) (by Equations (38) and (35))

(39)

Since P [φi] = P[Ai], this completes the proof of Theorem 1.1.
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5 Density Decomposition

This section consists of the proof of the Density Decomposition Theorem 1.2,
which is essentially independent of the rest of the paper. As usual, all densities
are with respect to a reference measure λ on Ω.

For a given probability density h, we let Eh and Vh respectively denote
expectation and variance with respect to h. We write Ej and Emix instead of
Eφj

and Eφmix
, and similarly for Vj and Vmix.

For an arbitrary function f on the state space, and for j = 0, . . . , D, define

Bj(f) =

∫ ∫

(

f(x) − f(y)
)2

R(x, dy) min

{

φj(x)

ρ(x)
,
φj(y)

ρ(y)

}

ρ(x)λ(dx)

(and define Bmix(f) analogously). Then the spectral gap of the Metropolis-
Hastings chain for R with respect to φj is given by

Gapj = inf
f

Bj(f)

2Vj(f)
(40)

Since

min

{

φmix(x)

ρ(x)
,
φmix(y)

ρ(y)

}

≥
D
∑

j=0

aj min

{

φj(x)

ρ(x)
,
φj(y)

ρ(y)

}

,

it follows that for every f

Bmix(f) =

∫ ∫

(

f(x) − f(y)
)2

R(x, dy) min

{

φmix(x)

ρ(x)
,
φmix(y)

ρ(y)

}

ρ(x)λ(dx)

≥
∑

j

ajBj(f)

≥
∑

j

ajGapj2Vj(f)

≥ 2 min
i
{aiGapi}

D
∑

j=0

Vj(f). (41)

Thus, to prove the theorem it suffices to show that for every f such that
Emix(f

2) <∞,

2Vmix(f) ≤
4D

δ

D
∑

j=0

Vj(f). (42)

Let f be an arbitrary function such that Emix(f
2) <∞. Then we also have

Ei(f
2) <∞ for every i = 1, . . . ,m. For i, j = 0, . . . , D, define

Cij(f) =

∫ ∫

(

f(x) − f(y)
)2

φi(x)φj (y)λ(dx)λ(dy) .
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Then
Cjj(f) = 2Vj(f)

and

2Vmix(f) =

∫ ∫

(

f(x) − f(y)
)2
(

∑

i

aiφi(x)

)





∑

j

ajφj(y)



 λ(dx)λ(dy)

=
∑

i,j

aiajCij(f).

In particular, we have
2Vmix(f) ≤ max

i,j
Cij(f). (43)

Fix j. By the overlap condition (11), there exist probability densities η, τ ,
and ψ such that

φj = δη + (1 − δ)τ and φj+1 = δη + (1 − δ)ψ.

Then

2Vj(f) =

∫ ∫

(

f(x) − f(y)
)2

(

δη(x) + (1 − δ)τ(x)
)(

δη(y) + (1 − δ)τ(y)
)

λ(dx)λ(dy)

= 2δ2Vη(f) + 2(1 − δ)2Vτ (f)

+ 2δ(1 − δ)

∫ ∫

(

f(x) − f(y)
)2

η(x)τ(y)λ(dx)λ(dy) (44)

and

Cj,j+1(f)

=

∫ ∫

(

f(x) − f(y)
)2

(

δη(x) + (1 − δ)τ(x)
)(

δη(y) + (1 − δ)ψ(y)
)

λ(dx)λ(dy)

= 2δ2Vη(f) + (1 − δ)2
∫ ∫

(

f(x) − f(y)
)2

τ(x)ψ(y)λ(dx)λ(dy)

+ δ(1 − δ)

∫ ∫

(

f(x) − f(y)
)2(

η(x)ψ(y) + η(y)τ(x)
)

λ(dx)λ(dy) .

