Approximately Counting Integral Flows and Cell-Bounded
Contingency Tables’

Mary CryanT
School of Informatics
University of Edinburgh
Edinburgh EH9 3JZ, UK.

mcryan@inf.ed.ac.uk

ABSTRACT

We consider the problem of approximately counting integral
flows in a network. We show that there is an fpras based
on volume estimation if all capacities are sufficiently large,
generalising a result of Dyer, Kannan and Mount (1997).
We apply this to approximating the number of contingency
tables with prescribed cell bounds when the number of rows
is constant, but the row sums, column sums and cell bounds
may be arbitrary. We provide an fpras for this problem via
a combination of dynamic programming and volume esti-
mation. This generalises an algorithm of Cryan and Dyer
(2002) for standard contingency tables, but the analysis here
is considerably more intricate.
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1. INTRODUCTION

In this paper we consider two related counting problems.
First we consider the problem of counting integral flows in
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a general capacitated network. A special case of this prob-
lem was considered by Kannan and Vempala [20]. They
gave an fpras (fully polynomial randomized approximation
scheme) to approximately count integral s — ¢ flows in an
undirected network when all edge capacities are sufficiently
large. Recently Baldoni-Silva, De Loera and Vergne showed
that integer-valued flows in a general capacitated network
can be represented as lattice points inside a related flow
polytope [3]. Hence they construct exact counting algo-
rithms using Barvinok’s approach [2] to counting lattice
points in a fixed-dimensional polytope. Their algorithms
run in polynomial-time if the dimension of the flow polytope
is constant. Some applications are also discussed in [3].In
general, exactly counting lattice points is #P-Complete [15,
27], and only approximation is possible in polynomial-time.
Jerrum, Sinclair and Vigoda [18] gave an fpras for the special
case of 0-1 flows, where all capacities are 0 or 1. By con-
trast, our first contribution in this paper (in §2) is to show
there is an fpras, based on sampling and volume estimation
for convex bodies [13], whenever the minimum (tight) ca-
pacity in the network (as defined in §2 below) is sufficiently
large. Interestingly, the proof relies on the properties of
the mazimum spanning tree in the network (using the ca-
pacities as weights) to show that the flow polytope is well-
rounded [16]. We note that establishing this property is far
from straightforward for general flow polytopes, whereas it
follows directly for the special case considered in [20].

The result of §2 can be applied directly to counting cell-
bounded contingency tables, which we now define: Let [{]

denote the set {1,...,£}. Suppose we are given a list of pos-
itive integers r = (r1,...,7m) called the row sums, another
list of positive integers ¢ = (c1,...,¢,) called the column

sums, and a cell bound b;;, for every i € [m],j € [n]. As-
sume that b;; < min{r;, c;} for all s € [m],j € [n], and that
i Ti = Xoi_; ¢; (the table sum). Then the set £, cp of
cell-bounded contingency tables is the set of all m x n non-
negative integer matrices x which satisfy the row and column
sums, and also satisfy x;; < b;; for all ¢ € [m],j € [n]. We
will see in §3 that cell-bounded contingency tables are equiv-
alent to integer flows in an appropriately-defined bipartite
network. The definition of 3, . is a generalisation of the set
3, of standard contingency tables (where the cell bounds
are b;; = min{r;,c;} for all i € [m],j € [n]).

The problem of sampling standard contingency tables from
3r.c almost uniformly at random has important applications
in practical statistics (see Diaconis and Efron [7]). Much



work has been carried out on this and on the related prob-
lem of approximating the total number of tables |X, | (see,
e.g., [4, 5, 6, 8,9, 12, 15, 17, 23, 24]). The algorithm of
Barvinok [2] for counting lattice points in a polytope can be
used to count contingency tables ezactly in polynomial-time
when the numbers of rows and columns are both constant.
Dyer, Kannan and Mount [15] showed that, whenever the
row sums satisfy 7; € Q(n?m) for all i € [m] and the column
sums satisfy ¢; € Q(m?n) for all j € [n], there is an fpras for
counting standard contingency tables. This was improved
later by Morris [22]. Dyer and Greenhill [12] gave an fpras
to approximately count contingency tables with two rows by
proving a natural Markov chain called the 2 x 2 heat bath
chain is rapidly mixing. Subsequently, Cryan and Dyer [4]
gave an fpras based on a combination of dynamic program-
ming and volume estimation to count tables when the num-
ber of rows m is a constant. Cryan et al. [5] gave an alterna-
tive algorithm by proving that the 2 x 2 heat bath Markov
chain on such tables is rapidly mixing. Later, Dyer [11]
gave an fpras based entirely on dynamic programming, im-
proving substantially on the running time of the algorithms
in [4] and [5]. However, the existence of an fpras for count-
ing standard contingency tables in the general case remains
a notorious open problem.

Counting and sampling cell-bounded contingency tables
also has natural applications in statistics, in the case where
each cell has a known maximum. According to Diaconis and
Gangolli [8], this is a “practical class of problems”. However,
there appears to have been little work on this problem ex-
cept in the case where some cell upper bounds may be zero
(so-called structural zeros). The Markov chain used in [5,
12], which updates values in a 2 X 2 submatrix during each
step of the simulation, is no longer viable in the cell-bounded
case since the state space might not even be connected; for
example, a 3 x 3 table with structural zeros on the diagonal
has no allowable moves. Aoki [1] and Rapollo [25] recently
considered the design of alternative chains for sampling such
tables using the “Markov basis” approach of Diaconis and
Sturmfels [10]. The required sampling distribution will be
uniform when the conditional volume test of [7] is employed.
However, the main focus of these papers is on sampling from
the hypergeometric distribution, which is easier than the
general case. These Markov chains take small steps, so can-
not lead to polynomial time sampling unless all numbers are
given in unary.

There are general theoretical reasons for studying cell-
bounded tables. It is well-known that for any self-reducible
relation, the problem of obtaining an fpras for approximate
counting is equivalent to the problem of finding an fpaus
(fully polynomial almost uniform sampler) [19]. Standard
contingency tables are not known to be self-reducible, which
is unusual. However there is a simple self-reducible charac-
terisation of cell-bounded contingency tables. Another in-
teresting fact about cell-bounded contingency tables is that
they generalise the concept of perfect matchings in a bipar-
tite graph (where all cell-bounds are 0 or 1). Approximating
the number of perfect matchings in a bipartite graph ( the
0-1 permanent) was an important open problem for several
years, until Jerrum, Sinclair and Vigoda [18] finally estab-
lished the existence of an fpras.

The second overall contribution of our paper is to put
the problem of approximately counting cell-bounded contin-
gency tables on precisely the same footing as that of approx-

imately counting standard contingency tables. One imme-
diate consequence of the main result of §2 is that, if all cell
bounds are “sufficiently large” (in a sense we define later),
then we can use sampling and volume estimation for the
flow polytope to obtain an fpras to count approximately the
number of cell-bounded tables. This result does not depend
on the number of rows or columns. It can be seen as a direct
generalisation to the cell-bounded case of the result of Dyer,
Kannan and Mount [15] for standard contingency tables.

Following the other thread of results for contingency ta-
bles, in §3 we assume that the number of rows is constant
but make no assumptions about the size of the cell bounds.
We show that we can combine dynamic programming and
volume estimation to design an fpras in this case. This fpras
is broadly similar to that of Cryan and Dyer [4], but the
structure of cell-bounded tables is considerably more intri-
cate. However, since cell-bounded contingency tables may
be viewed as integral flows in a bipartite network, we are
able to extend the approach of §2. Our proof relies even
more strongly on properties of the maximum spanning tree.

