Markov Chain Algorithms for Planar Lattice
Structures”

Michael Luby' Dana Randall! Alistair Sinclair}

Abstract

Consider the following Markov chain, whose states are all domino tilings
of a 2n X 2n chessboard: starting from some arbitrary tiling, pick a 2 x 2
window uniformly at random. If the four squares appearing in this window
are covered by two parallel dominoes, rotate the dominoes 90° in place.
Repeat many times. This process is used in practice to generate a ran-
dom tiling, and is a widely used tool in the study of the combinatorics of
tilings and the behavior of dimer systems in statistical physics. Analogous
Markov chains are used to randomly generate other structures on various
two-dimensional lattices. This paper presents techniques which prove for
the first time that, in many interesting cases, a small number of random
moves suffice to obtain a uniform distribution.

1 Introduction

This paper is concerned with algorithmic problems of the following type: given a
simply connected region S of the two-dimensional Cartesian lattice (e.g., an n x n
chessboard), generate uniformly at random a tiling of S with non-overlapping
dominoes, each of which covers two adjacent squares of the lattice. This prob-
lem arises in statistical physics, where the tilings correspond to configurations of

*A preliminary version of this paper appeared in Proceedings of the 36th IEEE Symposium
on Foundations of Computer Science, 1995, pp. 150-159.

'Digital Fountain, Inc., 600 Alabama St., San Francisco, CA 94110. Email:
lubye@digitalfountain.com. Work done while at the International Computer Science Institute.
Supported in part by NSF Grant CCR-9304722 and US-Israel Binational Science Foundation
Grant No. 92-00226.

tSchool of Mathematics and College of Computing, Georgia Institute of Technology, Atlanta
GA 30332-0160. Email: randall@math.gatech.edu. Supported in part by NSF Career Grant
No. CCR-9703206.

§Computer Science Division, University of California, Berkeley CA 94720-1776. Email:
sinclair@cs.berkeley.edu. Supported in part by NSF Grant CCR-9505448, by ICSI Berkeley,
and by a UC Berkeley Faculty Research Grant.



a dimer system on S (see, e.g., [8]). Various physical properties of the system
are related to the expected value, over the uniform distribution, of some function
defined over configurations, such as the number of horizontal dominoes or the cor-
relation between the orientation of dominoes at two given squares. An algorithm
for randomly generating configurations allows such expectations to be estimated
to any desired accuracy. It also enables one to formulate and test more detailed
properties of a “typical” configuration, such as the Arctic Circle Theorem [10],
which began life as a conjecture based on observations of random configurations.

A host of other problems of physical and combinatorial interest center around
the properties of random structures of various kinds on a two-dimensional lat-
tice. Further examples that we shall consider in this paper are lozenge tilings of
a triangular lattice (corresponding to a dimer system with a different underlying
geometry), and Eulerian orientations of a Cartesian lattice, also known in the sta-
tistical mechanics community as the six-point ice model. In all cases, algorithms
that randomly generate configurations are the major experimental tool available
to researchers interested in the properties of such systems.

Returning to our first example, here is the algorithm that is most widely used
in practice to generate a random domino tiling of a region S. Starting from an
arbitrary tiling, pick a 2 x 2 window uniformly at random. If the four squares in
this window are covered by two parallel dominoes, rotate the dominoes in place
(see figure 1). Repeat this operation a large number of times. The resulting tiling
should then be (almost) random.

Figure 1: Domino rotations

The fact that this process (a Markov chain on the set of tilings) is connected
(i.e., that every tiling is reachable from every other by a sequence of moves of the
above kind) follows from a beautiful result of Thurston [17]. However, no non-
trivial upper bound is known on the number of moves needed to achieve a random
tiling. In practice, this number is decided by appealing to combinatorial intuition,
or experimentally by some ad hoc stopping rule. What is lacking is an analysis
of the rate of convergence of the Markov chain to the uniform distribution, which
would supply an a priori bound on the number of moves. Similar Markov chains,
based on analogous local moves, are used to generate other two-dimensional lattice
structures in the same way. Like the dominoes chain, they have so far resisted



analysis.

In this paper, we develop a combinatorial framework that allows several
Markov chains of this kind to be analyzed for the first time. There are two
essential ingredients. The first, which we believe to be of independent combinato-
rial interest, is to establish a 1-1 correspondence between the configurations on a
lattice region S and objects which we call routings on a related lattice. Informally,
a routing is a collection of vertex-disjoint (or edge-disjoint) paths crossing S from
left to right. (See section 2 for precise definitions and examples.) These corre-
spondences were already known, at least implicitly, but here they play an essential
role in the analysis of the associated Markov chains.

The second ingredient is to interpret natural Markov chains like the one above
on domino tilings in terms of the associated routings. As we shall see, elementary
moves on configurations correspond to natural local perturbations of the routings
(such as displacing one vertex along a path). The crucial feature of this translation
is that, when viewed in the routings world, the rate of convergence of the Markov
chain turns out to be amenable to a simple and elegant analysis using a coupling
argument. In fact, this analysis leads us to generalize slightly the class of random
moves allowed for routings; these in turn map back to natural non-local moves
for the configurations themselves. As a result, we obtain new, non-local versions
of the Markov chains which are provably “rapidly mixing” (i.e., converge quickly
to the uniform distribution).

The upshot of all this is low-degree polynomial bounds on the convergence
time of these Markov chains for all three of the examples mentioned above. We
therefore provide the first rigorous justification for experiments that use short
simulations of the chains in order to generate random configurations.

We should mention that these problems can be solved by alternative ap-
proaches. A combinatorial trick known as the Gessel-Viennot method [7] allows
one to count lattice routings by evaluating a suitable determinant. In conjunc-
tion with self-reducibility properties, this allows one to generate configurations
uniformly at random (see, e.g., [16]). Other Markov chain algorithms which can
be applied to these structures in arbitrary graphs are given in [9, 12] (for tilings)
and [13] (for Eulerian orientations). However, in the important special case of
planar lattices, the algorithms in this paper have better time bounds than these
other methods, and are simpler, more natural and quite widely used in practice.
Moreover, our bounds are in fact quite pessimistic (our main concern is to in-
troduce the methodology rather than to tune the bounds), and can be improved
with a more detailed analysis (see the subsequent paper by Wilson [18]). We also
point out that there is a simple experiment one can perform which provides a
reliable estimate of the true convergence rate: this can be used to dramatically
reduce the number of simulation steps required in practice, as discussed in [14].

The remainder of the paper is organized as follows. In section 2 we illustrate
the correspondence between lattice configurations, routings and height functions



for each of our examples: lozenge tilings, domino tilings and Eulerian orientations.
In section 3, we show how to analyze the rate of convergence of the natural Markov
chain on lozenge tilings by applying a coupling argument to the corresponding
chain on routings. In the process, we will enrich the chain with non-local moves.
In sections 4 and 5 we show how to apply the same technology to analogous
Markov chains for domino tilings and Eulerian orientations.

2 Lattice routings and height functions

In this section, we consider several important examples of lattice structures and
illustrate the correspondence between them and collections of paths which we call
routings. Routings are the key for analyzing the convergence rate, or running time,
of our Markov chain algorithms. As we shall see, the routings are closely related
to a third representation of the lattice structures known as height functions, which
arise from the tiling groups of Conway, Lagarias and Thurston [4, 17]. For each
of our three examples we briefly outline the bijections between lattice structures,
routings and height functions. As we shall see later, this framework will make the
analytical tools we develop rather generally applicable.

2.1 Lozenge tilings

The first structures we consider are lozenge tilings of a finite region of the trian-
gular lattice: we discuss these first because the correspondence with routings is
most direct here. A lozenge is the analogue of a domino in the Cartesian lattice:
each lozenge covers two adjacent triangles in the lattice, and has three possible
orientations. Lozenge tilings are configurations of a dimer system on this lattice.
As explained in the Introduction, we are interested in the problem of generating
a random lozenge tiling of the given region.

