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Abstract. Sets of non-intersecting, monotonic lattice paths, or fized
routings, provide a common representation for several combinatorial
problems and have been the key element for designing sampling algo-
rithms. Markov chain algorithms based on routings have led to efficient
samplers for tilings, Eulerian orientations [8] and triangulations [9], while
an algorithm which successively calculates ratios of determinants has led
to a very fast method for sampling fixed routings [12]. We extend Wil-
son’s determinant algorithm [12] to sample free routings where the num-
ber of paths, as well as the endpoints, are allowed to vary. The algorithm
is based on a technique due to Stembridge for counting free routings
by calculating the Pfaffian of a suitable matrix [11] and a method of
Colbourn, Myrvold and Neufeld [1] for efficiently calculating ratios of
determinants. As an application, we show how to sample tilings on pla-
nar lattice regions with free boundary conditions.

1 Introduction

Physicists study combinatorial structures on lattices in order to understand vari-
ous physical systems. For example, tilings on planar lattice regions model systems
of diatomic molecules, or dimers. By studying statistics of random configurations
on families of regions of finite size (such as the n x n square or the Aztec dia-
mond), physicists gain insight into the behavior of these systems on the infinite
lattice, the so-called thermodynamic limit.

It is well known that the boundary of the region plays a crucial role. There
are two relevant boundary effects. The first is the shape of the family of finite
regions; the second is the type of boundary conditions defined for the regions.
So far sampling has primarily been done for fized boundary conditions, where
the configurations are forced to precisely agree with the boundary. In the case of
domino tilings this means that tiles are forced to cover all of the squares inside,
and only inside, the region. Another important type of boundary condition con-
sidered permits all configurations that can be seen within a window in the shape
of the region. Returning to tilings, this means that tiles can overlap the bound-
ary (as long as the configuration can be extended to a tiling of the plane). In the
context of tilings, these are commonly referred to as free boundary conditions.
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Fig. 1. Domino tilings on regions with fixed and free boundary conditions

One reason for studying free boundary conditions is that these eliminate
the boundary effect due to the shape of the region (in the limit). This is not
true for families of regions with fixed boundary conditions, where properties of
random configurations can vary drastically according to their shape. Consider,
for example, the entropy of the system, defined as h(A4) = lim, %,
where A = {\,} is a nested family of regions tending towards the infinite lattice
and #(\,) is the number of tilings of A\, . With fixed boundary conditions, the
family of square regions has been proven to have mazimal entropy over all finite
families of regions A. In contrast, the family of Aztec diamonds is known to
have lower entropy, which is related to the arctic circle phenomenon whereby
frozen regions of the Aztec diamond emerge having a completely predictable
local tiling [5]. On the other hand, with free boundary conditions, for any family
of regions where the ratio of the length of the perimeter to the area of the region
tends to zero, the entropy will converge to the same (maximal) value. In other
words, statistics of tilings of square regions with free boundary conditions will
agree with statistics of tilings of Aztec diamonds with free boundary conditions.

Several algorithms for sampling tilings on regions with fixed boundary con-
ditions rely on a bijection between tilings and fized routings, or sets of non-
intersecting lattice paths where the number of paths and the position of their
endpoints are fixed. The first is a Markov chain approach of Luby, Randall and
Sinclair [8] which samples routings uniformly (and can be extended to the case
where the paths are edge disjoint, but not necessarily vertex disjoint). A second
approach, due to Wilson [12], uses the Gessel-Viennot method for enumerating
routings by calculating a determinant [2] (and the close relationship between
counting and sampling formalized by Jerrum, Valiant and Vazirani [4]). Wilson
utilizes a technique introduced by Colbourn, Myrvold and Neufeld [1] which al-
lows ratios of determinants of closely related matrices to be computed quickly
without having to evaluate both determinants.