These are the first results that provide provably efficient
counting and sampling algorithms for non-trivial classes of
cell-bounded contingency tables. Moreover, they demon-
strate that these seemingly broader classes of problems might
not be harder than counting and sampling standard contin-
gency tables without cell bounds. The question of existence
of an fpras for the general problem of counting cell-bounded
contingency tables remains open, as it does for standard
contingency tables. However, since an fpras for general cell-
bounded tables would include approximating the 0-1 per-
manent [18] as a special case, it may prove elusive. On the
other hand, the results of this paper are some indication that
standard contingency tables have no exploitable structure
beyond that which exists in the cell-bounded case. Conse-
quently, there is no obvious reason to expect that an fpras
for standard contingency tables may be found any more eas-
ily than one for the general cell-bounded case.

2. COUNTING INTEGRAL FLOWS

Suppose that we have a flow network N' = (V,A) with
capacities b(a) € ZTU {oc} (a € A) and supplies p(v) € Z
(v € V) such that Y7 ., p(v) = 0. We will write n = [V/,
m=|A| and d =m—n+ 1. A flow x must satisfy

> xa) - > x(a) =p() (VEV), (1)
wra=(v,w) wia=(w,v)
0 <x(a) < b(a) (@€A). (2)

The solution set of (1)—(2), the set of flows, is a convex
polyhedron. We are interested in estimating the number of
integral flows. Any capacitated flow problem can be put in
the form (1)-(2) without changing the size of the solution
set. We allow N to contain parallel and antiparallel arcs
between any two vertices since replacing these with a single
edge might alter the number of integer flows satisfying (1)-
(2). We may dispose of the case in which the number of
solutions is infinite, corresponding to the existence of a di-
rected cycle in the set {a € A : b(a) = oo}. If no such
cycle exists, the system (1)-(2) determines a flow polytope
P. The integer solutions are the lattice points inside P, and
we use Z(P) to denote the set of all such lattice points.
Our goal in this section is to develop an fpras for count-
ing the number of integral flows when the minimum capac-



ity is sufficiently large. That is, given an error tolerance
€ € (0,1), we will design an algorithm that runs in time
polynomial in n, ™', and log(maxq b(a)) and produces an
estimate |Z'| of |Z(P)| that satisfies

1=eZ(P)| < |T'] < (1 +e)|Z(P)|

with high probability. We accomplish this by relating |Z(P))|
to the volume of P.
We assume that A has tight capacities, defined as follows.

DEFINITION 1. A network N has tight capacities if for
each a € A, there exist flows fo, f& satisfying fo(a) = 0
and f{(a) =b(a) (and b(a) > 0).

If the network does not satisfy this condition, we can make
a polynomial-time transformation to define a new network
with the same number of integral flows. For each arc a, we
find maxx x(a), the maximum value of x(a) over all flows,
by solving a minimum cost flow problem. (See, for exam-
ple, Schrijver [26, §12]). Similarly, for every a € A, we
find min, x(a). We let the new capacities be (max,x(a) —
miny x(a)) (a € A), and let the new supplies be

p(u)— Z mgnx(u,v)—l- Z mgnx(w,u)

(u,v)eA (w,u)eA

(Vue V).

We also may assume that b(a) > 0 for all a € A, since
otherwise the arc a can be deleted from A.

Using the convexity of the flow polytope, we can now de-
fine an internal flow.

DEFINITION 2. Given a flow polytope P with tight capac-
ities, we define an internal flow

> (fa +13) (3)

aceA

1

f =aef o
In general f will not be an integral flow. We will use ratio-
nal flow for functions like f whereas, without qualification,
flow will mean integral flow. Note that ;-b(a) < f(a) <
b(a) — 5=b(a) for all a € A, using the tightness of the ca-
pacities. For any flow x, define the slack for x on arc a as
min{x(a),b(a) —x(a)}. Thus our internal flow f has slack
at least b(a)/2m on every arc a.

We now define the concept of a mazimum spanning tree of
a network. We may assume N is connected, since otherwise
we can consider each component separately and take the
product of the number of solutions for each component.

DEFINITION 3. Consider the (connected) undirected multi-
graph G = (V,E) underlying N'. We will abuse notation and
refer to an arc a € A as an edge a € E, forgetting its di-
rection. Let E have edge weights b(a). Then a maximum
spanning tree for N is any maximum weight spanning tree
T in G.

It follows from standard network flow theory [26, §13] that
we can eliminate the variables x(a) (a € T) from the system
of equations (1)—(2) to give a system of 2m inequalities in
d = (m —n + 1) bounded variables x(a) (a € A’ = A\ T).

We now show, using the spanning tree T, that there is an
ellipsoid, and also a ball, centred at f, lying entirely inside
P. The approach of using a spanning tree of a network to
define a full-dimensional representation of the flow polytope
has been used before [20], but it is the idea of using the
mazimum-weight spanning tree which drives our result.

THEOREM 1. Let N' = (V,A) be a connected network with
tight capacities b(-). Let T be any maximum spanning tree
for N'. Let bmin = mingea\t b(a), and let § = bmin/2mvd
(where d = m —n +1). Then the flow polytope P contains
the ball B(f,d).

PROOF. For any a € A’ = A\ T, consider the “rational
flow” g¥ defined by

gi(a) = f(a)+ 5=b(a) and

gi(a) = f(a) (a #a,a €)
Clearly 0 < g*(a’) < b(a’) for all ' € A’. To define
a rational flow, we must complete this with feasible val-
ues of gZ(a’) (a’ € T). First, we follow the unique circuit
Ca € TU{a} in the direction of a. For each edge a’ # a
traversed, if the direction of a’ is the same as that of a,
let gt(a’) = f(a') + b(a)/2m; alternatively, if a’ has the
opposite direction to a, g7 (a') = f(a') — b(a)/2m. We set
g¥(a’) = f(a’) for all a’ € T\ Cq. This ensures that g¥ still
satisfies all the supplies p(.). It follows that for all a’ € Cq
we have b(a) < b(a’) and

gt(d) ef(d) £ s-b(a) € f(a') £ 7-b(a’) € [0,b(a’)]

2m
since T is a mazimum spanning tree. Similarly we can find
go such that g, (a) = f(a) — 7--b(a) and g, (a’) = f(a')
(' # a,a’ € A'). Now consider P as a polytope in R? =
R™ ™! determined by x(a) (a € A’). From the properties
of f, P is contained in the hyper-rectangle

—(1 = 57)b(a) < x(a) —f(a) < (1= 57)b(a)

2m

(a€ A').
Thus P is contained in the ellipsoid

o= {3 (@) <a0- oy}

We have shown that P contains H = conv{gd,gg : a € A’}
This is an axis-scaled £;-ball, so

< L} .

~— 2m

H= {x : Z
Now, using Cauchy-Schwarz, H contains the ellipsoid

acA’
x(a) —f(a))? 1
int — . < .
Exon {x 2 ( v(a) = im2d
aeA’
which is Eext scaled by d(2m —1). Let bmin = mingear b(a)
and & = bin/2my/d. Then iy contains the ball B(f,5). O

x(a) — f(a)
b(a)

We now show |Z(P)| is close to vol(P) when bmis is suffi-
ciently large.