The routings corresponding to lozenge tilings are defined on an associated
Cartesian lattice. Given a finite, simply connected region S of the triangular
lattice, we define an associated region S of the Cartesian lattice as follows. The
vertices of § correspond to the midpoints of the vertical edges in S, and two
vertices in § are connected if the corresponding points in S lie on adjacent
triangles. This mapping is demonstrated in figure 2.

The vertices of S that correspond to edges on the boundary of S are called
sources and sinks: a vertex v is a source if the interior of § lies to the right of v,
and a sink if the interior of S lies to its left. It is not hard to check that, if a
lozenge tiling of S exists, then the numbers of sources and sinks are necessarily
equal. Label the sources sy,...,s; and the sinks ¢y,...,%;.

A lozenge routing of S is a set of k non-intersecting (i.e., vertex-disjoint)
shortest paths on the Cartesian lattice within S from {s1,...,sk} to {ty,... tx}.
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Figure 2: Lozenge tilings and routings

It is not difficult to see that there is a bijection between lozenge tilings and
lozenge routings of corresponding regions. Figure 2 provides a pictorial illustration
of this correspondence for a typical region S. An easy way to see this is to “mark”
the tiles containing two vertical edges with a stripe connecting the centers of these
edges. Now notice that if a tile is placed next to any vertical edge of S, then
it must have two vertical edges whose midpoints correspond to adjacent vertices
in S. Furthermore, if the vertical edge of a tile lies in the interior of S, then
it must be adjacent to another tile having two vertical edges (so the markings
line up). Following such a sequence of tiles, starting from each vertical edge on
the boundary of S, defines a set of non-intersecting source-sink paths in 5*7 le.,
a routing. Conversely, given a routing we may invert the above construction to
create a partial tiling using only marked (i.e., non-horizontal) tiles. All vertical
edges of these tiles are adjacent to another tile or to the boundary of S. The
untiled portion of S therefore consists of regions bounded only by non-vertical
edges. It is not hard to see that these can be tiled in only one way, using only
horizontal tiles. Hence there is a bijection between the set of tilings and routings
of S. Moreover, we can order the sinks so that the path from s; always ends at
t;, for all 7, and the path from s; to ¢; will have the same length in every routing.

This correspondence has been formalized by Sachs et al:

Theorem 1 ([1, 11]) The set of lozenge tilings of S corresponds bijectively with
the set of lozenge routings of S. O

The bijection between tilings and routings is closely related to the height func-
tions defined by Thurston [17]. Although we don’t require it for our analysis, we



briefly describe this connection here because it sheds further light on the above
correspondence. In this representation, the height of each vertex in the region S
is determined by an underlying algebraic structure known as the tiling group, in-
troduced by Conway and Lagarias [4]. The height function can be extended to all
points within the region by a piecewise linear function, thereby defining a three
dimensional surface associated with each tiling. It turns out that, by viewing each
surface from a certain orientation, the paths of a routing can be interpreted as
the level sets of this surface. This is a common feature of all the structures we
discuss in this paper; in the case of lozenges the surfaces are immediately appar-
ent and are just the set of three-dimensional boxes that seem to “jump out” of
the two-dimensional lozenge tiling, as in the left-hand picture in figure 2.

The heights of the vertices of any tiling can be determined by the following
simple rule. First choose a vertex u on the boundary of the region and fix its
height Ay, (u) = 0. To determine the heights of all other vertices we rely on the
bipartite structure of the dual lattice, which allows us to color all the triangles
pointing to the right white and all those pointing to the left black. Starting at u,
walk around the boundaries of tiles until an edge is traversed from a vertex v with
known height A,,(v) to a vertex w whose height has not yet been determined. If
the triangle to the left of this edge (w.r.t. the direction of traversal) is black, set
hioz(w) = hyy.(v) + 1; if the triangle to the left is white, set A, (w) = hpn(v) — 1.
Repeat this process until all of the vertices have been visited. For any tiling of
a simply connected region, the heights are always unique and well-defined (up to
translation). As an example, figure 3 shows the height function for the tiling of
figure 2, with u being the bottom vertex. A simple consequence of the above
definition is that the heights along the boundary of any tiling are determined by
the region alone and are identical for all tilings of the region.

The connection between height functions and routings in the case of lozenge
tilings is quite straightforward. We create an adjusted height function Rios by
letting v, be the vertical coordinate of vertex v (i.e., the row of the lattice that it
lies in) and defining ;LZOZ(’U) = hio.(v) + v,. It is a simple exercise to verify that,
for any vertex v, the adjusted height function satisfies ;LIOZ(’U) = fAL;OZ(u) + 3k
where k is the number of paths in the routing which lie between v and u (with
k being negative if these paths lie above v and positive if they lie below v); see
figure 3. This can be proved using the observation that on every lozenge the
heights of the two vertices where the angle is acute must be equal. This implies
that horizontal lozenges, where the two vertices with acute angles lie in the same
row, will have the same adjusted height at all four corners, while on the other two
types of lozenges the lower two vertices will have strictly smaller height than the
upper two vertices.
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Figure 3: Lozenge tilings and height functions

2.2 Domino tilings

A domino tiling is a covering of a finite region of the Cartesian lattice with
dominoes, where each domino covers two adjacent squares of the region. Domino
tilings are configurations of dimer systems on this lattice. As in the case of
lozenge tilings, there is a family of routings which correspond bijectively to the
set of domino tilings. Again, the routings are defined on an associated lattice,
which in this case is triangular.

Given a finite, simply connected tileable region S in the Cartesian lattice,
we define a related region S (which lies on a triangular lattice). First color the
squares of the Cartesian lattice black and white as on a chessboard. The vertices
of the triangular lattice can be defined as the centers of all of the vertical edges
of the Cartesian lattice which have a black square to their right, where edges are
defined by connecting each vertex (z,y) to (z + L,y + 1), (x + 1,y — 1) and
(x 4+ 2,y). The region S is the part of this triangular lattice which is defined by
vertices and edges contained completely within the original region S. Sources and
sinks of S are defined in similar fashion to the lozenge case: sources are boundary
vertices with the interior of S to their right, and sinks those with the interior to
their left. Once again, we pair up sources {sy,...,s;} and sinks {¢;,...,¢;} in
the obvious way. A domino routing of S is then a collection of non-intersecting
shortest paths on the triangular lattice within S from s; to t; for each 7.

The correspondence between domino tilings and routings is illustrated by
means of an example in figure 4: each tiling defines a unique routing using the
three permitted paths through the dominoes as shown. This correspondence is
formalized in the next theorem.



Theorem 2 There is a bijection between domino tilings of S and domino routings

ofg.

Proof. Figure 4 indicates how to use paths through dominoes to map tilings
to routings, as follows. Start at a source vertex s;. By definition, there must be
a black square in the interior (of the original Cartesian lattice region S') to the
right of s;. The domino occupying this square determines the first step of our
path: we connect s; to the unique point on the right boundary of the domino
which is a vertex of S in the underlying triangular lattice. We now find ourselves
at a new point with a black square to our right, and we can repeat this process.
Since we migrate to the right in each step, we eventually hit a point on the right
boundary of S which has a black square to its right, and thus must be a sink.
The paths must be non-intersecting because the tiles cannot overlap.

To see that the above map is bijective, we construct the inverse map from
routings to tilings as follows. Each path starts at a source s; (which has a black
square to its right) and follows lattice edges to a sink ¢;. As we follow the path
from left to right, we tile each of the black squares to the right of the lattice points
on the path (except the sink ¢;). There are three possible positionings for each
tile, corresponding to the three possible types of edge the path can pass through.
Since the paths are non-intersecting, our tiles cannot overlap and we are left with
a partial tiling of 5. Now there is a unique way to tile the remaining parts of the
region, namely using only horizontal tiles (whose left half covers a white square).
To see this, consider any untiled black square. The white square to its left must
be untiled, for if it were tiled there would be a path exiting its right boundary,
and then the black square would be tiled. So every black square can be tiled with
the right half of a horizontal domino. This completes the tiling since there must
be an equal number of black and white squares in 5. The uniqueness comes from
the fact that the leftmost square in each row of each untiled sub-region is white,
so we cannot complete the tiling if we use any vertical tiles. O

Once again, the routings defined above can be viewed as level sets of a height
function. The height function which arises from the tiling group for dominoes can
be summarized using a rule based on the bipartition underlying the dual lattice
(i.e., the black and white squares of the chessboard). To define the height function
hiom , start with some point u on the boundary and assign Agom(u) = 0. Now,
walking along edges bounding the tiles starting at w, if the square to the left of
an edge is black (respectively, white), increase (respectively, decrease) the height
by one. An example is illustrated in figure 5, with « being the bottom left vertex.

