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Abstract

We determine the mixing time (up to a constant factor) of

the Markov chain whose state space consists of n “dots”

on the unit interval, wherein a dot is selected uniformly at

random and moved to a uniformly random point between

its two neighbors. The method involves a two-step coupling

for the upper bound, and an unusual probabilistic second-

moment argument for the lower.

1 Introduction

Determination of mixing time for discrete Markov
chains has proved to be a vital step in proving the ef-
ficiency of randomized approximation algorithms, with
a bewildering variety of applications. One of the best
sources for sampling problems is statistical physics
where the state space of a Markov chain represents
states of a physical system and sampling lends insight
into the thermodynamic properties of the model. Al-
though these models typically are discretized for the
purposes of analysis, in reality physicists are often inter-
ested in continuous analogues defined in real Euclidean
spaces.

For example, the so-called “microcanonical hard-
core lattice gas model” consists of all configurations of
n balls of radius r in a finite region R of Rn, where
balls are required to lie in non-overlapping positions.
Although the centers of the balls can occupy any real
point in Rn, the model is typically discretized so
that they lie on lattice points in Λn ⊆ Zn. In this
setting, if r is chosen to be between 1/2 and

√
2/2,

then configurations correspond to independent sets on
a lattice graph. While much analysis has focused on
rigorous means of efficiently sampling discrete models
such as independent sets in Λn, very little is known
about sampling in the continuous setting.

The most powerful tools to date for sampling points
in a continuous state space are walks used to estimate
the volume of a convex body in Rn (see, e.g., [2], [3], [5],
[6]). Notice that these walks provide a way to sample
from the one-dimensional hard-core model where the
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balls lie in R ⊂ R because each configuration can be
mapped to a point in the unit simplex. An example is
the “hit-and-run” chain which preforms a random walk
on points in the convex body as follows. If currently
at a point v, we choose a random line through v and
move to a new point chosen uniformly from the part
of the line that lies inside the convex body. Lovász
showed that this random walk converges in time O∗(n3),
where the O∗ notation suppresses log factors, and he
conjectures that the true running time is much faster [5].
Unfortunately these random walks on the simplex are
not very natural in the context of the hard-core model
since they typically move all the balls in a single step.
Our interest in this paper is studying a Markov chain
that moves one ball at a time since most chains used in
practice are local.

Alternative chains for sampling sets of points were
considered in [4]. The first variant is a single particle,
global chain that connects all pairs of states that differ
by the position of one point. It is shown that the
chain is rapidly mixing in Rn if the density of points
is sufficiently low. The second variant examined is a
single particle, local chain where steps involve moving
one point to a new position in its current neighborhood.
Although it is believed that this chain mixes rapidly
in many settings, it was only shown that a discretized
version of the chain mixes rapidly in one dimension.
In this chain, the unit interval is subdivided into m
discrete points and at each step one of the n particles
is chosen and moved to an adjacent point, if that point
is currently unoccupied. The mixing time for this chain
was shown to be O(n3m2(1−ρ)2), where ρ is the density
of particles.

In fact, most methods used to analyze discrete
chains seem to break down in the continuous setting,
explaining the scarcity of results. This seems to be
more an artifact of the appearance of the “minimum
stationary probability” parameter which often arises
in the discrete cases, and not anything inherent in
continuous chains which often seem to be efficient.

Here, we tackle a simple and natural chain whose
stationary state is uniform on the unit n-simplex, that
is, the set of ascending sequences of n points (“dots”)
in the unit interval. The chain keeps the dots in fixed
relative order; moves consist of moving a random dot



to a point chosen uniformly at random between its
neighbors. Notice that this can be viewed as variant
on the “hit-and-run” chain on the simplex where the
random line in which a move is made must be parallel
to the coordinate axes. (This variant has been called
the “rook’s move” chain, as opposed to the “queen’s
move” in which any line through the current point is
available.)

We formalize the moves of the “n dots on an
interval” chain in the next section. Our main result
is as follows.

Theorem 1.1. The mixing time of the “n dots on an

interval” chain is Θ(n3 log n).

Our methods extend typical discrete methods in two
ways: by using two phases to couple, and by control-
ling a random process whose variance sometimes (but
sufficiently rarely) gets out of hand.