THEOREM 2. Let N' = (V,A) be a connected network with
tight capacities b(-). Let T be a mazimum spanning tree for
N. Let P be the flow polytope in R®, with azes indezed by
A\NT, where d = m—n+ 1. If bmin > 2md and € >
2md?/(bmin — 2md), then

e Svol(P) < [Z(P)| < eSvol(P).

PRrROOF. Our proof is similar in principle to that of The-
orem 3 in [4], though the polytope we consider here is more
constrained. We use a full-dimensional representation of P
in RY, relative to the rational flow f defined in (3). Thus, we



translate z € R? to 2’ so that z/'(a’) = z(a') — f(a), for a’ €
A’ = A\ T. Then, for each lattice point 2’ = z — f € Z(P),
we associate with z' the hypercube H(z) in d-dimensions,
where y € H(z) iff Z'(a) <y(a) < Z'(a)+1for all a € A’.
Let C = UzezpyH(z). Clearly |Z(P)| = vol(C). We will
refer to the dilation aQ of a d-dimensional convex polytope
Q as {ax : x € Q}. It is well-known that this has volume
vol(xQ) = a%vol(Q). The theorem is proven in two parts.

We show that C C (1 + e¢/d)P. For every z € Z(P) and
every y € H(z), dist(y,z) < v/d, where dist(-,-) denotes
Euclidean distance. Suppose y € P. Clearly dist(y,P) <
vd. Also, we know that there is a ball of radius 5 with
centre f lying inside P. The dilation (1+¢/d)P will therefore
contain all points with distance at most

€d bmin\/a
= vmmmVE
d = (mm —2mad) va
from P. So H(z) C (1 + €/d)P for every z € Z(P).
In a similar way, we can show that (1 + e€/2d)"'P C C.
Observing that (14 ¢/d)¢ < e® completes the proof. [

COROLLARY 3. Let N' = (V,A) be a connected network
with tight capacities and let P be the corresponding flow poly-
tope in R, If bmin € Q(md?/logm) then there is an fpras
for the number of integral flows |Z(P)|.

ProoOF. To use volume estimation to design an fpras,
Theorem 2 is useful only if e€ is polynomially bounded in
m and d. Since m > d, this is guaranteed when bmin €
Q(md?/log m), with the approximation error depending on €.
We can further improve this to get relative error at most
1 > 0 as follows. First we determine vol(P) to relative er-
ror 1/3, with high probability, using an fpras for volume
estimation (see, e.g., [13, 21]). The original volume algo-
rithm is due to Dyer, Frieze and Kannan [13], but many im-
provements now exist, the most recent being that of Lovisz
and Vempala [21]. Similarly, we can sample a point x from
P using the fpaus of [13], or one of its successors. Sup-
pose we sample x € P almost uniformly in this way. Let
P = (1+ €/d)P, so X' = (1 + e/d)x is a uniform sam-
ple from P’. Note that vol(P’) = (1 + €/d)%vol(P). Now
|Z(P)| = vol(C), and C C P'. Let p = vol(C)/vol(P").
We have p > e~ 2¢ from Theorem 2, so by assumption it
is bounded below by an inverse polynomial. Note we can
recognise when X' € C by rounding down to find the unique
y € Z% such that x' € H(y) and checking whether y € P.
Thus, with high probability, we can obtain an approximation
P for p with relative error at most 1/3 by taking O(e*¢/n?)
samples. We can estimate vol(C) as p(1+¢€/d)%vol(P). Now
the relative error is at most 7, so this procedure gives an
foras (and an fpaus) for any class of flow problems satisfy-
ing bmin € Q(md?/logm). O

Kannan and Vempala [20] have given an improvement, us-
ing randomized rounding, on the above method for approx-
imating the number of lattice points in a polytope, which
was first used in [14]. They consider a polytope Q of dimen-
sion d with k facets and show that, if Q contains a ball of
radius Q(d+/logk), then there is an fpras for Z(Q). There
are at most 2m facets of the flow polytope P, so we can em-
ploy Kannan and Vempala’s result if we have a ball of radius
Q(dy/log 2m) inside P. By Theorem 1, this gives an fpras
for the number of integral flows if bmin = Q(d*/2my/Togm),
an improvement on Corollary 3.

3. CONTINGENCY TABLES WITH CELL
BOUNDS

We now consider cell-bounded contingency tables with m
rows and n columns, row sums r; > 0 (¢ € [m]) and column
sums ¢; > 0 (j € [n]). The upper bound on cell (i,7) will
be denoted by b;;, and the lower bound is zero.

We employ a correspondence between cell-bounded con-
tingency tables and integer flows in a bipartite network. For
given values of 7, ¢ and b, consider a network N defined by
V =[m]¥[n] and A = [m] x [n]. Then n = m+n, m < mn.
We will also defined = m—n+1 < (m—1)(n —1). The
supplies p are 7; (i € [m]) and —c¢; (j € [n]). The capacities
are b(s, j) = by for (4,j) € A. It is easy to see that there is
a bijection between X, ., and the set of integer flows in N

We are interested in developing an fpras for counting cell-
bounded contingency tables in for certain classes of inputs.
That is, given an error tolerance € € (0, 3), the goal is to
design an algorithm which runs in time polynomial in n, e ™*
and max;; logb;; and produces an estimate |X'| of S, ¢ |
that satisfies

1=6)Sresl < IZ'] < (L+6)[Sresl,

with high probability.

The correspondence between flows and cell-bounded ta-
bles gives us the following theorem as an immediate conse-
quence of Corollary 3. This can be viewed as a generalisation
of a result of Dyer Kannan and Mount [15], with the addi-
tional assumption that all cell bounds, as well as row and
column sums, are sufficiently large.! Note that, since this
problem is self-reducible, the existence of an fpaus will then
follow from the general results of [19].

THEOREM 4. Let 3, .5 be a set of cell-bounded contin-
gency tables with row sums r; > 0, (¢ € [m]), column sums
c; > 0,(j € [n]), and (tight) cell bounds b;; > 0. There is
an fpras for |Spep| 4f ming ; bi; € Q((mn)3/ log(mn)).

We note that the result of [20] referred to above would al-
low us to improve this, to give an fpras under the weaker

condition min; ; b;; € Q((mn)%/?\/log(mn)).

In the remainder of the paper we consider a second class of
cell-bounded contingency tables where the number of rows
m is a constant. We show the following theorem, which re-
quires no assumptions about the size of the row and column
sums. This theorem also implies the existence of an fpaus.

THEOREM 5. Let ¥, be a set of cell-bounded contin-
gency tables with row sums r; > 0, (¢ € [m]), column sums
c; > 0,(j € [n]), and cell bounds b;; > 0, and let m be a
constant. Then there is an fpras for |X, cs|.

The algorithm used to establish Theorem 5 is based on
combining the approach of §2 with partial dynamic program-
ming. A critical parameter of the algorithm will be

B =6+ 2log, (32m°e™").

'"When Corollary 3 is specialised to standard contingency
tables, the lower bounds on row and column sums that we
require are larger than in [15]. Combining our Theorem 1
with [20], we obtain Q((mn)5/2\/10g(mn)), whereas [15] has
Q(mn?) for row totals and Q(m>n) for column totals. It is
possible that these results could be improved by a more
tailored argument or by applying the result of Morris [22],
but we will not explore this further in this paper.