The connection between height functions and routings is analogous to that for
lozenge tilings. For any point v = (v, v,), let v, be the y coordinate of v (i.e.,
the row of the lattice). Let par(v) = 1 if v is the lower left corner of a white
square, and let par(v) = 0 if v is the lower left corner of a black square. Now
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Figure 4: Domino tilings and routings

define the adjusted height function by iLdom(’U) = —hgom(v) + 20, + par(v). It is
easy to verify that hgy,(v) is equal to hgem(u) + 4k, where k is the number of

paths which lie between v and v in the routing (k being negative if these paths
lie below w). Figure 5 illustrates this relationship.
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Figure 5: Domino tilings and height functions

2.3 Eulerian orientations

A third important set of structures which can be identified with lattice routings are
the Eulerian orientations of a region of the Cartesian lattice with specified bound-
ary conditions. An Fulerian orientation of an undirected graph is an orientation
of its edges so that the in-degree of every vertex is equal to its out-degree. In this
problem, the input is a finite simply connected region S of the two-dimensional



Cartesian lattice, together with a fixed orientation for each of the edges that con-
nects the boundary of S with the interior: these orientations are the boundary
conditions. Our task is to generate uniformly at random an orientation of the
edges in the interior such that all interior vertices have equal in-degree and out-
degree. This is the “six-point model” in statistical mechanics, also known as the
“ice model.”

The correspondence between Eulerian orientations and a suitable class of rout-
ings is well known in the physics community (see, e.g., [3]), and is sketched in
figure 6. The sources and sinks in this case are defined by the boundary condi-
tions, as shown. Sources are the vertices on the boundary which are connected to
the interior of the region by edges directed towards the interior and which point
up or to the right; sinks are the boundary vertices which are connected to the
interior by edges directed away from the interior (i.e., towards the boundary) and
which also point up or to the right. A necessary condition for the existence of an
Eulerian orientation is, of course, that the number of sources and sinks are equal.

An Fulerian routing of S is a set of shortest paths in S from sources
{s1,...,8k} to sinks {t1,...,¢;} on the boundary. The paths are permitted to
intersect at a vertex but not along an edge. As illustrated in figure 6, to get the
Eulerian routing corresponding to a given Eulerian orientation, we construct the
paths only from edges that are oriented up and those that are oriented to the
right. It is straightforward to establish that there is a bijection between the set
of Eulerian orientations of a region S and the set of Fulerian routings of 5.
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Figure 6: Eulerian orientations and routings

The height function associated with Eulerian orientations is an assignment of
integers to the center of each face within a region such that neighboring faces
differ in height by one. In the statistical physics community, this is known as a
“solid-on-solid surface.” To define the heights, start with a face adjacent to the
boundary, and assign to its center u the height A (u) = 0. To define the heights
of the other faces, walk along edges in the dual lattice. When traversing a dual

edge (v, w), where the height of v is already defined, let hoy(w) = hey(v) + 1 if
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the edge of the Eulerian orientation which was crossed points to the right (relative
to the path from v to w) and let hey(w) = hew(v) — 1 if the edge points to the
left. Again this height function is unique (up to translation) and well-defined. If
we define an adjusted height function fzeu;('v) = hew(v) — vz + vy, where v, and
v, are the Cartesian coordinates of v, then ileul(’v) = ;Leu[(u) + 2k where k is the
number of paths of the routing which lie between w and v. See figure 7 for an
illustrative example.
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Figure 7: The height function representation of an Eulerian orientation

Remark. The solid-on-solid height function demonstrates the well-known con-
nection between Fulerian orientations and three-colorings of a lattice region, since
taking the values of the heights mod 3 always gives a valid three-coloring of the
region (see, e.g., [3]). If we fix the colors of all the dual vertices on the boundary of
the region (and hence the boundary conditions), then there is a bijection between
three-colorings and Eulerian orientations. O

3 Generating lozenge tilings

This section is devoted to an analysis of a natural Markov chain algorithm for
generating random lozenge tilings. The analysis will exploit in a crucial way the
correspondence with routings established in section 2.1. We present this example
first because it is the most straightforward to deal with. Analogous Markov chains
for generating the other structures discussed in section 2 can be analyzed by more
refined applications of the same techniques, as we will demonstrate in section 4.

3.1 The Markov chain

In the Introduction, we discussed a Markov chain on domino tilings based on a
local move that rotates a pair of adjacent dominoes. The analogous Markov chain
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for lozenge tilings has as its local move a rotation of three neighboring lozenges
(see figure 8(a)). As in the domino case, this chain can also be shown to be
connected and to converge to the uniform distribution over tilings (see section 3.2

below).

a) Tiling rotation

& @2

b) Routing rotation

Figure 8: Lozenge rotations

Let us now interpret this Markov chain in the world of routings. It is clear that
a lozenge rotation induces a natural local move on the corresponding routing, in
which a “peak” or a “valley” is inverted by switching two edges (see figure 8(b)).
So we can think of the chain as picking a point uniformly at random on the
routing and inverting it if possible.! It turns out that the Markov chain in the
routings world becomes considerably easier to analyze if every peak and valley
can give rise to a rotation: note that this is not the case for the above chain,
since sometimes when we try to invert a point the move will be blocked by the
presence of another path. (Recall that the paths in a routing are not allowed to
intersect. See, e.g., the second valley on the lower path in the left-hand routing
of figure 8(b).) This motivates the introduction of a more general set of moves
in which a tower is rotated. The original moves will simply correspond to the
special case of rotating a tower of height 1.

1Strictly speaking, this chain differs slightly from the original one in that it does not attempt
to make rotations at points that are not on the current paths, which will always be rejected.
This merely reduces the self-loop probabilities of the chain, and hence speeds up the mixing
time by a factor that is bounded by the area of the region.
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In the routings lattice, define the cell at (z,y) to be the edges connecting
(z,y),(x + Ly + 1),(x,y + 2) and (z — L,y + 1). A tower of height h is a
connected set of cells at the points (z,y), (z,y + 2),...,(x,y + 2h — 2), where
either the points (x,y),(z,y + 2),..., (z,y + 2h — 2) are all valleys and the point
(z,y + 2h) does not lie on the routing, or the points (x,y + 2h), (z,y + 2h —
2),...,(z,y + 2) are all peaks and the point (z,y) does not lie on the routing. We
call the points (z,y) and (z,y + 2h) the bottom and top of the tower respectively
(see figure 9(a)). Provided both the top and bottom of a tower lie in the region,
its peaks (respectively, valleys) can be inverted by switching pairs of edges in
each of its cells. Such an operation is called a rotation of the tower. Figure 9(b)
illustrates a rotation of a tower of height 3, and Figure 9(c) shows that tower
rotations have a natural counterpart in the original tilings world.

i
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(a) Tower of (b) Tower rotation in a routing
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(c) Tower rotation in a tiling
Figure 9: A move in the Markov chain M,,, for lozenge routings (and tilings)

Let R, and R; be lozenge routings of the region 5. We define a Markov
chain M,,, in which there is a move from R; to R, if and only if Ry and R,
differ by a single tower rotation. The transition probabilities P(-,-) of M, are
defined by

1/2Nh, if Ry, Ry differ by rotation
P(Ry, Ry) = of a tower of height A;
) 1— 3 P(Rl,R), if Ry = Ry,
R#R,

where N is the total number of internal vertices along all the paths in any routing.
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Notice that we may implement a move of M,,, as follows. Given a routing R,
choose an internal point p on one of the paths in R, and a number r € [0, 1]
uniformly at random. Assume first that » < 1/2. If p is a valley then it is
the bottom of a unique tower (of height h, say); in this case, if r < 1/2h then
rotate the tower if possible (i.e., if the top of the tower lies in the region). On the
other hand, if r > 1/2 check whether p is a peak (and hence the top of a unique
tower), and if possible rotate this tower if r > 1 — 1/2h, where h is the height
of the tower. In all other cases do nothing. This slightly unusual implementation
is a technical device that will prove useful later when we define a coupling for the
Markov chain.