2 n Dots on an Interval

To avoid confusion with other points on the interval,
the n designated points defining the chain will be called
dots and the chain itself will be called “n dots on an
interval.” The position of the kth dot at time t will be
denoted by xk(t) or, if the time is understood, by xk.
The state space S of the Markov chain then consists
of the simplex of points x̄ = (x1, . . . , xn) ∈ [0, 1]n for
which x1 ≤ x2 ≤ · · · ≤ xn.

In the related hard-core model from statistical
physics, the state space is actually n non-overlapping
balls of radius r, centered at y1, . . . , yn. Notice that
there is a bijection between the sets of balls and the
sets of dots defined by mapping the ith ball to xi =
(yi + (2i− 1)r)/s, where s = 1 + 2nr. In the remainder
of the paper we refer to the configuration of dots, but
the theorems apply to the hard-core balls as well.

A step of the chain is determined by choosing a
uniformly random integer k between 1 and n and an in-
dependent real λ chosen from the Lebesgue distribution
on [0, 1]. If the previous state of the chain was x̄, the
new state will be

x̄′ = (x1, . . . , xk−1, (1−λ)xk−1 + λxk+1, xk+1, . . . , xn)

where we interpret x0 = 0 and xn+1 = 1; in other words,
if k = 1, x′

1 = λx2 and if k = n, x′

n = (1−λ)xn−1 + λ
with the remaining coordinates unchanged.

Theorem 2.1. The stationary state of the “n dots on

an interval” chain is uniform on the simplex {x̄ : x1 ≤
x2 ≤ · · · ≤ xn}.

Proof. This follows from detail balance (or simply notic-
ing that the position of xk in a uniform point from the

simplex is indeed uniformly random between xk−1 and
xk+1.)

It is convenient here to define the mixing time of a
Markov chain X to be the least number t of steps such
that, beginning at any state, the total variation distance
1
2
‖X(t) − σ‖1 between the state of X at time t and the

stationary distribution σ of X is less than 1
4
.

3 The Upper Bound

We will prove Theorem 1.1 in two stages, starting here
with the upper bound.

Lemma 3.1. The mixing time of the “n dots on an

interval” chain is O(n3 log n).

Proof. It suffices to exhibit a coupling which will achieve
coalescence of any chain X with a stationary chain
in time O(n3 log n), with probability at least 3

4
. Our

coupling proceeds in two phases, first bringing the dots
of one chain close to the corresponding dots of the other,
then aligning them exactly.

The natural coordinate-wise partial order imposes
a lattice structure on S, where, for example, the join
of x̄ and ȳ is (max(x1, y1), . . . , max(xn, yn)). If chains
X and Y are run in parallel and coupled so as to
employ the same k and λ at each step, then it is
immediate that x̄ ≥ ȳ implies x̄′ ≥ ȳ′; i.e., this “linear”
coupling respects the partial order. We will use the
linear coupling for the first phase and a second coupling,
which also respects the partial order, for phase two.

Instead of coupling an arbitrary chain with a sta-
tionary chain, we simultaneously couple chains begin-
ning at every possible state, keeping track of chains X

and Y which begin, respectively, at the extreme states
1̄ and 0̄. (This is sometimes referred to as a “complete
coupling.”) When X and Y reach the same state, all
other pairs of chains are unified as well since they are
sandwiched between these two. The advantage of hav-
ing to worry only about X and Y is that they are com-
parable in the partial order; thus we will always have
each dot of X to the right of the corresponding dot of
Y.

For the first phase, we make use of a “gap function”
of the type employed by David Wilson [8, 9]; later we
will use a similar function to bound the mixing time
from below. For convenience we define z̄ := x̄− ȳ where
x̄ and ȳ are the states of X and Y; then always z̄ ≥ 0̄.
We let z̄′ := x̄′− ȳ′ represent the updated vector after a
step of the coupled chains. For notational convenience,
we define z0 = zn+1 = 0.