The parameters p, g and r will also be important later, with
p=q+p/2, ¢>B,r>q+p.

We define r(£) to be the list of row sums (r1,...,r) for
any ¢ < m and c(k) to be the list of column sums (c1,...,c)
for any k < n. We define 7(¢) to be (r¢41,...,7m) for any
¢ < m and c(k) = (ckt1,---,¢n) for any k < n.

Asin §2, we will assume without loss that at the beginning
of the dynamic programming phase we have tight cell bounds,
i.e. for every i € [m],j € [n], there is some table x € X, ¢
such that x;; = b;; and some tabley € X, . such that y;; =
0. Later, it will become necessary to work with networks
and cell-bounded tables which do not have tight capacities
or bounds. Then we will use £; and b}; to represent the
tight lower and upper bounds for cell (3, j).

The maximum spanning tree T of the network A defined
in the last section again plays an important role in our al-
gorithm. We will assume that A is connected, as in §2. In
that case, the maximum spanning tree can be constructed
in O(mnlogn) time by a standard algorithm [26, §50]. It is
straightforward to show that the maximum spanning tree T
is a set of n +m — 1 cells. Since each column must contain
an element of T, the tree must have the following structure.

(i) A set K of k = |K| < (m — 1) columns containing at
least two cells per column, giving (k+m—1) < 2(m—1)
cells in total. We denote this set of cells by B. For each
j € K, there is some ¢* with b;=; = max; b;; such that
(¢*,7) € B.

(ii) In each of the remaining (n — k) columns j € [m]\
K, there is a single cell (i*,5) € T such that bi=; =
max; b;j, giving (n — k) cells in total. Denote this set
of cells by D.

Clearly T =B W D. In the special case of standard contin-
gency tables [4] T has a very special structure: B contains
all cells in the column with max; ¢c; and D contains all re-
maining cells in the row with max; ;. In cell-bounded tables
the structure of T is less predictable but is crucial for our
algorithm. We will use T to partition the columns of the ta-
ble into small and large columns, and the rows of the table
into small and large rows. The key to this partitioning is a
“jump” property for the cells of B, which results from the
following observation.

LEMMA 6. For every i € [m], there ezists a j' € [n] such
that (i,5') € B and b;j» > i /mn.

PROOF. There exists (¢, ") € T such that b;j» = max; b;;
> ri/n, since T is a maximum spanning tree. If (i, j*) € B,
we are finished. Otherwise, suppose (4,5*) is in D. Col-
umn j* must contain a cell (¢’,5*) with ¢ # 7 such that
birj» > bij+ /m. If not, we would have

D bije < (m—Dbiye/m < (m—1)c;+ /m,

i i
Then, for every table x € %, .5, we would require x;;+ >
¢j* — D043 birj= > ¢+ /m. This contradicts the tightness of
the bounds for cell (i,5*), since it implies a positive lower
bound. Hence there must be at least one i’ # 4 such that
by j+ > bij+ /m, and our claim holds. Also, because (i,5") €
D, we have (i,7*) € T. But now there is a circuit I' in
B U {(4j%),(#,j*)} with (4,5%) e TNT, (¢,5°) € T\ T.
Clearly there is some cell (i,5') € I'N B and we must have
bij© > byj», since T is a maximum spanning tree. Thus
bij; > by > byx/m > ri/mn. O

We are now ready to prove the “jump” property.

LEMMA 7. Suppose that n > m and we are given r =
(r1,...,™m),c= (c1,-..,¢n), and tight cell bounds {b;; : i €
[m],j € [n]}. Then either it is the case that all bij < n*™?,
or there is a “jump” J = [n?,n"], withq> B, ¢+ B <r <
2mp, such that b;; ¢ J for all (i,7) € B.

PROOF. Let (io,jo) be such that b;y;, is a largest cell
bound. Assume b;yj, > n*™”, from Lemma 6 there exists
(40, 71) € B with b;y;; > n*™P~2. There are at most 2(m—1)
cells of B. We may assume that some one cell has bound at
most n*?, otherwise we can set J = [n®,n?]. So assume
there exists (i2,j2) € B such that bi,j, < n?. There are at
most 2m — 3 other cells in B. If there is no jump J, then
max; jyes b” < n2ﬂnﬂ(2m—3) — nﬁ(2m—1) < n2mﬂ—2 <
biyj., a contradiction. [

If b;; < n®™P for every i € [m],j € [n], then we determine
|2, c.b| exactly by dynamic programming (see §3.1). We now
assume the jump J exists. For any row ¢ € [m], let b;;; =
max(; j)eB bij. By Lemma 6, if ;57 < n?, then r; < mn?tl.
Alternatively, if b;;; > n", then r; > n". Thus all row totals
r; satisfy either r; < mn?t! or r; > n”. Therefore the
jump in the cells in B guaranteed by Lemma 7 induces a
corresponding, though smaller, jump in the row totals.

DEFINITION 4. For any cell with b;; < n?, we call (3, j)
a small cell. The set of all small cells is denoted by S. The
remaining cells A\ S are called large cells. We call any row
i a small row if every cell (i,j) € B is small. We assume
without loss that [o] is the set of small rows, for some o €
[m]. Thus r; < mn®*! ifi € [o]. Rows [m]\[o], called large
rows, satisfy r; > n".

In §3.2 we show that the flow in small cells and rows can
be set arbitrarily, without greatly influencing the number
of flows in the residual table, provided the small row totals
are satisfied and the column totals are sufficiently large. We
show in §3.1 how the number of solutions for the small rows
and small cells can be determined by dynamic programming.
However, to ensure that we deal with tables in which all
column totals are sufficiently large, we first partition the
columns of the table into small and large columns.

DEFINITION 5. If bij < n*™® for all i € [m],j € [n], we
define the set of small columns to be [n]. Otherwise q is
defined and p = q + B/2. Then the set of small columns
is the set of all columns j satisfying ¢; < n®. We assume
without loss that these are columns [V] for some v € [n].

Let R={(4,j) € A:0<i<m, v <j<n} Werefer R as
the residual table. In §3.1 we will use dynamic programming
to decompose the problem into smaller subproblems on R.

First we eliminate the small columns of the table in poly-
nomial time, to express the value of |X, .| as the weighted
sum of a polynomial number of cell-bounded contingency
problems, each of size m by n — v, on the large columns.
Let S, be the set of all feasible partial row sums for the
small columns. Thus S, is the set of all ordered parti-
tions ¢ = (t1,...,tm) of 37_, ¢; into m parts such that
i e by # 0. For every t € S,, we will determine

Wi =def | Xt ,e(0),b]-

Next we consider the subproblems on the large columns.
Let s denote (r —t) throughout. For each t € S,, we have



row sums s; (¢ € [m]) for the table on the large columns.
We perform dynamic programming on the small rows (r; <
mn?t!) to count exactly the total number of assignments
to all small rows, given that the partial row sum over the
small columns is t. Let S’ be the set of small cells in R,
ie. 8 ={(4,j) € R: b; < n?}. For the remainder of
this section we are working with the large columns, and we
abbreviate X ), t0 Xs,c,b.