As we shall see in section 3.2, this Markov chain is ergodic and converges to
the uniform distribution over all lozenge routings. Therefore, we can generate a
random tiling by simulating M,,, for sufficiently many steps, starting from an
arbitrary routing, and outputting the tiling corresponding to the final routing.
The efficiency of this algorithm depends on the number of simulation steps nec-
essary to ensure an (almost) uniform distribution, or equivalently on the rate of
convergence of the Markov chain. We shall see in section 3.4 that a small number
of steps suffice, or in other words that the Markov chain is “rapidly mixing.” In
preparation for this we will introduce some general technology in section 3.3.

3.2 Ergodicity of M,

The fact that Mj,, converges to the uniform distribution over tilings follows
almost immediately from the fact that the chain is connected, i.e., every state is
reachable from every other. It is actually quite straightforward to show that the
Markov chain based on simple rotations connects the state space of all lozenge
tilings. This is sufficient to show the connectedness of the Markov chain based
on towers since it includes all the simple moves. Here we sketch a proof whose
machinery will be useful to us in other ways.

Lemma 3 The state space of the Markov chain M,,, is connected.

Proof. It is conceptually easier to work in the routings world. Note that there is
a natural partial order on the set of all lozenge routings of a given region S, defined
as follows. Let Ry, Ry be two routings, and let Py, P, be a pair of corresponding
paths (i.e., having the same source and sink) in Ry, Ry respectively. We say that
P, = P, iff the 1th point of P; lies on or above the ¢th point of P, , for all :. We
say that Ry > R, iff the relation P > P, holds for all pairs of corresponding
paths P;, P,. Since all routings of a region S have the same number of paths,
this relation is well-defined. If Ry = R,, we define the distance between them to
be the total area enclosed between all pairs of corresponding paths. Now it is not
too hard to see that, for any finite, simply connected region 5*7 there is a unique
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minimum routing R , such that R > R, for all routings R of S .2 We will show
that every routing is connected to R, by a sequence of simple rotations (i.e., of
towers of height 1) each of which decreases the distance to R, by one.

Let R # R, be an arbitrary routing. Starting with the lowest pair of corre-
sponding paths in R, R} and working upwards, scan left to right along the paths
until the first point = at which R, R, deviate from one another. Now continue
to follow these two paths (P and P, say) until the first point y where they
meet again (this must happen, at the latest, at their common sink). Notice that
the union of the segments of P and P, that lie between = and y form a circuit
whose interior is entirely contained within the interior of S since S is simply
connected. In addition, since R, is minimal, P must lie strlctly above P, along
the segment delimited by these two points. Therefore, P must have at least one
peak along this segment; let v be the leftmost such peak. It follows that v must
be the top of a (rotatable) tower of height 1 in R, since v lies strictly above the
corresponding point in B; and R coincides with R, on all lower paths. So if we
rotate the tower at v we decrease the distance from R, by one unit. Applying
this argument repeatedly, we arrive at R, . O

Theorem 4 The Markov chain M, is ergodic and converges to the uniform
distribution over lozenge tilings.

Proof. The Markov chain is clearly aperiodic since it has a holding probability
of at least 1/2 in every state. Together with the previous lemma, this implies
that the chain is ergodic, i.e., converges to a unique stationary distribution. That
this stationary distribution is uniform follows from the fact that the transition
probabilities are symmetric: for any pair of adjacent routings R, Ry, we have
P(Ry, Ry) = P(Ry, R1) = 1/2Nh, where h is the height of the tower by which
R, and R, differ. ]

3.3 Coupling and the convergence rate

In this subsection, we establish some general machinery for bounding the rate of
convergence of Markov chains, which we shall use repeatedly in the remainder
of the paper. Consider an ergodic Markov chain M with finite state space (1,
transition matrix P and stationary distribution 7. Following standard practice,
for any given initial state =, we shall measure the deviation of the distribution
P!(z,-) at time ¢t from 7 by the variation distance:

Ac(t) = 32 o 1P (@y) = m(y)l.

2A careful proof of the existence of a unique highest tiling (in the height function represen-
tation) was given by Thurston [17]; this corresponds precisely to the minimum routing defined
here.
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The mixing time of the Markov chain is defined by the function
7(€) = maxmin{t : A, (') < e forall ¢’ > t}.

Our strategy for bounding 7(€) is to construct a coupling for the Markov
chain, i.e., a stochastic process (X;, Y:);2, on  x Q with the properties:

1. Each of the processes X; and Y; is a faithful copy of M (given initial states
Xo =2 and Yy = y).

2. If Xt = }/;57 then Xt—}—l = }/;5_}_1.

The idea here is the following. Although each of X, Y;, viewed in isolation,
behaves exactly like M, they need not be independent; on the contrary, we will
construct a joint distribution for the two processes in such a way that they tend
to move closer together. By the second condition above, once they have met they
must remain together at all future times.

The expected time taken for the processes to meet provides a good bound on
the mixing time of M. To state this formally, for initial states =,y set

7" =min{t : X, = Y, | Xo = 2, Yy = y},

and define the coupling time to be T' = max, , ET*Y. The following result relat-
ing the mixing time to the coupling time is standard (see, e.g., [2]):

Theorem 5 7(¢) < Te[lne™']. o

Next, we introduce some machinery that will help us to bound the coupling
time. Suppose we have a distance function ¢ defined on Q x Q such that ¢
takes integer values in the range [0, B], and ¢(z,y) = 0 iff © = y. In our
examples, where the states of the Markov chain are lattice routings, ¢ will be
a natural measure of the “area” between a pair of routings. We will measure
the distance between a pair of processes (X, Y;) using the stochastic process
O(t) = ¢(X,Y:). Our strategy will be to show that, under a suitably defined
coupling, the expected change A® in ® is always non-positive; intuitively, this
should enable us to conclude that the coupling time is small. The following lemma
makes this intuition precise.

Lemma 6 With the above notation, suppose the coupling satisfies E[A®(t)| Xy, Y:] <
0 and, whenever ®(t) > 0, E[(A®(¢))*|Xs,Y:] > V. Then the expected coupling
time from initial states x,y satisfies ET%Y < ®(0)(2B — ®(0))/V .
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Proof. Define the stochastic process Z(t) = ®(t)? — 2B®(t) — VT'(¢), where
T(t)=tif ®(t) > 0, and T(¢t) = min{t' : ®(¢') = 0} if ®(¢) = 0. Then Z(t +
1) = Z(t) = 0 whenever ®(¢) = 0, and when ®(¢) > 0 we have

B[Z(t + 1)[ X, Y — Z(2)
— 2(a(t) - B)E[A®()]X,, Y] + (E[(A®())*|X,, il - V)
> 0.

Hence Z(t) is a submartingale with respect to the sequence {(X;,Y;)}i>0. More-
over, the random time 7Y = min{t : ®(¢) = 0} (where Xy = 2, Yy =
y) is a stopping time for Z(¢) with finite expectation, and the differences
|Z(t + 1) — Z(t)| are bounded. This allows us to apply the Optional Stopping
Theorem for submartingales (see, e.g., [6, Chap. 4, Thm. 7.5]), and conclude that
EZ(T*¥) > EZ(0). From the definition of Z(t), this implies that

—~VET*Y > &(0)* — 2B®(0),

which gives the desired upper bound on ET%Y. O

3.4 M, is rapidly mixing

We first consider the simplified case of routings consisting of a single path P with
source s and sink ¢. Notice that in this case all towers have height 1.

We define a coupling as follows. Consider two copies of the Markov chain,
whose states are the paths P, and P,, each containing N internal points. Then
in one move we choose (i,r) € {l,..., N} x [0,1] uniformly at random, and
simultaneously move the ith points of each of P, and P, as specified by the
random number r. It should be clear that this is a valid coupling. Notice that,
because we are using the same value of r for both processes, the two paths will
never move in opposite directions. This was the reason we implemented the
Markov chain in this fashion in section 3.1.