(45)

¿From (44) we find

∫ ∫

(

f(x)−f(y)
)2

η(x)τ(y)λ(dx)λ(dy) ≤
(

Vj(f)−δ2Vη(f)
)

/(δ(1−δ)) . (46)
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Using (u+ v)2 ≤ 2u2 + 2v2, we obtain
∫ ∫

(

f(x) − f(y)
)2

τ(x)ψ(y)λ(dx)λ(dy)

=

∫ ∫ ∫

(

f(x) − f(z) + f(z) − f(y)
)2

τ(x)ψ(y)η(z)λ(dx)λ(dy)λ(dz)

≤ 2

∫ ∫ ∫ (

(

f(x) − f(z)
)2

+
(

f(z) − f(y)
)2
)

τ(x)ψ(y)η(z)λ(dx)λ(dy)λ(dz)

= 2

∫ ∫

(

f(x) − f(z)
)2

τ(x)η(z)λ(dx)λ(dz)

+ 2

∫ ∫

(

f(z) − f(y)
)2

ψ(y)η(z)λ(dy)λ(dz) .

Inserting this into (45), and then applying (46) (and the analogue of (46) for
j + 1), we see

Cj,j+1(f)

≤ 2δ2Vη(f) +
(

2(1− δ)2 + δ(1 − δ)
)

(∫ ∫

(

f(x) − f(z)
)2

τ(x)η(z)λ(dx)λ(dz)

+

∫ ∫

(

f(z) − f(y)
)2

ψ(y)η(z)λ(dy)λ(dz)
)

)

= 2δ2Vη(f) + (2 − δ)(1 − δ)

(∫ ∫

(

f(x) − f(y)
)2

η(x)τ(y)λ(dx)λ(dy)

+

∫ ∫

(

f(x) − f(y)
)2

η(x)ψ(y)λ(dx)λ(dy)

)

≤ 2δ2Vη(f) + (2 − δ)
(

Vj(f) − δ2Vη(f) + Vj+1(f) − δ2Vη(f)
)

/δ

≤
2 − δ

δ

(

Vj(f) + Vj+1(f)
)

. (47)

Let X(0), . . . , X(D) be independent random variables, with X (i) having den-
sity φi. Then for i < j,

Cij(f) = E

(

(

f(X(i)) − f(X(j))
)2
)

= E

(

(

j−1
∑

k=i

f(X(k)) − f(X(k+1))
)2
)

≤ E

(

(j − i)

j−1
∑

k=i

(

f(X(k)) − f(X(k+1))
)2
)

= (j − i)

j−1
∑

k=i

Ck,k+1(f)
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(where we used the Schwarz inequality in the third line). Therefore, applying
(47), we see that for all i 6= j,

Cij(f) ≤ D
D−1
∑

k=0

Ck,k+1(f)

≤
2(2 − δ)D

δ

D
∑

l=0

Vl(f) . (48)

Notice that the last expression in (48) is also a bound for the case i = j, because
Cjj(f) = 2Vj(f). Therefore (48) and (43) imply (42), and the theorem is proven.

Remark: An inspection of the final paragraph of the proof shows that Theorem
1.2 can be generalized to the case that the overlapping φj ’s are not linearly
arranged. More precisely, we can replace the last two sentences in the statement
of the theorem with the following: Fix δ > 0, and consider a graph whose vertices
are 0, 1, . . . , D, with an edge joining i to j if and only if

∫

min{φi(x), φj(x)}λ(dx) ≥ δ .

Let M be the diameter of this graph, i.e.

M = max
i,j

{minimum number of edges in a path from i to j }

Then

Gapmix ≥
δ

2M
min

j=0,...,D
ajGapj .
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A The Caracciolo–Pelissetto–Sokal Result

This Appendix contains the proof of Theorem 2.1 as a consequence of a more
general result (Theorem A.1 below), due to Caracciolo, Pelissetto, and Sokal
(1992). The proof given here is their proof, with only editorial changes.
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The proof is based on the the theory of operators in a Hilbert space. To
start, we shall describe the spaces in which we work, and give some equivalent
descriptions of the spectral gap of a reversible (self-adjoint) operator.