Note that over all choice of k and λ, the expected
value E[x′

k] of the kth coordinate of X will be n−1
n xk +



1
n (xk−1 + xk+1)/2. Define

f(z̄) =

n
∑

k=1

sin
( kπ

n+1

)

zk

and observe that after a coupled step of the chains,

E[f(z̄′)] =

n
∑

k=1

sin
( kπ

n+1

)

(n−1

n
zk +

1

n
· zk−1 + zk+1

2

)

=

n
∑

k=1

(n−1

n
sin

( kπ

n+1

)

+
1

2n
sin

( (k−1)π

n+1

)

+ sin
( (k+1)π

n+1

)

)

zk

=
n

∑

k=1

(n−1

n
sin

( kπ

n+1

)

+
1

n
cos

( π

n+1

)

sin
( kπ

n+1

)

)

zk

=
(n−1

n
+

cos( π
n+1

)

n

)

n
∑

k=1

sin
( kπ

n+1

)

zk

=

(

1 − 1

n

(

1 − cos
( π

n+1

)

)

)

f(z̄) .

Thus the expected value of f has dropped by a
factor of 1 − γn where

γn =
1

n

(

1 − cos
( π

n+1

)

)

>
π2

2

1

(n+1)3
.

If we set x̄(0) = 1̄ and ȳ(0) = 0̄, we have z̄(0) = 1̄
and, by concavity of the sine function between 0 and π,

f(z̄(0)) < (n+1)

∫ 1

0

sin πu du =
2(n+1)

π
.

If we run the coupled chains for t1 = 12((n+1)3/π2) log n
steps (where all logs are base e here), we have

E[f(z̄(t1))] < (1 − γn)t1
2(n+1)

π

<
(

1 − π2

2

1

(n+1)3

)t1
· 2n

π

< e−6 log n 2n

π

= 2n−5/π.

Since f(z̄) can never be negative, we see using Markov’s
inequality that with probability at least .8, f(z̄(t1)) <
10n−5/π.

The purpose of obtaining this bound is to shrink
the distance zk = xk − yk for each k. Since all zk’s are

positive and the smallest coefficient in f is sin( π
n+1

) >
π

n+2
, we have (with probability at least .8)

zk <
10n−5

π
· n+2

π
< 1.1 n−4

for sufficiently large n. For convenience we set δ :=
1.1n−4 so that we now have 0 ≤ xk − yk ≤ δ for all
k—again with probability at least .8.

For the second phase of the coupling, we choose at
each step a dot k and two independent, uniform reals
λ and µ from the unit interval. If it happens that
xk−1 > yk+1 (this will be a rare event), we ignore µ
and execute a step of the linear coupling employed in
phase one.

Otherwise, consider a chain W caught between
X and Y, currently in state w̄ = (w1, . . . , wn). We
divide the interval between wk−1 and wk+1 into three
parts: I := [wk−1, xk−1]; J := [xk−1, yk+1]; and
K := [yk+1, wk+1]. Here, as before, we adhere to the
convention that x0 = y0 = 0 and xn+1 = yn+1 = 1 so
that we don’t have to handle the cases k = 1 and k = n
separately. We will use µ to decide which subinterval to
place w′

k into, then λ to determine the particular spot.
Accordingly, let p

W
:= |I|/(|I| + |J | + |K|) and

q
W

:= (|I| + |J |)/(|I| + |J | + |K|). If µ < p
W

we
put w′

k = (1−λ)wk−1 + λxk−1; if p
W

≤ µ ≤ q
W

we
put w′

k = (1−λ)xk−1 + λyk+1; and if µ > q
W

we put
w′

k = (1−λ)yk+1 + λwk+1. It is easy to verify that
this coupling is faithful to the individual chains and
preserves the partial order.

Among all possible W, the one maximizing p
W

will
be Y, with p

Y
= (yk+1 − xk−1)/(yk+1 − yk−1); and

the one minimizing q
W

will be X, with q
X

= (yk+1 −
xk−1)/(xk+1 − xk−1). It follows that with probability
q
X
−p

Y
, namely when p

Y
≤ µ ≤ q

X
, w′

k will be the same
for every chain; in this case we say we have achieved (or
possibly only preserved) a “match” at k.

Sandwiched between chains X and Y is a stationary
chain U, whose state at any time is distributed as a
uniformly random point (u1, . . . , un) chosen from the
unit hypercube [0, 1]n, with coordinates reordered to
be ascending. Let ε = (n/ log n)−3; we claim that
with probability tending to one as n grows, at no
time between t1 = 10((n + 1)3/π2) log n and t2 :=
t1 +n(log n)2 (the era of phase two of the coupling) will
there ever be a k such that uk−1 and uk+1 fall within
distance ε of each other.