We now proceed to bound the expected time it takes the coupled process
to cause any two initial routings to agree. To simplify the analysis, we use an
observation due to Propp and Wilson [14]: if the state space of a Markov chain is
endowed with a partial order with unique maximum and minimum elements, and
if the coupling preserves the partial order (in a sense made precise below), then
the coupling time is bounded above by the expected coupling time starting from
the maximum and minimum states. Recall the partial order defined in the proof
of lemma 3: P, = P, iff the ¢th point of P, lies on or above the i1th point of P,
for all . Recall also that this partial order has a unique minimum (and similarly
also a unique maximum) element. To make precise the notion of preserving the
partial order, we first extend the above coupling to a random function f on
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the entire state space: namely, pick (z,r) as above and, for any path P, let
f(P) be the path obtained by moving the ith point of P as specified by r. We
say that the coupling is monotone with respect to the partial order if P, = P,
implies f(Py) = f(P,). The next lemma verifies that this condition holds for our
coupling.

Lemma 7 The above coupling is monotone with respect to the partial order = .

Proof. Suppose P = P, and consider a random move defined by a pair (z,7);
let P/ = f(P1) and Py = f(P2) be the images of P;, P> respectively. Assume
that » > 1/2 (the case r < 1/2 is symmetric). It is straightforward to verify
that, if ¢ is a peak in P;, then either the ith point of P; is sufficiently far above
the i¢th point of P, to ensure that P; = P, (and therefore P] = Pj), or ¢ is also
a peak in P,, in which case the peak is rotated in both paths. In either case we
can deduce that P/ = P;. O

We now need to bound the time taken for the two extremal paths to meet.
To do this, we introduce a distance function as in lemma 6. For a pair of paths
Py, P>, define the distance ¢(P;, P») to be the area (i.e., number of Cartesian
lattice squares) of the region between P; and P,. The crucial observation is that
the distance ®(t) = ¢(X¢, Y:) will tend not to increase under our coupling, as the
next lemma shows. By lemma 7, we may restrict attention to the case X; = Y;.

Lemma 8 Let P, and P, be any two paths such that P, = P,. Then
E[A®|P, ] < 0.

Proof. Consider an arbitrary pair of paths P, = P,. The typical situation is as
depicted in figure 10, with path P, drawn as a solid line and path P, as a dotted
line. We can partition the paths into segments C',...,C, on which the two paths
coincide, and segments Dy,...,D,, whose endpoints coincide, but for which P
is strictly above P, at all intermediate points.

Consider first a segment C;. It is clear that, if the point chosen by the coupling
lies in this segment, then the point will move with the same probability on both
paths, so the paths will still coincide and there will be no change in area.

Now consider a segment D;, in which points on P, are strictly above the
corresponding points on P, (except at the endpoints). On the upper path P,
label the peaks “good” (G) and the valleys “bad” (B), and vice versa for the
lower path P,. Thus a point is good if a rotation at that point would cause the
area between the paths to decrease, and bad if a rotation would case the area to
increase. (The boundary of the region might in fact prohibit some of these bad
rotations.) It is easy to see that, on each path, the labeled points in the interior
of the segment D; are alternately good and bad, with a net excess of one good
point. Moreover, each endpoint of D; contributes at most one bad point (unless
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D; and D;;; meet at a point, in which case there might be two bad points, but
we can assign one to each segment).

Summing over all segments of the path, we see that the total number of good
points is greater than or equal to the total number of bad points. Since each good
or bad point is equally likely to be chosen in the coupling, the expected change
in area is at most zero. i

Figure 10: Proof of lemma 8

Theorem 9 Let S be a region in the triangular lattice such that the corresponding
region S has one source s and one sink t. Then the mizing time of the Markov
chain M,,, on lozenge routings of S satisfies 7(€¢) < 2en®[Ine!], where n is

the area of S'.

Proof. By theorem 5, it suffices to show that the coupling time T' satisfies
T < 2n®. To bound 1" we appeal to lemma 6, restricting attention to extremal
initial states following lemma 7. Our distance function ¢ clearly takes integer
values in the interval [0, n]. Moreover, we have seen in lemma 8 that E[A®] < 0.
(Note that the monotonicity of the coupling ensures that any pair (P, P2) that
is reachable under the coupling satisfies P = P,.) It remains only to bound
E[(A®)?], assuming that the area between the pair of paths is non-zero. In this
case, there must be a segment on which the solid path is strictly above the dotted
path (using the terminology in the proof of lemma 8). Scanning this segment
from left to right, there is a first point where at least one of the paths is good
and neither is bad. If this point is chosen at the next time step, then there will
be a decrease in area with probability at least % Hence ® decreases strictly with
probability at least 1/2n, so E[(A®)?*] > 1/2n. (Clearly the number of points
on a path cannot exceed n.) Plugging all of these quantities into lemma 6 yields
T < 2n3. O

We now extend the above argument to the case of lozenge routings with mul-
tiple paths. The coupling we use is the following obvious generalization of our
earlier one. Given a pair of routings, choose the same random point p on both,
say the ith point of the jth path, and the same random bit r € [0,1]. Then
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update each routing by rotating at point p with the appropriate probability as
determined by the random number r.

As in the single-path case, we can argue that it is sufficient to bound the
expected coupling time for a pair of extremal routings. Recall the partial order
defined in the proof of lemma 3, in which routings Ry, Ry satisfy R; > R, iff the
1th path of R; lies on or above the i¢th path of R,, for all . As before, there
are unique maximum and minimum elements under >. And once again it is not
hard to check that our coupling is monotone with respect to this partial order:

Lemma 10 The above coupling for routings is monotone with respect to the par-
tial order = .

Proof. Suppose R; = R,, and consider a random move defined by the pair
(p,r) € [1,...,N] x {0,1}. Assume without loss of generality that r > 1/2. If
p is the top of a rotatable tower in R;, then either R, is sufficiently far away
from R; so that rotating the tower in R; does not disturb the order, or p is
also the top of a tower in R;. Because R; = R, it must be the case that the
tower defined by p in R; has height at least as large as the tower defined by p
in Ry. Thus the probability of performing a rotation in R; cannot exceed that of
performing a rotation in R;. Therefore, depending on the value of r, we rotate
either in both routings, only in R,, or in neither routing. In each of these cases
it is clear that the partial order is preserved. O

For a pair of routings R, Ry, we define the distance ¢(R;, Ry) to be the sum
of the areas between corresponding paths in R; and R,;. The next lemma, a
generalization of lemma 8, proves that the distance tends not to increase under
the coupling. Again, in light of lemma 10 we restrict attention to the case where

R, = R,.

Lemma 11 Let R; and Ry be any two lozenge routings such that Ry = R,.
Then E[A®|Ry, Ry] < 0.

Proof. Consider a pair of routings, the upper one solid and the lower one
dotted. Adopting the same terminology as in the proof of lemma 8, give a point
the label G if it defines a tower of height ¢ and is a good point (i.e., choosing
it could reduce the area between the two routings). Similarly, label a point B; if
it defines a bad tower of height ¢ (see figure 11). We can calculate the expected
change in area by first considering the expected change if we make a move on
the upper (solid) routing only, and then adding to this the expected change in
area from a move on the lower (dotted) routing only. Each point labeled G; has
probability 1/2Nu of rotating, and such a rotation decreases the area between the
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Figure 11: Proof of lemma 11

two routings on each of the i paths altered by the rotation, a total decrease of 1.
Summing the expected changes in area over all good and bad points, we have

E[A®|Ry, Ry] = ZZ ZNL ZZ 2Ny
- W(Z#Bz’—z#@f) <0

where # B; is the number of points labeled B;. The final inequality follows from
the fact that on each path the number of good points is at least as large as the
number of bad points, as argued in lemma 8. O

It is now a short step to the main theorem of this section, which confirms that
simulating the Markov chain M,,, for a small number of steps suffices to generate
a random lozenge tiling.