Let ρ be a probability measure on a state space S. For functions f and g on
S, we define

(f, g)ρ =

∫

S

f(x)g(x) ρ(dx) (49)

the inner product on L2(ρ), the Hilbert space all functions that are square-
integrable with respect to ρ. (If S is discrete, then of course all integrals become
sums.)

Let R(x, dy) be the transition kernel of a Markov chain that is reversible
with respect to ρ. That is,

ρ(dx)R(x, dy) = ρ(dy)R(y, dx), (50)

or, more formally,

(f,Rg)ρ = (Rf, g)ρ for all f, g ∈ L2(ρ), (51)

where we write

Rf(x) =

∫

S

R(x, dy)f(y) .

Let Πρ be the projection operator that sends each function to the constant
function identical to its mean:

(Πρf)(x) := (f, 1)ρ =

∫

S

f(y) ρ(dy) for all x ∈ S . (52)

The spectral gap of R, Gap(R), is defined by

Gap(R) = inf
(f, (I −R)f)ρ
(f, (I − Πρ)f)ρ

(53)

= inf

∫ ∫

|f(x) − f(y)|2 ρ(dx)R(x, dy)

2
∫

|f(x) − (f, 1)ρ|2 ρ(dx)
(54)

where the inf is over all non-constant functions f in L2(ρ). Notice that the
denominator in (53) equals the variance of f(X) if X is a random variable with
distribution ρ.

Let 1⊥ be the orthogonal complement of the constant functions in L2(ρ):

1⊥ := {f ∈ L2(ρ) : (f, 1)ρ = 0} = {f ∈ L2(ρ) :

∫

S

f(x) ρ(dx) = 0} .

Observe that (I − R)f ∈ 1⊥ whenever f ∈ 1⊥; therefore we can view I − R
as an operator on the Hilbert space 1⊥. We shall write Spec

1⊥(T ) to denote

21



the spectrum of the operator T on 1⊥. For the reversible probability transition
operator R, it is well known that Spec

1⊥(R) is a subset of the real interval
[−1, 1].

Observe that the equations (53) and (54) still hold if we take the inf over
f ∈ 1⊥. Thus we obtain

Gap(R) = inf
f∈1⊥

(f, (I −R)f)ρ
(f, f)ρ

= inf Spec
1⊥(I −R) (by p. 320 of Yosida (1980))

= 1 − sup Spec
1⊥(R) (55)

In the case that S is finite, this simply says that Gap(R) is one minus the
second-largest eigenvalue of R.

The preceding paragraphs are very general. For the theorem presently under
consideration, consider a probability measure ψ on the state space S, and let
P(x, dy) be the transition kernel of a Markov chain that is reversible with respect
to ψ. Suppose further that the state space is partitioned into m disjoint pieces:

S = S1 ∪ · · · ∪ Sm . (56)

For each i = 1, . . . ,m, define Pi, the restriction of P to Si, by rejecting jumps
that leave Si:

Pi(x,B) = P(x,B) + 1{x∈B}P(x,S \ Si) for x ∈ Si, B ⊂ Si. (57)

Also define the transition kernel P on S which suppresses all jumps between
different pieces:

P(x,A) = Pi(x,A ∩ Si) if x ∈ Si and A ⊂ S . (58)

Let ψi be the normalized restriction of ψ to Si:

ψi(A) =
ψ(A ∩ Si)

bi
, where bi = ψ(Si). (59)

This defines ψi to be a measure on S whose support is in Si. However, when
discussing Pi, we shall want to interpret ψi as a measure that is defined on Si
only. We shall not bother to introduce a different notation for this. Similarly,
when discussing Pi and a function f that is defined on all of S (e.g. in (ii)
below), we shall really mean the new function obtained from f by restricting its
domain to Si.