DEFINITION 6. Let Y,y be the set of tables on the
small rows which have row sums s; for ¢ € [o], arbitrary
column sums, and satisfy the cell bounds for all i € [0],] €
[n] \ [v]. Let S’ denote the set of small cells in R, and let
s be the set of assignments to all cells (i,7) € S' which
satisfy the cell bounds.

The second step in §3.1 will be to calculate, for every t € S,,
the term

Wi =det |Es(0),*,b| X |ES'|'

DEFINITION 7. A partial assignment x to all small cells
and all cells in small columns and rows will be called good
if it satisfies the cell bounds, each small column j € [v] has
sum cj, and each small row i € [o] has sum r;. Let G be the
set of all good assignments.

For any x € G, let N'* denote the residual network obtained
by fixing the values of the small columns, small rows and
small cells to their values in x. Let P* be the flow polytope
for A%, and let Z(P*) be the set of lattice points in P*.
Clearly

|Zre] = Z IZ(P)|- (4)
x€EG
We approximate |2, .| in the following way. We choose
any fized y € G. The residual network A'? is not necessarily
connected. However, we make two useful observations:

(a) For every good assignment x € G, N'* has the same
component structure.

(b) Every component contains at least two rows, so there
are at most m/2 components.

Facts (a) and (b) follow indirectly from Theorem 8 in §3.1.
Fact (a) follows since Theorem 8 implies that N'® has the
component structure of R\ S for all x € §. Fact (b) fol-
lows, since Theorem 8 implies P* is full-dimensional for ev-
ery component, but a one-row table has a unique rational
flow. For each component C of N'¥, we consider the flow
polytope P of N&. We use volume estimation [13, 21] to
estimate vol(Pg) within relative error €/2m in time polyno-
mial in n, e and log(max;; b;;). Denote this estimate by

\751(73%). Next we define

vol(PY) =qer [] vol(PY).
C

Finally we estimate |Z(P*)| by \7(;1(7”), for every assign-
ment x € G. Note Xxegl = Zies, wiW;i. Therefore our
estimate |X'| of [Z, c| is

'] =det Sreg vOlPY) = vol(P¥) ¥ g1
=vol(PY) 3,cs, wiWe.
The w; will be computed (in polynomial time) in the first

dynamic programming phase and the W; in the second dy-
namic programming phase (see §3.1). The product vol(PY)

(5)

is computed by at most m/2 calls to a volume estimation
algorithm.

To prove that our algorithm is an fpras, we must show
that, with high probability,

(1_€)|27‘,c,b| < |E’| §(1+E)|Er,c,b|-

In Theorem 9 we prove the following, where x,y € G and C
is any component of NV,
(i) (1—e€/2m)vol(Pg) < |Z(PE)| < (1+4¢€/2m)vol(PE).
(ii) (1—e/2m)vol(Pg) < vol(PE) < (1+4¢€/2m)vol(PE).

The proof of Theorem 9 depends strongly on the jump J
of Lemma 7, and a careful choice of values for p, ¢ and r.
Combining (i) and (i), we find that for any x € G and
component C,

(1 —¢/2m)*vol(PE) < |Z(PE)| < (14 €/2m)’vol(PY).

By construction we know that, with high probability, the
estimate vol(Pg) lies within (1+e/2m)vol(Pg) for every C.
Therefore, with high probability, for every x € G,

(1 —¢/2m)*vol(PY) < |Z(PE)| < (1 + €/2m)*vol(PE).
For all x € G we have

iZ(P) = [TIzPs)l.
C

There are at most m/2 components so, with high probabil-
ity,

(1 —e/2m)*™/> T] vol(PE) < |Z(P)|
C

IN

(1 + e/2m)*™/* [T vol(PE).
C

We have € € (0,3), (1 —¢/2m)*™/2 > 1 —¢ and (1 +
€/2m)*™/2 < 1 + e. Hence for all x € G,

(1—e)vol(PY) < |Z(P¥)| < (1+€)vol(PY).

So by (4) and (5), the value |X'| lies within (1 £ €)|Z,¢,5],
and our algorithm is indeed an fpras.

3.1 Dynamic Programming

Phase 1: Compute w; = [5¢ ¢(,),5| for every ¢t € S,.
Recall s = r —t. There are two cases where we apply dy-
namic programming:

(1) If there is some i € [m],j € [n] such that b;; > n®™#,
we apply dynamic programming to the small columns
[V] to calculate | c(.),s| for every partition ¢ € S,.

(2) If bij < n*™P for all i € [m],j € [n], we apply dynamic
programming to calculate |, ¢ 5| exactly. We will refer
to this case as the v =n case.

We consider each column h (1 < h < v) in increasing order,
and compute |X; .n)| for each ordered partition t € Sp.
This is similar to the dynamic programming phase of the
foras of [4] for standard contingency tables with a constant
number of rows.

By definition of a small column, we know that every cell
bound is at most ¢; < n? = n?*? < P28 in thev < n
case, or less than n?™? in the v = n case. In either case we

have b;; < n*™” for every cell in a small column.



If h = 1, then |Z;.1),s| = 1 for every partition t of c;
into m parts which satisfies ¢; < b;1 for all ¢ € [m]. Therefore
the cardinality of S1 can be bounded by

m—1 m—1
1Si1< JT s +1) < TT n®
i=1 i=1

which is polynomial in n and e~
can list S; in polynomial time.
If 2 < h < v, we use the results from the computation on
column (h — 1) to compute |5y c(n),|- Let £ denote an ele-
ment of Sp—1. Then the dynamic programming recurrence

is
St .cenol = >

teSy_1:(t—bp)<E<t

n2m(m—1)ﬂ,

! for m constant. Thus we

1Z¢ ch—1),]> (6)

since there is a unique extension to column h with values
xin = t; — t; provided these satisfy 0 < x;p < b;n. Therefore
we can use the |X; .,_1,| values constructed for column
(h — 1) to compute |3, ;(p),5| for column h.

We now bound the running time of the dynamic program-
ming algorithm. First we bound the number of possible
t € Sp. We have b;; < n*™ for all i € [m], j € [v]. For
any i € [m — 1], min{r;, 2?21 bij} is an upper bound on ¢;,
for any t € Si. Therefore any t € S, must have t; < n?™P+1
since h € [n].

Therefore the cardinality of Sp can be bounded by

|Sk| < H Zb” +1)< H 2mp+L _ o (m-1)2mB+1)

i=1 j=1

Thus Sy can be listed in  O(n(™~DE™A+D))  time, which
is polynomial in n» and e * For each t € Sy, we can
calculate |X; c(n),s| using equation (6). There are at most
on(m—1EmB+1) glements of S, and for each such element we
sum over at most 2n(™~V@mE+L) elements of Sy_1. There-
fore the h*® phase of the dynamic programming algorithm
takes O(n*(m~D(EmA+1)) time, There are at most n phases
of dynamic programming. Therefore the running time of the
entire algorithm is bounded above by O(n?(m~1ZmE+1)+1y
which is polynomial in n and ¢™*

If v = n, then we are done. If ¥ < n — 1, we obtain a
polynomial-sized set of weights {w; : t € S,} with w; =
|34 c(v),0, such that

|Er,c,b| = Z ’wtlzs,c(ﬁ),b|- (7)

teSy

Phase 2: Compute Wy = |X,(5),4,5| - |Es| for every t € S,,.
We assume that there is at least one cell with b;; > n*™’.
Then, since the original cell bounds are tight, there is some
§' # j such that b;j; > n®™?~'. By definition of p, both
j and j' are large columns. So there are at least two large
columns, ie. v <n—2.