Theorem 12 Let S be a region of the triangular lattice. The mizing time of the
Markov chain M,,, on lozenge routings of S satisfies 7(¢) < 8en*[Ine™t|, where
n is the area of S.

Proof. By theorem 5, it suffices to show that the coupling time satisfies 7' < 8n*;
and by lemma 10 we need only consider the coupling time for the two extremal
initial states. We first bound the distance between these extremal configurations.

Recall two properties of the height function h. First, the heights of all points
around the boundary are fixed for all routings of a region. Second, the heights of
neighboring vertices differ by at most two. For any internal point v, let k&, be the
side length of the largest hexagon centered at v and fully contained within the
region. This largest hexagon must share at least one vertex with the boundary of
the region, and hence in any tiling the height of v can take on at most 4k, + 1
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consecutive integer values. Finally, recall that we can walk from the lowest to the
highest routing by a sequence of rotations each of which increases the height of
one vertex by three (and leaves all other heights unchanged). As we perform this
walk, there can be at most [%T—Hw < 2k, rotations which alter the height of v.
If the region being tiled has area n, then k, < /n for every vertex v. Therefore,
summing over all internal vertices, we find that the total distance between the
highest and lowest routings is at most Y, 2\/n = 2n°/2.

Lemma 11 confirms that E[A®] < 0 for all pairs of states reachable under
the coupling. To get a bound on E[(A®)?], consider a pair of routings with non-
zero area between them. Then there must be a pair of corresponding paths, one
solid and one dotted, and a segment in which the solid path is strictly above
the dotted path. Scanning this segment from left to right, call the first good
point we reach on either path p. There is a 1/N chance of choosing the point p,
and we perform the rotation at p with probability 1/2h, where h is the height
of the tower defined by p. Rotating this tower causes a decrease of h in the
total area, one unit for each path included in the tower. Hence we can conclude
that E[(A®)?] > h*/2Nh > 1/2n. Putting all this together, and appealing to
lemma 6, we see that the coupling time satisfies 7' < 8n*. The result now follows
from theorem 5. O

Remarks. (a) We have made no attempt here to optimize the upper bound on
the mixing time in theorem 12; our concern has been to establish that the chain
is rapidly mizing, in the sense that the mixing grows only polynomially with the
area n. (Note in contrast that the size of the state space — i.e., the number of
lozenge tilings — is in general ezponential in n.) Using a more detailed analysis
of our coupling, Wilson [18] has derived sharper bounds on the mixing time.

(b) The monotonicity property of our coupling allows one to determine bounds
on the coupling time experimentally, simply by simulating the coupled process
starting at the two extremal states. In practice, this has been found to yield
significantly tighter bounds than that of theorem 12. This idea can be further
extended using the technique of “coupling from the past” due to Propp and Wil-
son [14], to obtain a stopping rule for the simulation that eliminates all bias from
the samples. Theorem 12 can be viewed as an a priort bound on the running
time of such experiments.

(c) Randall and Tetali [15] recently demonstrated that the comparison technique
of Diaconis and Saloff-Coste [5] can be used to relate the mixing time of M,,, to
that of the original Markov chain whose only moves are simple rotations. Their
results, together with theorem 12, imply that the original Markov chain is rapidly
mixing as well. O
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4 Sampling domino tilings

The machinery presented in the last section provides a general framework which
can be applied to the random generation of other lattice structures, including
domino tilings and Eulerian orientations (and presumably others). In each case,
the development of a provably efficient algorithm follows the same outline: we
start with natural local moves connecting the space of configurations. We then
interpret these moves in terms of the appropriate routings, enrich them with a
small set of non-local moves (involving towers), and use a coupling argument to
argue that the resulting Markov chain is rapidly mixing: in all these cases, the
mixing time is bounded by a low-degree polynomial in the area of the region. The
definition of towers is sensitive to the type of routing, and the proofs use slightly
more sophisticated arguments. It is interesting that, in each case, as for lozenge
tilings, the choice of towers is quite natural in the original setting as well.

Our task in this section is to construct a random domino tiling of a given
region S of the Cartesian lattice. This we achieve using a Markov chain on the
space of domino tilings, whose moves correspond to rotations of suitably defined
towers. As before, towers are constructed so as to allow, in a single move, a series
of domino rotations which enable a rotation at a particular point which would
otherwise be disallowed. Consider, for example, a 2 x 2 block centered at a point
p = (x,y) which has one vertical domino to its right, but a horizontal domino
covering the square to its lower-left. Then either we can perform a domino rotation
at the point (z — 1,y), which would then allow a domino rotation at p, or the
square to the upper-left of p is covered by a vertical domino. Continuing in a
zigzag fashion to the upper-left, we will eventually find a point ¢ = (z — k,y — k)
or g = (x —k — 1,y — k) where we can perform a rotation (assuming that we do
not hit the boundary). Rotating dominoes along the zigzag, starting at ¢, we can
eventually perform a rotation at p. See figure 12. As we shall see, allowing these
types of tower moves along just one of the two diagonal directions turns out to be
sufficient, so we restrict our attention to those running in the NW-SE direction.

To formalize the above, a domino tower is defined by a spine, which is a zigzag
path (staircase of unit steps along domino boundaries) in the NW-SE direction
of a tiling, and the tower includes all the cells that are incident to a vertex on the
spine. The endpoints of the spine are the top and bottom of the tower. Provided
that all the vertices along the spine lie in the interior of the region, there are
exactly two ways in which the tower can be tiled so that one of the two endpoints
of the spine is the center of a 2 x 2 block tiled with two parallel dominoes. A
rotation of the tower is an operation that replaces one of these two tilings with
the other. There are four distinct types of domino towers, depending on whether
the first and last edges of the spine are horizontal or vertical. The height of a
tower is the number of vertices on the spine.

For the analysis it is more useful to redefine towers in terms of the corre-
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Figure 12: Towers moves for domino tilings

sponding routings. Recall that in theorem 2 we showed that generating a random
tiling is equivalent to constructing a random domino routing of a region of the
triangular lattice with sources {sy,...,s;} and sinks {¢1,...,¢;}. The four types
of towers can easily be interpreted in terms of routings, as shown in figure 13.
A move of the Markov chain consists of identifying a tower and then moving be-
tween the solid and dotted local structures shown. In the routings representation,
the height is just the number of unit triangles in the tower. The edges marked
e in the diagram indicate the bottoms of the corresponding towers in the north-
west direction, while the edges marked e’ are the tops of towers in the south-east
direction. (To relate this definition to tilings, if e is a diagonal edge then it corre-
sponds to a vertical domino such that the center of the left edge is the bottom of
the spine defining the tower in the tiling; if e is horizontal then it corresponds to
a horizontal tile such that the center of the top edge is the bottom of the spine.
For edges €', the center of the left or bottom edge of the corresponding domino
is the top of the spine.) We refer to any of the edges e or €' as the “start” of
a tower; notice that a tower can be uniquely specified by its start edge and its
direction. The type of the tower merely reflects whether the top and bottom
edges are horizontal or diagonal. For example, the original Markov chain based
on rotating two neighboring domino tiles consists of all Type I and Type IV tower
rotations of height 1. Let N be the number of edges in any domino routing of S.
The transition probabilities P(-,-) of Mg, are

1/2Nh, if Ry, Ry differ by rotation
P(Ry, Ry) = of a tower of height h;
7 1 - Z P(R17R)7 if RQ = Rl-
R#R,

To implement one step of this Markov chain, starting at a routing R, choose
(e,r) € {l,..., N} x [0,1] uniformly at random, where e is a random edge of R.
First suppose r < 1/2. If the edge e is a diagonal directed up and to the right,
check whether there is a tower starting at e and extending in the north-west
direction. Notice that this must be a tower of Type I or Type II, and is unique.
If on the other hand e is horizontal, check whether there is a tower of Type III or
Type IV starting at e and extending north-west (again this is unique). In either
case, determine the height A of the tower, and if r < 1/2h rotate the tower if
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Figure 13: The four types of domino towers
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possible (i.e., if the tower lies entirely within the region). The case when r > 1/2
is similar: check whether there is a tower in the south-east direction starting at
e. If e is a diagonal pointing up and to the right this would be a tower of Type II
or Type IV; if e is horizontal it would be a tower of Type I or Type III. In either
case rotate the tower (if possible) if » > 1 — 1/2h, where h is the height of the
tower.