To see this, note that such an accident (at any
particular time), for k ∈ [2, n−1], implies that for some
i ∈ {1, 2, . . . , b1/εc} three of our random points from
the hypercube landed in the interval [(i−1)ε, (i+1)ε].



The probability of such an event is less than

(

n

3

)

(2ε)3(1/ε) < 4
3
n3ε2 = 4

3
n−3(log n)6.

The cases k = 1 and k = n require two points falling
in [0, ε] or in [1− ε, 1], respectively, adding only the
ignorable amount

2

(

n

2

)

ε2 < n2ε2 = n−4(log n)6.

The probability that such an accident occurs anywhere
in n(log n)2 steps of U is thus bounded by

4
3
n−3(log n)6 · n(log n)2 = 4

3
n−2(log n)8,

which tends to zero as claimed.
We now have the tools to show that qx − py is very

close to 1—in fact, so close that with probability tending
to 1, every step in the second phase of the coupling will
result in creating or preserving a match. Any step that
fails to perfectly align these points we call a mismatch.

Fix some time t between t1 and t2 and assume that
no mismatch has occurred so far. In that case, all
corresponding pairs of dots from X and Y are either at
the same point or (if k hasn’t yet been “called”) exactly
where they were at time t1, which was within distance
δ. Examining first the denominator of py,

yk+1 − yk−1 > −(uk+1 − yk+1) + (uk+1 − uk−1)

+(uk−1 − yk−1)

> 0 + ε − δ

and thus

py <
yk+1 − xk−1

ε − δ
<

δ

ε − δ

<
1.1 n−4

(n/ log n)−3 − 1.1 n−4
<

1.2

n(log n)3

for large n. A similar argument gives the same bound
for 1 − px.

We thus have that with probability at least

1 −
( 2.4

n(log n)3

)

(

n(log n)2
)

= 1 − 2.4

n

every step of phase two is a match. Since n(log n)2

steps is enough to ensure that all n values of k are
selected at least once (being one log factor greater than
the expected number of steps for the “coupon collector’s
problem”) we have perfectly aligned every pair of points
with probability almost .8, proving the upper bound.

Remark. The same argument can be used to provide
an upper bound on the mixing time of a discrete
version of the “n dots on an interval” chain. In this
formulation, we consider configurations consisting of n
non-overlapping dots on the interval {1, . . . , m}, with
m ≥ n. These configurations correspond precisely to r-
combinations, representing the distinct ways of putting
n indistinguishable objects into r = m − n bins.

The discrete version of the “n dots on an interval”
chain is a well-known one-dimensional particle process
defined as follows. At each step we choose k ∈ {1, . . . , n}
and move xk to any of the unoccupied sites between
xk−1 and xk+1 (where we fix x0 = 0 and xn+1 = m+1).
A local version of this chain in which dots are moved
distance at most one in each step was studied previously
by Kannan et al. and gives a bound of O(n3(m−n)2)
[4]. Their coupling argument can be modified for the
“n dots on an interval” chain as well, giving the same
upper bound of O(n3) when m−n is constant. In the case
of general m, we can improve the upper bound on “n
points on an interval” by using the same eigenfunction
f defined in lemma 3.1. This gives an upper bound of
O(n3 log n) for the mixing time of this chain, removing
the dependence on m altogether.

4 The Lower Bound

We conclude the proof of Theorem 1.1 by showing the
matching lower bound.

Lemma 4.1. The mixing time of the “n dots on an

interval” chain is Ω(n3 log n).

Proof. It is relatively easy to show that the mixing time
is Ω(n3); the extra log factor is more subtle. To get
the weaker bound, we start from state 1̄ and show that
after t3 = n3 steps, the event A := “f(2x̄(t3) − 1̄) <
0” has probability less than 1

4
. Since by symmetry

A has probability 1
2

for x̄ drawn from the stationary
distribution σ, the event A witnesses the fact that X(t3)
is at total variation distance greater than 1

4
from σ.