The following observations are easy to check:
(i) ψ =

∑m
i=1 biψi;

(ii) (f,Pg)ψ =
∑m

i=1 bi(f,Pig)ψi
;

(iii) Pi is reversible with respect to ψi (on the state space Si); and
(iv) P is reversible with respect to ψ.
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We shall write Π for the projection operator Πψ, defined in (52):

(Πf)(x) ≡ (Πf)(x) =

∫

S

f(y)ψ(dy) for all x ∈ S. (60)

Similarly, define the operator which projects onto functions that are constant
in each piece:

(Πf)(x) =

∫

Si

f(y)ψi(dy) if x ∈ Si. (61)

Let VS be the vector space of functions on S that are constant within each Si.
Then Π is the orthogonal projection onto VS in L2(ψ).

Let Q(x, dy) be another transition kernel that is reversible with respect to
ψ. Then let Q be the following “aggregated transition matrix”:

Q(i, j) =
1

bi

∫

y∈Sj

∫

x∈Si

ψ(dx)Q(x, dy) (i, j = 1, . . . ,m). (62)

Observe that
biQ(i, j) = bjQ(j, i); (63)

that is, if we view the vector b = (b1, . . . , bm) as a probability measure on
{1, . . . ,m}, then Q is reversible with respect to b.

Theorem A.1 (Caracciolo–Pelissetto–Sokal) Assume that Q is nonnega-
tive definite. Let Q1/2 be the nonnegative square root of Q. Then

Gap(Q1/2PQ1/2) ≥ Gap(Q) min
i=1,...,m

Gap(Pi). (64)

Given this theorem, we deduce Theorem 2.1 directly, as follows.

Proof of Theorem 2.1: Let S, Si, P , ψ, and Q in this appendix be the
objects of the same names of Section 2. With this choice, we observe that
Pi and bi of this appendix respectively correspond to Ti and ci of Section 2,
and the measure ψi(dx) on Si in this appendix corresponds to the measure
ψi(dx, j) = δi(j)φi(x)λ(dx) on Si = Ω×{i} in Section 2. With these definitions,
the operators Q defined by equations (19) and (62) are the same. Finally, we
observed in Section 2 that Q is reversible and Q2 = Q, so we conclude that
Q is positive definite and Q1/2 = Q. This completes the translation between
Theorems 2.1 and A.1. 2

Before we undertake the proof of Theorem A.1, we record two lemmas.

Lemma A.2 Let A and B be operators on a Hilbert space, and let c be a non-
zero complex number. Then c is in the spectrum of AB if and only if c is in the
spectrum of BA.
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Proof: This is Problem 76 of Halmos (1982) (solved on page 224). 2

Corollary A.3 Let A and B be transition kernels on the state space S, such
that AB and BA are both nonnegative definite and reversible with respect to the
probability measure ρ. Then Gap(AB) = Gap(BA).

Proof: Lemma A.2 shows that (0,∞) ∩ Spec
1⊥(AB) = (0,∞) ∩ Spec

1⊥(BA).
Therefore supSpec

1⊥(AB) can differ from sup Spec
1⊥(BA) only if both of these

numbers are nonpositive. But the spectrum of a reversible nonnegative definite
operator is a nonempty subset of [0,∞); so if sup Spec

1⊥(AB) and sup Spec
1⊥(BA)

are nonpositive, then they must both equal 0. Hence these two sups must be
equal. The Corollary now follows from (55). 2

Remark: If S is finite, then we can omit the assumption about nonnegative
definiteness in Corollary A.3. This is because in finite dimensions it is well-
known that AB and BA have the same spectrum, including multiplicities of all
eigenvalues.