The Markov chain My,,, can be analyzed using arguments similar to those
used in the previous section for M,,. As before, we first need to show that the
chain is ergodic.

Theorem 13 The Markov chain My,,, ts ergodic and converges to the uniform
distribution over domino tilings.

Proof. It is easy to check that the Markov chain is symmetric and aperiodic.
Therefore, it suffices to show that the Markov chain connects the state space of
domino tilings of a region. We will show that the state space is connected even if
we restrict the set of allowable transitions to simple domino rotations.

We start by defining a partial order on the set of all domino routings of é,
as follows. Let Ry, Ry be two routings and let Py, P, be a pair of corresponding
paths (with the same source and sink). We say that P; = P, iff each vertical line
intersecting the paths intersects P; at a point at least as high as the intersection
with P,. (Since the paths are piecewise linear, it suffices to check this condition
at vertical lines which pass through vertices of the underlying lattice.) As before,
we say H; = Ry iff the relation P, = P, holds for all pairs of corresponding
paths, and define the distance between two routings to be the union of the area
between corresponding paths.

Using an argument analogous to that in the proof of lemma 3, it can be
verified that there is a unique minimum routing R, , and that for any routing
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R # R, we can find a tower of height 1 whose rotation will reduce the distance
between R and R, . This moves R closer to R, and inductively guarantees the
connectedness, and thus the ergodicity, of My, . a

It remains for us to show that the Markov chain converges rapidly to station-
arity. We can define a coupling in exactly analogous fashion to that for lozenge
routings in section 3.4: namely, pick a random pair (e,r) and make the appropri-
ate move in both routings simultaneously. Once again it is not hard to check that
this coupling is monotone with respect to the partial order on domino routings
defined in the proof of theorem 13, so when analyzing the coupling time we need
only consider the two extremal routings. The key fact is the following analog of
lemma 11, which says that the area ®(¢) between routings (defined in the obvious
way) is non-increasing in expectation.

Lemma 14 Let Ry and Ry be two domino routings such that Ry = Ry. Then
E[A®|R,, Ry] < 0.

Proof. First consider the case when R; and R, each consist of just a single
path. Then, following the ideas from lemmas 8 and 11, we can consider segments
C1,...,Cy on which the two paths coincide, and segments Dy, ..., D,, on which
the two paths coincide at the endpoints, and on which R; is strictly above R, at
all intermediate points. As before, it is clear that choosing an edge on any of the
C'; will not change the area between the paths.

Now consider a region D;. Give an edge the label G; if, when that edge is
chosen by the coupling, the area between the routings could decrease by exactly :.
Similarly, label an edge B; if one of the directions could cause the area to increase.
When the routings consist of a single path, ¢ is either 1 or 2. Certain edges will
receive two labels. See figure 14.

Figure 14: Proof of lemma 14 — single path case

We can match each bad edge to a unique good edge as follows. Each horizontal
edge with a bad label also has a good label, so we can pair them off. Any diagonal
segment which has a bad label at one end must have a good label at the other end,
so we can pair these. (The moves of My, are defined so that we can only rotate
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the routing at the two extremal edges of a diagonal segment.) This tells us that
the number of bad edges is less than or equal to the number of good edges. As
in lemma 11, the probability of rotating at a given edge is inversely proportional
to the change in area caused by such a rotation. This ensures that the expected
change in area is always non-positive.

B, B é B,
S1 € : & ) & ® 1
B By B
/ G G G ot
S2 & et . ® Iy

Figure 15: Proof of lemma 14 — multiple path case

To handle multiple paths, we need to modify the above labeling slightly. It is
possible that edges which would be labeled good or bad when a path is viewed in
isolation might no longer be places where we can perform a rotation. In particular,
if horizontal edges from adjacent paths get too close, one will not be able to rotate
in the north-west direction, and the other will not be able to rotate in the south-
east direction. This will have the net effect of eliminating a good and a bad label.
To see this, label an edge (i if it is a horizontal edge which cannot move in the good
direction because of interference with another path, and label it B if it cannot
move in the bad direction because of interference with another path. These labels
are shown in figure 15 for the solid paths only. The crucial point is that every
edge labeled G must be paired with a distinct edge labeled E, and vice-versa;
these are unit distance apart in the NE-SW direction. Hence #G = #B

Generalizing the argument from the single path case, we have that

#B+ 3 #B; < #G+ Y #G,
whence
Z #B; < Z #G;.

From this we can conclude as before that the expected change in area is always
non-positive. O

As a final ingredient, we need to bound the distance between the two extremal
routings. For a fixed region with area n, the distance between the highest and

lowest routings is at most 2n/2. To see this, recall that the difference between
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the heights of neighboring vertices in a domino routing is at most +3. If k, is
the side length of the largest square centered at v which lies within the region,
then the height of v is an integer value in [h(u) — 2k,, h(u) + 2k,], where u is a
vertex which lies on both the square and the boundary of the region. Each step in
a walk from the lowest to the highest routing increases the height of some vertex
by four, so the total number of steps is at most 3, GkﬁT‘H <3, 2v/n = 2082,

In analogous fashion to the proof of theorem 12, lemma 14, together with
lemma 6 and monotonicity of the coupling, implies that the Markov chain M 4,
is rapidly mixing:

Theorem 15 Let S be a region of the Cartesian lattice, and let S be the corre-
sponding region containing domino routings. Then the mixing time of the Markov
chain Mgy on routings of S satisfies 7(e) < 8en*[Ilne™!|, where n is the area

of S. O

5 Sampling Eulerian orientations

Let S be a region with specified boundary conditions for Eulerian orientations: re-
call that these determine the sources and sinks in the routings representation. To
generate a random Fulerian orientation of S, we construct a Markov chain M.,
whose state space is the set of all Eulerian routings on S with these sources and
sinks. In similar fashion to the case of lozenge routings, moves will be defined
in terms of “peaks” and “valleys,” where in this case a valley is a vertex which
is the right endpoint of a horizontal edge and the bottom endpoint of a vertical
edge of the routing; a peak is a vertex which is the left endpoint of a horizontal
edge and the top endpoint of a vertical edge. Note that a vertex may be both a
peak and a valley at the same time. The operation of flipping a peak into a valley
(or vice versa) where possible defines a simple Markov chain which we argue in
theorem 16 connects the state space.

For our analysis we augment this Markov chain by allowing a move between
two routings if they differ by a structure which is either a vertical or horizontal
tower, as depicted in figure 16. More precisely, let the cell at (x,y) be the four
edges of the unit square of the lattice whose lower-right corner is at (z,y). Define a
horizontal tower of height h to be a set of cells at points (z,y), (z — 1,y),...,(z —
h + 1,y), where either (z,y),(x — L,y),...,(x — h + 1,y) are all valleys and
(z,y +1),(x — h,y) are not valleys, or (z —h,y+1),...,(x — 1,y + 1) are all
peaks and (x — h,y), (x,y + 1) are not peaks. The point (z,y) is the bottom of the
tower and (x — h,y + 1) is the top of the tower. Similarly, define a vertical tower
of height h to be a set of cells at points (z,y), (z,y+1),...,(z,y + h — 1), where
either (z,y),...,(x,y + h — 1) are all valleys and (z — 1,y),(x,y + h) are not
valleys, or (z — 1,y +h),...,(x — 1,y + 1) are all peaks and (z,y+ h),(z —1,y)
are not peaks. In this case (z,y) is the bottom of the tower and (x — 1,y + h) is
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the top (see figure 16). Note that vertical and horizontal towers of height 1 are
identical, and that any vertex can be the top (respectively, bottom) of at most
one tower. The reader should be able to verify that any tower can be inverted in
the obvious way to produce a valid routing provided all of its cells are contained
within the region. As usual, we call such an operation a rotation of the tower.

_/ tl tl
. <
Vertical 5 4,7 " 5 4,7 "

o — —
EE . .