For the remainder of this section, we omit the 7 from ¢(7),
b(7), since we are always working with the large columns
[n] \ [v]. For each t € S,, we compute the total number of
assignments to the small rows and small cells of the table
on the large columns with row sums s = r — ¢t. We will
use dynamic programming to count the following quantity
exactly:

S a(oy sl —H| Ol (8)

where E(S?,*JJ =def { (2v41,---,2n)
zj < bij}.

For every i € [o], we compute |E( )* sl by dynamlc pro-
gramming. For v+ 1 < h < n, and for every s; < s;, let
s 120) 8 g 2 = 85,0 < 2 < by},

sh,%,b =def { (Zu+1, e
Define |E§’,_"i)b| = 1. Then we use the following recurrence

n
P % = 8,0 <

(i,m) |

8i,%,b1"

to compute |E(S?* ol =12

min{sz,bi,;ﬁ_l}
(i,h+1) ) _ (i,h)
|ES§1*15 | = Z o |E(S§—wh+1):*,b|' (9)
Th41=

q+1 q+1

Every row ¢ € [o] satisfles 3 < mn?"", so s; < mn
Therefore we consider at most mn?*! values for s;. For
each sj, we consider at most b; p+1 + 1 < mn?t! values for

Zh+41. Therefore computing |Egi’z)b| for a single value of s;

requires O(n?™!) time. For given h, we compute |E( )

all s; < s; in O(n 2(‘I‘H)) time. There are O(n) values of h,
| in O(n®7%3) time. We can compute

ol for

S0 we compute |Es b

|E§?,*’b| for all i € [o] in O(n®?+3) time, since ¢ = O(1).
Thus we can compute | Sy, 5| in O(n*??) time, using (8).

Finally, consider the set of small cells §' C R. For ev-
ery (i,j) € S’, we have b;; < n?. Thus there are at most
bij + 1 < n? feasible values for each cell (i,5) € S'. To de-
termine |Sg|, we treat each (4, j) € S’ separately. It can be
computed in O(mn) time as:

sl = J] i +1).

(i,5)€s’

Hence we can compute Wi = |E;(5),4 0] |Esr| forallt € S,.

3.2 Volume Estimation

We state here some facts which were used earlier to show
that our algorithm is an fpras. Let A be the network whose
flows correspond to elements of ¥, ;. Consider any x € G,
and let A'* be its residual network. Any small cell (i, j) € S’
in R will have been assigned a value by x. We refer to these
as blocked cells, the remainder being unblocked. By the def-
initions of small rows, small cells and the small columns, it
seems likely that the values assigned by x should not greatly
influence the number of flows in N'*. We will prove that this
is in fact the case. We first prove the existence of a “cen-
tral” rational flow in N*. For any component C of N'*, let
Tc = Be W D¢ be a maximum spanning tree on C. Let

= UC’ TC, B’ = UC’ BC and D’ = UC Dc.

THEOREM 8. Let  be the rational flow on N defined in
§2. Suppose x € G yields residual network N*. Then there
is a rational flow g* in N'* such that

95 € fij £ (m+1)nPtt (i,5) € B,
95 € fi; £m’nttt, (4,7) € D',
93 = fijs (4,5) € R\ T".

Also, the tight bounds for any cell (i, ) in N satisfy £i; <
9% — bij [Amn and bj; > g% + bi; /4mn.

PrOOF. Let T = B W D be the original spanning tree for
N. Suppose C is a component of N*. We first show that
there is a maximum spanning tree Tc = B¢ W D¢ in C of
unblocked cells, constructed using the original b;;, such that



bi; > nP/m for every (i,j) € D¢ and b;; > n” for every
(4,7) € Be.

Let Ic be the set of rows and Jc the set of columns
spanned by C, so B¢ is a subtree of T¢ spanning Ic. All
cells in D¢ satisfy b;; > n?/m, since ¢; > n® for all j € Jo
and the b;; were tight for A’*. Only cells with b;; < n® have
been removed from N, so all cells in the subtree B’ = CNB
of T spanning I¢ remain, since r > p + 3. Therefore every
cell (¢,7j) € B¢ also satisfies b;; > n". Otherwise we can
obtain a spanning tree of greater weight by removing any
(i,7) € Be with b;; < n” from T¢, and reconnecting the
resulting components by the appropriate edge of B’.

Let f be the rational flow defined in §2, having slack
bij /2mn on every cell (i,5) € A. We modify f to obtain
a rational flow g* in NV so that g;; = x4; for all (,5) ¢ R\'S
and every cell (4,j) € R\ S has slack at least b;; /4mn.

Let C be any component of N*. The residual row and
column sums of the table on Ic x Jc depend on x. For
every ¢ € I¢, the residual row sums 7;(x) satisfy

14
ri > Fi(x) = ’l"i_zxij_ Z Tij
=1

i>v,(i,5)€S
v
> ri—y bij— Y by
Jj=1 i>v,(i,5)€S
> 1 —vn’ — (n—v)n?
> r;—nPt

The residual sums é; for columns j € J¢ satisfy

(o8
G > &(x) = G-y wi— Yy @
i=1

i>0,(i,j)€S
o
> ¢ - E bij — E bij
i=1 i>0,(4,7)ES
1
> ¢j —on® — (m—o)mn®"
2 g+l
> ¢ —m’n?T.

Clearly |#;(x) — #(f)| < nPT! for i € [m]\ [o] and |&;(x) —
& (D) < m*nt+ for j € [n] \ [v].

Suppose that we modify f to obtain a new function f*, as
follows:

fij for (z,])ER\S

The function f* is no longer even a rational flow in A'. How-
ever, we will modify f* to produce a rational flow g*, by
changing only the cells in the trees T¢. First we “correct”
the column sums for f* in Jo. Let j € Jo be such that
E;ll f;; 76 cj. Let i€ [m] be such that bi*]’ = maX;ei, bi]‘.
We may assume that (i*, j) € To. Then b;+; > nP /m, so

fZ;-={ zi; for (i,5) ¢ R\'S

. -1 +8/2—1 6, q+2
bix j S n? _ nath/ > 32m°n? — 16mindt?.
2mn — 2m? 2m? - 2m?