Letting z̄ := 2x̄ − 1 instead of x̄ − ȳ, we still have
E[f(z̄′)] = (1 − γn)f(z̄), this time needing an upper
bound for γn:

γn =
1

n

(

1 − cos
( π

n+1

)

)

<
π2

2
n−3.

Then
E[f(z̄(t3))] > (1 − γn)t1f(z̄(0))

>
(

1 − π2

2
n−3

)n3

f(z̄(0))

> e−2/9f(z̄(0))

> .75f(z̄(0))



for large n. Since f(z̄(t3)) cannot exceed f(z̄(0)), the
probability that it is below zero at time t3 is less than
1
4
, as desired.

To get the extra log factor into t to establish tight
upper and lower bounds, we must control the variance
of f(z̄(t)) to conclude that the function stays fairly close
to its mean. Let R(t) := E

[

(f(t+1)−f(t))2
]

, with R an
upper bound for R(t). Lemma 5 of Wilson [9] gives a
handy quantitative formulation of this second-moment
method, which has been used in the past by Diaconis
and Shashahani [1] and Lee and Yau [7] to get lower
bounds for mixing times.

For our purposes Wilson’s lemma says the following.

Lemma [9]: If a function Φ on the state space

of a Markov chain satisfies E[Φ(x̄(t+1))|x̄(t)] = (1 −
γ)Φ(x̄(t)), and E[(Φ(x̄(t+1)) − Φ(x̄(t)))2] ≤ R, then

after fewer than

log Φmax + 1
2

log γε
4R

− log(1 − γ)

the variation distance from stationarity exceeds 1 − ε.

Substituting f(z̄) = f(2x̄ − 1̄) for Φ(x̄), π2

2
n−3 for

γ, f(1̄) ∼ 2n/π for Φmax, and 2/3 for ε, we see that
the desired log factor will appear in t provided R =
O(n−1−δ) for some δ > 0.

Alas, it appears that our R(t) can be as large as
Θ(1/n). If dot k is chosen for adjustment at time t,
it will move to the right with probability xk+1−xk

xk+1−xk−1
,

causing an expected square increment of c2
k(zk+1 −

zk)2/3, where ck is the kth coefficient of f ; moving left
gives c2

k(zk − zk−1)
2/3. Hence, altogether, the expected

squared change in f(z̄) is

1

n

n
∑

k=1

c2
k

3
g(k),

where

g(k) =
( (zk+1 − zk)3 + (zk − zk−1)

3

zk+1 − zk−1

)

=
(

(zk+1−zk)2−(zk+1−zk)(zk−zk−1)+(zk−zk−1)
2
)

.

In the worst case imaginable, x1, . . . , xm are near 0 and
the rest of the dots near 1, for m around n/2; then cm

and cm+1 are close to 1 and R(t) ∼ 1
n (1

3
22 + 1

3
22) =

8/3n.
But is this sort of unpleasantness likely? Early on,

when dots are just beginning to peel away from 1, they
are spread out causing xk − xk−1 to have size of order
1, but these are small k’s with correspondingly small
ck’s. In fact, we will show that R(t) = o(1/n) at all

times with high probability. We still won’t be able to
use Wilson’s lemma directly, but we can instead adapt
the proof.

It turns out to be useful to reconsider the linear
coupling, this time between X and a stationary chain
U. Let us note first that at all times, xi/ui is decreasing
(not necessarily strictly) in k for k = 1, . . . , n + 1.
Certainly it starts that way; now observe that for k > 1,

xk−1

uk−1

≥ xk+1

uk+1

implies

xk−1

uk−1

≥ (1 − λ)xk−1 + λxk+1

(1 − λ)uk−1 + λuk+1

≥ xk+1

uk+1

.

When the first dot is chosen, i.e., k = 1, we get equality
since x′

1/u′

1 = λx2/λu2 = x2/u2. We conclude that the
sequence xi/ui remains decreasing, and in particular,
throughout the coupling, xk−1/xk ≥ uk−1/uk for all k.
Thus xk−xk−1

xk

≤ uk−uk−1

uk

and

xk − xk−1 ≤ xk
uk − uk−1

uk
≤ uk − uk−1

uk
.