Horizontal Rotation of a tower (of height 2) at v
tower

Figure 16: Markov chain for Eulerian orientations

The transition probabilities P(-,-) of M., are defined as follows:

1/2Nh, if Ry, R, differ by rotation
P(Ry, Ry) = of a tower of height A;
) 1—ZP(R17R), if Ry = Rh
R#Ry

where N is the number of vertices on any routing.

To implement one step of M.y, starting at a routing R, choose (p,r) €
{1,..., N} x [0,1] uniformly at random, where p denotes a point on the routing.
If » < 1/2, check whether p is the bottom of a tower of height &, and rotate this
tower if possible if r < 1/2h. Similarly, if r > 1/2 check whether p is the top of
a tower of height h, and rotate this tower if possible if r > 1 — 1/2h.

Tower rotations have a simple interpretation in terms of Eulerian orientations.
A tower of height A corresponds to a directed cycle in the Eulerian orientation
whichisa 1 x h or h x 1 rectangle (with its internal edges aligned). The rotation
corresponds to reversing all the orientations around this cycle, which of course
produces a new Eulerian orientation.

Theorem 16 The Markov chain M., is ergodic and converges to the uniform
distribution over Fulerian orientations.

Proof. Since the Markov chain is symmetric and aperiodic, it is again sufficient
to show that it is connected. As in the case of domino and lozenge tilings, the
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key to proving this fact is to define a suitable partial order on routings. For
corresponding paths P, P, on two routings Ry, Ry, we say that P, = P, if each
diagonal line in the NW-SE direction intersects P, at a point at least as far
left as P,. We say Ry = Ry iff P, = P, holds for each pair of corresponding
paths P;, P,. Under this partial order there will always be a unique minimum
routing. An argument analogous to that in the proof of lemma 3 demonstrates
that, for any routing R which is not minimum, we can find a point which is
the top of a rotatable tower whose rotation reduces the distance between R and
the minimum routing (where again distance is defined as the sum of the area
between corresponding paths). This guarantees, inductively, that the state space
is connected. i

We now turn to the mixing time of the Markov chain. Note that, when the
boundary conditions define a set of routings consisting of a single path, the Markov
chain is equivalent to the lozenge routing chain M,,, of section 3. Theorem 9
guarantees that this chain is rapidly mixing. We now extend this result to Eu-
lerian routings that consist of an arbitrary number of paths. As in the previous
examples, we will construct a coupling that chooses a random point p and a ran-
dom number r and makes the appropriate move in both routings simultaneously.
Again as before, this coupling is easily seen to be monotone with respect to the
partial order defined in the proof of theorem 16, so we need only analyze the cou-
pling time starting from the two extremal routings. As usual the following lemma,
which says that the area ®(¢) between routings is non-increasing in expectation,
is the key to the proof.

Lemma 17 Let Ry and R; be any two Fulerian routings such that Ry = R,.
Then E[A®|Ry, R3] < 0.

B
G T
...... Bl s ..g: B
G
B G

Figure 17: Proof of lemma 17

30



Proof. We assign labels G and B to peaks and valleys in similar fashion to
the lozenge case (see figure 17). On the lower routing, label G any corner which
is the lower-right of a tower, and label B any corner which is the upper-left of
a tower; on the upper routing, interchange the roles of G and B. Finally we
will label all the corners which do not define a tower because of interference with
another path. On the lower routing, label G any unlabeled corner which goes to
the right and then up, if the two edges which complete the unit square are part
of another path on the routing. Likewise, label B any unlabeled corner which
goes up and then to the right, but which is not part of a tower because the two
edges completing the square are part of anther path on the routing. On the upper
routing, interchange the roles of G and B. Generalizing from the single path case
as in lemma 11, we know that #B + #B < #G+ #G

Next observe that each point labeled G s paired with a distinct point la-
beled B. A point p is labeled G if the two edges which complete the unit square
defined by the peak or valley at p belong to an adjacent path on the same routing.
The point defining the opposite corner of the square must be labeled B and we
can pair this bad point (on the same routing) with p. This pairing 1mphes that
#B #G and hence that #B < #G.

Finally, observe that the weights of the moves are chosen so that each bad and
each good point contributes equally to the expected change in area. Hence, if N is
the total number of points on the routing, we have E[A®] = (#B — #G)/2N <
0. O

A simple calculation based on the height function representation reveals that
the distance between extremal Eulerian routings of a region with area n is at
3/ Combining lemma 17 with lemma 6 and the fact that the coupling is
monotone, we can deduce in by now familiar fashion that the Markov chain M.,
is rapidly mixing:

most n

Theorem 18 Let S be a region of the Cartesian lattice with specified boundary
conditions. Then the mizing time of the Markov chain M., on Eulerian routings
of S satisfies T(€) < 2en*[Ine™'], where n is the area of S. O

Acknowledgments

We would like to thank James Akao for useful discussions and for implementing
the Eulerian orientations algorithm.

31



References

[1] Al-Khnaifes, K. and Sachs, H. Graphs, linear equations, determinants, and
the number of perfect matchings. In Contemporary Methods in Graph Theory
(R. Bodendiek ed), Wissenschaftsverlag, Mannheim, 1990, pp. 47-71.

[2] Aldous, D. Random walks on finite groups and rapidly mixing Markov
chains. Séminaire de Probabilités XVII, 1981/82, Springer Lecture Notes
in Mathematics 986, pp. 243-297.

[3] Baxter, R.J. FEzactly solved models in statistical mechanics. Academic

Press, London, 1982.

[4] Conway, J. and Lagarias, J. Tilings with polyominoes and combinatorial
group theory. Journal of Combinatorial Theory A 53 (1990), pp. 183-208.

[5] Diaconis, P. and Saloff-Coste, ..  Comparison theorems for reversible Markov

chains. Ann. Appl. Probability 3 (1993), pp. 696-730.

[6] Durrett, R.  Probability: Theory and examples. Wadsworth & Brooks/Cole,
Belmont CA, 1991.

[7] Gessel, I. and Viennot, G. Binomial determinants, paths, and hook length
formulae. Advances in Mathematics 58 (1985), pp. 300-321.

[8] Heilmann, O.J. and Lieb, E.H. Theory of monomer-dimer systems. Comm.
in Mathematical Physics 25 (1972), pp. 190-232.

[9] Jerrum, M.R. and Sinclair, A.J. Approximating the permanent. SIAM
Journal on Computing 18 (1989), pp. 1149-1178.

[10] Jockusch, W., Propp, J. and Shor, P.  Random domino tilings and the arctic
circle theorem. Preprint, 1995.

[L1] John, P. and Sachs, H. Calculating the numbers of perfect matchings and
of spanning trees, Pauling’s orders, the characteristic polynomial, and the
eigenvectors of a benzenoid system. In Topics in Current Chemistry 153:
Advances in the Theory of Benzenoid Hydrocarbons (M.J.S. Dewar et al, eds.),
Springer Verlag, Berlin, 1990, pp. 145-179.

[12] Kenyon, C., Randall, D. and Sinclair, A. Approximating the number of dimer
coverings of a lattice. Journal of Statistical Physics 83 (1996), pp. 637-659.

[13] Mihail, M. and Winkler, P. On the number of Eulerian orientations of
a graph. Proc. 3rd ACM-SIAM Symposium on Discrete Algorithms, 1992,
pp. 138-145.

[14] Propp, J. and Wilson, D. Exact sampling with coupled Markov chains and
applications to statistical mechanics. Random Structures and Algorithms 9
(1996), pp. 223-252.

[15] Randall, D. and Tetali, P. Analyzing Glauber dynamics by comparisons of
Markov chains. Journal of Mathematical Physics 41 (2000), pp. 1598-1615.

32



[16] Sinclair, A. Counting and generating combinatorial structures: a Markov
chain approach. Birkhauser, Boston, 1993.

[17] Thurston, W. Conway’s tiling groups. American Mathematical Monthly 97
(1990), pp. 757-773.

[18] Wilson, D.B. Mixing times of lozenge tiling and card shuffling Markov chains.
Manuscript, 1997, available at http://research.microsoft.com/~dbwilson/nlm.

33