By definition of f, ﬁbi*j < f;ij = fi*j < (1 — ﬁ)bl*]
Thus we can add or subtract 16m*n?*? to f} ,; and the re-

sulting value satisfies the cell bounds. Since |&;(x) —é&;(f)| <
m’n?™!, we can add é;(x) — ¢;(f) to f%; and maintain the
cell bounds for (i*,7). Since m’n?™' < b;+;/32m>n’, the
resulting value in cell (i, j) will still have slack of at least
bi=j/3mn. Define h*x; = fix; + &i(x) — & (f), h?j = fij

(i #i*). Then

m

E : X
hz’j

=1

ixiﬂr Xm: fiz +¢&(x) — &(f)

i=o+1

= GG+ DD fa 60— (D

i=o+1

m a

= ¢+ Y fi—(—) fi)

i=o+1 i=1

= G,

and column total j is satisfied. Note that we corrected col-
umn sum j by changing one cell in column j. Therefore, we
can correct each of the column sums for all C and j € J¢ in-
dependently. Letting T’ = | Tc, we obtain a new function
h* satisfying

X, P— ..

hij = Tij,

x P ..

hl] _fU7 2 at1
X = q
hi; € fij £m n?,

(4,7) € R\'S,
(4,5) € R\ (SUT),
(G,5)eT’

with column sums ¢; (j € [n]) and row sums r; (¢ € [o]).
The row sums for h* lie in r; £ nP™ (i € [m] \ [¢]), since

n
2 g+1
ri —vn? — (n—v)m’n®tt < E hi;
Jj=1

< ri+vn? + (n—v)m*ntth

Now we correct the row sums for all C and 7 € I¢. Define
Jo(i)={j€Jc:(54) ¢ S'} and Ic(j) = {i € Ic : (3,4) ¢

S'}. Let
Z hxij — f"z(x)

j€dc (i)

err;(h*) =

be the signed error in row ¢ € Jo. Note that

Zerri(hx) = Z Z hxij—zfi(x)

i€lo i€lc jEJo (3) i€elo
= D &) - D mx) = 0.
jEJ¢ i€lg

We now correct the row totals by considering pairs of rows
i,4' such that err; > 0 and erryy < 0. Let ¢ = min{err;, —erry },
50 0 < ¢ < nPH!. Let P; i be the unique path in T¢ from 4
to 4'. Observe that P; s C B¢ for every i,i' € Ic, and
br; > n" for every (k,j) € Be.

We modify h* in the cells of P; ;+ by routing flow ¢ from 4
to i'. Note that P; ;; has odd length, since A'* is bipartite.
List the cells of P; ;s in order of appearance from i to 7', sub-
tract ¢ from all cells in odd positions in this list and add ¢
to cells in even positions. The only change to sums over
rows or columns are in rows ¢ and i'. Denote the updated
solution by h*. Then

err;(h*) = err;(h*) — o,
erryy (R) = erry (W) + ¢,
errp (W) = errp(h*) (k #4,7).

Clearly no error is increased in absolute value. Furthermore,
either the new error for row ¢ is zero or the new error for
row 4’ is zero. Thus the routing exactly corrects either row i
or row 7. We perform this procedure iteratively, at each
step choosing a pair of rows 4,4 such that the sum in row i



has positive error and the sum in row ¢’ is negative. Since
we correct at least one row sum at every step, we do this at
most m times to obtain a function g* with row sums #;(x)
and column sums é;j(x). The cells which are altered (the
B¢ cells) during the row-correcting process still satisfy their
cell bounds. We know that the total amount of flow routed
from all i to ¢’ pairs is at most mnPT!. Therefore no cell
changes by more than mn?*! from h* to g*. During the
correction of column totals, from * to h™, an element of B¢
could have been changed once by at most m>n?*'. Thus the
total modification to any B¢ cell is at most mnP T pm?natt,
which by definition of 3, ¢, and p is at most (m+1)n?™!. But
the cells in B¢ have upper bound b;; > n". Hence, using the
definitions of p, r, the slack for g* in cell (4, j) € B¢ satisfies

bij/2mn — (m+1)n*t!
> bij/4mn + (0" /Amn — (m + 1)nP*)
Z b,-j/4mn,

Thus all cells (z, j) € Be satisfy their cell bounds with slack
at least b;;/4mn in g*. The cells in D¢ are modified only
once by at most m>n?*!, in going from from f* to h*. But
these cells have upper bound b;; > n? /m. We have already
shown that the cells altered in going from f* to h” have
slack b;; /3mmn, therefore these cells will certainly have slack
bij /4mn. No other cell is changed. Thus, for every (4,j) €
Tc, the tight bounds have slack at least b;; /4mn in g*. Now
we can repeat the argument of §2 to show that, for any
cell (i,4), there are rational flows ¢’,¢" in N'* with gj; =
935 + bij/Amn, gi5 = g5 — bij /Amn. O

THEOREM 9. Let x,y € G, let C be any component of R,
and let PE, Pg be the corresponding flow polytopes. Then

(i) Z(P&) € (1 £ e/2m)vol(Pg),

(11) vol(Pg) € (1% €/2m)vol(PgZ).

PROOF. (i): From Theorem 8, the tight cell bounds sat-
isfy bj; — £i; > bs; /2mn for all (¢,7) € R\ S. Now, since

b nd
blo—p > M >
U= 9mn T 2mn
S n6+210gn(32m65_1)
- 2mn
16n°m?* 16m
> S = (mn)'

& satisfies the conditions of Theorem 2 with e = ¢/8m.

Therefore, since 1 —0 <e % ande <1420 (0<0< ),
(1 —¢/2m)vol(P&) < Z(PE) < (1+ ¢€/2m)vol(PS).

(ii): Observe that Pg is the set of points z satisfying

Yiciow %ii = Ti(x), i €I,
i€lc() #id = & (%), j € Je, (10)
0 < zi; < by, (i, ) € C.

In Theorem 8 we constructed a rational flow g* € P satis-
fying
i < g < bi(1— g)

— 4mn

for all (7,5) € C,

where the b;; are the bounds which were tight for A'. They
are not necessarily tight for A%, but here we choose to work
with the original bounds. Rewriting (10) relative to g*, by

setting Z;; = z;; — g3 for all (4,7) € C, gives

ZjEJc(i) Zij = 0, 1 € Io,
ietey Zii = 0, Jj € Je, (11)

For (i,j) € Do, let Io(j) = Ic(j) \ {(i,5)}. Now, by
eliminating Z;;, for (4,j) € T¢, we get the following full-
dimensional representation for (11). (See Schrijver [26, §13].)

_gzxj < Z(k,l)ePﬁ e — z:(k,l)ENij Zke

< bij — 93, (4, 4) € Be,
—g55 < —Ekezg,(j) Zy; < bij — g5, (12)
(Z:J) € DC:
—955 < Zij < bij — 93, (4,5) € C\ Te.

where (k,£) € N;; if the directed path in T¢ from row k
to column £ traverses arc (4,7) in the direction ¢ to j, and
(k,£) € P;; if the directed path in T from k to £ traverses
(4, 7) in the direction j to 1.
Similarly, for any other y € G, Pg, is the set of points Z'
satisfying
=95 < Eeoer; Zke = Loyens; Zie

<
< b'lJ_g:JJ’ (iaj)GBCa

IN

_g?j _Ekel’c(j) lecj < bij_gz'Jj: (13)

(4,5) € Do,
=95 < Zij < bij = gij,

(4,7) €e C\ Te.

But our construction of g* and gV ensures that g3; = f;; =
g;; for every (i, §) € O\ To. Zj; = Zyj for all (i, §) € C\ Te
and (13) can be written as

_9?]‘ Z(k,z)epﬁ Ze — E(k,l)EN,-j Zyt
bi]'_g?ja (i,j)EBC,

_Ekez'c(j) Zrj < bij —.gfij (14)
(Z:]) € DCa

INIA

IN

_v
9ij

—95 < Zij < bij — g%, (4,5) € C\ Te.

Let ¢ = €/4m®n. We now show P& C (1 + ¢)Pg. It follows

from (14) that (1 + €)Pg, is the set of points Z satisfying
—(1+8)9i; < Xrpyer,; Dkt = Xrpyens,; 2t

(1 +6)(b1] _g?])a (7’,.7) S BC’

INIA

Y .
_(1+5)gij _Ekejb(j) Z; (15)

(1 +€)(b” _g:-;): (Z:J) € Dc,

ININ

—(1+¢)gj;

IA

Zij < (1+¢€)(bij — 955)s
(4,7) € C\ Tc.