Proof of Theorem A.1: Let G∗ = mini=1,...,m Gap(Pi). Then, for every i,

(f, (I −Pi)f)ψi
≥ G∗(f, (I − Π)f)ψi

for every f ∈ L2(ψi). (65)

Multiplying this inequality by bi and summing over i gives

(f, (I −P)f)ψ ≥ G∗(f, (I − Π)f)ψ for every f ∈ L2(ψ). (66)

Since P(x, dy) ≥ P(x, dy) whenever x 6= y, we have

(f, (I −P)f)ψ =
1

2

∫ ∫

|f(x) − f(y)|2ψ(dx)P(x, dy)

≥
1

2

∫ ∫

|f(x) − f(y)|2ψ(dx)P(x, dy)

= (f, (I −P)f)ψ for every f ∈ L2(ψ). (67)

By Corollary A.3 with A = ΠQ1/2 and B = Q1/2Π, we find that

Gap(ΠQΠ) = Gap(Q1/2Π
2
Q1/2). (68)

It is straightforward to see that the restriction of the operator ΠQΠ to the
m-dimensional vector space VS (defined above) corresponds to the matrix Q.
Hence the eigenvalues of ΠQΠ on VS are exactly the same as those of Q. In
particular,

Gap(ΠQΠ) = Gap(Q). (69)

Combining equations (68) and (69) and using Π
2

= Π, we conclude that

Gap(Q1/2ΠQ1/2) = Gap(Q) . (70)
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Putting the pieces together, we find that for every f in L2(ψ),

(f, (I −Q1/2PQ1/2)f)ψ

= (f, (I −Q)f)ψ + (Q1/2f, (I −P)Q1/2f)ψ

≥ (f, (I −Q)f)ψ +G∗(Q
1/2f, (I − Π)Q1/2f)ψ (by (67) and (66))

= (1 −G∗)(f, (I −Q)f)ψ +G∗(f, (I −Q1/2ΠQ1/2)f)ψ

≥ 0 +G∗Gap(Q)(f, (I − Π)f)ψ (by (70))

The Theorem follows. 2

B The Madras-Piccioni Result

This appendix contains the proof of Proposition 3.2.
The spectral gap of the chain QPQ is given by the following inf over all

nonconstant functions f on Ω × {1, . . . ,m} that are in L2(ψ):

Gap(QPQ) = inf

∫

Ω

∫

Ω

∑

i

∑

j |f(x, i) − f(y, j)|2 ψ(dx, i)(QPQ)((x, i), (dy, j))
∫

Ω

∫

Ω

∑

i

∑

j |f(x, i) − f(y, j)|2 ψ(dx, i)ψ(dy, j)

(71)
We obtain an upper bound on Gap(QPQ) by restricting the inf to functions
that do not depend on i, that is functions f of the form f(x, i) = g(x). Then
the numerator of (71) equals
∫

Ω

∫

Ω

∑

i

∑

j

|g(x) − g(y)|2 ψ(dx, i)(QPQ)((x, i), (dy, j))

=

∫

Ω

∫

Ω

|g(x) − g(y)|2
∑

i

ciφi(x)λ(dx) ×

∑

k

ckφk(x)

κ(x)
R(x, dy) min

{

1,
φk(y)ρ(x)

φk(x)ρ(y)

}

≤

∫

Ω

∫

Ω

|g(x) − g(y)|2R(x, dy) min

{

∑

k

ckφk(x),
∑

k

ck
φk(y)ρ(x)

ρ(y)

}

λ(dx)

=

∫

Ω

∫

Ω

|g(x) − g(y)|2R[κ](x, dy)κ(x)λ(dx).

Also, the denominator of (71) equals
∫

Ω

∫

Ω

|g(x) − g(y)|2κ(x)λ(dy)κ(y)λ(dy),

so we have

Gap(QPQ) ≤ inf

∫

Ω

∫

Ω
|g(x) − g(y)|2R[κ](x, dy)κ(x)λ(dx)

∫

Ω

∫

Ω
|g(x) − g(y)|2κ(x)λ(dy)κ(y)λ(dy)
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where the inf is over all nonconstant g in L2(κ). Since the right hand side of
the last inequality is Gap(R[κ]), the proposition follows. 2
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