Now, given the value of uk, the dots u1, . . . , uk−1 are
uniformly distributed between 0 and uk; thus if k = nα,

Pr
(

xk − xk−1 > n−α(log n)5
)

< Pr
(uk − uk−1

uk
> n−α(log n)5

)

=
(

1 − n−α(log n)5
)nα

−1

∼ exp(−(log n)5) = n−5.

Over the course of t4 = 1
10

n3 log n steps, there are
fewer than n4 log n opportunities for such a “big gap” to
appear so with probability at least 1 − log n/n, we will
always have xk − xk−1 < n−α(log n)5 where α = logn k.

Recalling that the coefficient ck = sin kπ
n+1

< kπ
n+1

,
we have that when k = nα, with probability as large as
we wish, the kth term

c2
k

12

(

(zk+1−zk)2−(zk+1−zk)(zk−zk−1)+(zk−zk−1)
2
)

of R(t) is bounded by

( πnα

n+1

)2(

2n−α(log n)5
)2

< 4π2(log n)10n−2.

Since R(t) is the mean of these terms, it is itself bounded
by R = 4π2(log n)10n−2, which is small enough for our
purposes with a factor of n1−δ to spare.



We now define a sequence of random variables Φ(t)
by Φ(t) := f(x̄(t)) for t ≤ T, where T is the first
time a bad gap appears. For t > T, we put Φ(t) :=
(1 − γ)t−TΦ(T).

Now we have E[(Φ(t+1)−Φ(t))2] ≤ R at all times,
since after time T it is just γ2Φ(t)2 ≤ γ2f(1̄). We still
cannot apply Wilson’s lemma, since Φ is not a function
of the state of X, but we mimic part of its proof as
follows.

We still have that E[Φ(t)] = (1 − γ)tΦ(0) for all t,
and letting ∆Φ denote Φ(t+1) − Φ(t), we have

Φ(t+1)2 = Φ(t)2 + 2Φ(t)∆Φ + (∆Φ)2,

and hence

E[Φ(t+1)2|Φ(t)] = (1 − 2γ)Φ(t)2 + E[(∆Φ)2|Φ(t)]

≤ (1 − 2γ)Φ(t)2 + R,

so by induction,

E[Φ(t)2] ≤ (1 − 2γ)tΦ(0)2 +
R

2γ
.

Therefore

Var[Φ(t)] = E[Φ(t)2] − E[Φ(t)]2

≤
(

(1 − 2γ)t − (1 − 2γ)2t
)

Φ(0)2 +
R

2γ

≤ R

2γ
.

We then have by Chebyshev’s inequality that

Pr[|Φ(t) − E[Φ(t)]| ≥
√

5R/2γ] ≤ 1

5
.

For t4 = 1
10

n3 log n we have

E[Φ(t4)] ≥ (1 − γ)t4
2n

π

≥
(

1 − π2

2
n−3)n3 log n/10 2n

π

≥ exp(−2/π2)
2

π
n1−π2/20

which is order n0.5065..., while

√

R/10γ ≤
√

20π2(log n)10n−2

π2n−3
=

√
20(log n)5n1/2.

Thus, in particular, the probability that Φ(t4) is positive
is at least 4/5 for n large.

We claim now that the event “f(x̄(t4)) > 0”
witnesses the fact that the total variation between X(t4)
and the stationary distribution is 1/4 or more. We only
need to make Pr[T < t4] ≤ 1/20 to ensure that

Pr[f(x̄(t4)) > 0] ≥ Pr[Φ(t4) > 0] − 1

20
≥ 3

4

exceeding Pr[f(ū(t4)) > 0] = 1/2, where U is station-
ary, by at least 1/4.

5 Remarks

We have actually shown that the mixing time of
“n dots on an interval” lies between 0.1n3 log n and
1.2158542n3 log n, asymptotically, with room for im-
provement in both constants. Experience with other
Markov chains suggests that there is probably some con-
stant c such that the time to reach total variation ε is
(c − o(1))n3 log n for any small ε.

There are some variations of “n dots on an interval”
that are natural to consider: for example, “n dots on
a circle” (labelled or not) and similar chains where a
point is first selected uniformly at random, and then
the dot to its right or left is moved to that point. These
chains are also under study by the authors, but appear
to require different methods from the chain considered
here; results will appear in subsequent papers.
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