We must show that every Z € Pg satisfies (15). Clearly Z
satisfies the inequalities for C' \ T¢. Consider the inequali-
ties for D¢. For (i, j) € D, we have g}, ¢35 € fi; +minitt
by Theorem 8, and therefore |g; — g;;| < 2m*n?*'. There-
fore, we must show that emin{b;; — g}, 9,5} > 2m2natt,
We have min{b;; — g;, 9:;} > bij /4mn from Theorem 8 and



we know that b;; > n?/m for all (3,j) € Do. Thus

. en? en?”?
emin{b;; — g;, 95} > am?n _ 16m*

+1+log, (32'm6 6_1)

16m*

2 g+1
= 2m’n®,

en?

as required. Finally, consider the cells (4, j) € Bc. We have
95,95 € fij £ (m + 1)n?*! by Theorem 8, so |gf; — g¥| <
2(m + 1)nPT'. Therefore, we must show that emin{b;; —
95,951 > 2(m + Pt We have min{b;; — 95,95} >
bi; /[4mn from Theorem 8 and we know that b;; > n” for all
(7,7) € Be. Thus

7 r—2
en en
i i, v oy _
e min{b;; _gijvgij} > amn . 16m3
b 6_—1
enPT1+1o8, (32m7e™ ")
>
- 16m3

= 2m®nPt > 2(m+ 1)t
We have now shown that P& C (1 + &)Pg. Therefore
vol(P&) < wvol((1+¢)Pg)
< (1+e)*vol(PY),

where d¢ = (|Ic|—1)(|Jc|—1) —|S’| < mn is the dimension
of P& (and PZ). Therefore

vol(P&) < (1+¢&)™"vol(Pg)
€ mn y
(]. + —4m2n) VOl(Pc)
€ y
(]. + 2m) VOI(PC),

using (1+6/k)" <1+20 for 0 <6 < ; and k> 0.
Switching the roles of x and y, we also have vol(Pg) <

(14&)™"vol(Pg). Then it follows, using (1+60/k)™" > 1—20

forOSGS%andn>0,tha’c

IA

vol(Pg) > (L+¢&) ™"vol(Pg)
(1- %) vol(PY).

\Y%

O

4. REFERENCES

[1] S. Aoki, Exact methods and Markov chain Monte Carlo
methods of conditional inference for contingency tables,
PhD Thesis, University of Tokyo, 2004.

[2] A. Barvinok, A polynomial-time algorithm for counting
integral points in polyhedra when the dimension is fixed,
Mathematics of Operations Research 19, pp. 769-779, 1994.

[3] W. Baldoni-Silva, J. De Loera and M. Vergne, Counting
integer flows in networks, 2003. Available from
http://arxiv.org/abs/math/0303228.

[4] M. Cryan and M. Dyer, A polynomial-time algorithm to
approximately count contingency tables when the number
of rows is constant, in Journal of Computer and System
Sciences, 67(2): pp. 291-310, 2003.

[5] M. Cryan, M. Dyer, L. Goldberg, M. Jerrum and R.
Martin, Rapidly mixing Markov chains for sampling
contingency tables with a constant number of rows, in
Proc. 48rd Annual IEEE Symposium on Foundations of
Computer Science, pp. 711-720, 2002.

[6] J. De Loera and B. Sturmfels, Algebraic unimodular
counting, 2001. Available from
http://arxiv.org/abs/math.C0/0104286.

[7] P. Diaconis and B. Efron, Testing for independence in a
two-way table: new interpretations of the chi-square
statistic (with discussion), Annals of Statistics 13,
pp- 845-913, 1995.

[8] P. Diaconis and A. Gangolli, Rectangular arrays with fixed
margins, in Discrete probability and algorithms (D. Aldous,
P. Diaconis, J. Spencer and M. Steele, eds.), IMA Volumes
on Mathematics and its Applications 72, Springer-Verlag,
New York, pp. 15-41, 1995.

[9] P. Diaconis and L. Saloff-Coste, Random walk on
contingency tables with fixed row and column sums,
Department of Mathematics, Harvard University, 1995.

[10] P. Diaconis and B. Sturmfels, Algebraic algorithms for
sampling from conditional distributions, Annals of
Statistics 26, pp. 363-397, 1998.

[11] M. Dyer, Approximate counting by dynamic programming,
in Proc. 35th Annual ACM Symposium on the Theory of
Computing, pp. 693-699, 2003.

[12] M. Dyer and C. Greenhill, Polynomial-time counting and
sampling of two-rowed contingency tables. Theoretical
Computer Science 246, pp. 265-278, 2000.

[13] M. Dyer, A. Frieze and R. Kannan, A random polynomial
time algorithm for approximating the volume of convex
bodies, Journal of the ACM 38, pp. 1-17, 1991.

[14] M. Dyer, A. Frieze, R. Kannan, A. Kapoor, L. Perkovic
and U. Vazirani, A mildly exponential time algorithm for
approximating the number of solutions to a
multidimensional knapsack problem, Combinatorics,
Probability and Computing 2, 271-284, 1993.

[15] M. Dyer, R. Kannan and J. Mount, Sampling contingency
tables. Random Structures & Algorithms 10, pp. 487-506,
1997.

[16] M. Grotschel, L. Lovasz and A. Schrijver, Geometric
algorithms and combinatorial optimization,
Springer-Verlag, 1991.

[17] R. Holmes and L. Jones, On uniform generation of two-way
tables with fixed margins and the conditional volume test
of Diaconis and Efron, Annals of Statistics 24, pp. 6468,
1996.

[18] M. Jerrum, A. Sinclair and E. Vigoda, A polynomial-time
approximation algorithm for the permanent of a matrix
with non-negative entries, in Proc. 38rd Annual ACM
Symposium on Theory of Computing, pp. 712-721, 2001.

[19] M. Jerrum, L. Valiant and V. Vazirani, Random generation
of combinatorial structures from a uniform distribution,
Theoretical Computer Science 43, pp. 169-188, 1986.

[20] R. Kannan and S. Vempala, Sampling lattice points, in
Proc. of 29th Annual ACM Symposium on Theory of
Computing, pp. 696-700, 1997.

[21] L. Lovasz and S. Vempala, Simulated annealing in convex
bodies and a O*(n*) volume algorithm, in Proc. 44th
Annual IEEE Symposium on Foundations of Computer
Science, pp. 650-659, 2003.

[22] B. Morris, Improved bounds for sampling contingency
tables, in Random Structures € Algorithms, 21(2),
pp. 135-146, 2002.

[23] J. Mount, Application of convex sampling to optimization
and contingency table generation, PhD thesis, Carnegie
Mellon University, 1995. (Technical Report
CMU-CS-95-152, Department of Computer Science.)

[24] J. Mount, Fast unimodular counting, Combinatorics,
Probability and Computing 9, pp. 277-285, 2000.

[25] F. Rapollo, Markov bases and structural zeros. Preprint,
Department of Mathematics, University of Genova, 2004.

[26] A. Schrijver, Combinatorial optimization—polyhedra and
efficiency, Springer-Verlag, Berlin, 2003.

[27] L. Valiant, The complexity of computing the permanent,
Theoretical Computer Science 8, 189-201, 1979.