In this paper we sample free routings, or sets of non-intersecting lattice paths
where the positions of the endpoints of the paths, as well as the number of
paths, are allowed to vary. Our result relies on Stembridge’s algorithm counting
the number of free routings of a region by evaluating a Pfaffian [11]. We adapt
the method of Colbourn, Myrvold and Neufeld to allow ratios of Pfaffians to
be evaluated quickly, a special case of a technique of Kenyon for calculating
statistics of random tilings [6]. The running time of our algorithm is O(I?n),
where n is the size of the region and [ is the maximal number of paths in



a routing. Typically I = O(y/n), yielding an O(n?) algorithm. We apply this
sampling method to generate random domino and lozenge tilings of hexagonal
regions with free boundary conditions.

The remainder of the paper is organized as follows. In section 2 we review the
counting techniques of Gessel-Viennot and Stembridge for fixed and free rout-
ings, respectively. In section 3 we present our algorithm for uniformly sampling
free routings. Finally, in section 4 we show the bijections between free routings
and tilings on regions with free boundary conditions which allow us to sample
these tilings efficiently.

2 Background: Counting routings

First we begin with an overview of the method of Gessel and Viennot for counting
fixed routings and that of Stembridge for counting free routings. Wilson shows
how to sample fixed routings using self-reducibility and iterative applications of
the Gessel-Viennot method. We give a similar method to sample free routings,
utilizing Stembridge’s method for counting free routings.

2.1 The Gessel-Viennot method

Gessel and Viennot[2, 3], and Lindstrém[7] introduce a method for finding the
number of non-intersecting paths, with specified sources and sinks, in certain
directed graphs by computing a determinant of a matrix. For their technique to
work, the graph must be directed and acyclic. Furthermore, the sources and sinks
must satisfy a condition known as compatibility. In this definition, we require that
both the set of sources S and the set of sinks 7 be ordered.

Definition 1. Let D be a directed acyclic graph. The ordered sets S and T are
said to be compatible if s < s’ in S and t <t' in T implies that every s — t'
path intersects every s' — t path.

Thus, if there is a set of [ non-intersecting paths using sources s; < s9 < -+ < 5
and sinks t; < t3 < --- < t;, then it must be the case that s; is joined to ¢; for
all . We call such a set of | non-intersecting paths a fixed routing of D.

Let D denote an acyclic directed graph with compatible sources S =
{s1,...,81} and sinks T = {t1,...,%}. Let p;; denote the number of directed
paths in D with source s; and sink ¢;. Since the graph is assumed to be acyclic,
this number is finite for all 4 and j. Let P be the matrix with entries p;;.

We have the following theorem [2,11]:

Theorem 1. With D, S, T, (S and T compatible) and P as above, the num-
ber of non-intersecting sets of | paths in D is equal to det(P).

If D is not acyclic, or if S and 7 are not compatible, then the preceding theorem
fails. (See [11] for an example for which the theorem fails.)

Theorem 2 (Wilson [12]). Let D be a planar, acyclic digraph with n ver-
tices, having compatible sources and sinks. Fized routings of D can be uniformly
sampled in O(I*-%%8n) time.



2.2 Stembridge’s extension

Stembridge[11] extends the Gessel-Viennot method to count free routings of
a directed acyclic graph, D, with sources S and sinks 7. In the case of free
routings, the number of paths is no longer fixed, so S is really the set of potential
sources and T is the set of potential sinks. Also, it is no longer always true that
s; will be joined to t;, as was true in the case of fixed routings.

If s; € S is a source in a free routing, we say that s; is used in the routing;
otherwise s; is unused. Here we assume there are [ sources and [ sinks. First,
we need a bit of linear algebra.

Definition 2. Let B be a 2n X 2n skew-symmetric matriz (i.e. BT = —B),

and let
™= {{ilajl}a {i2aj2}7 ey {ZTH]TL}}
be a partition of the set {1,...,2n} into pairs. Let

1 2 3 4 ...2n—1 2n
bn = sgn ( i1 J1 %2 J2 oo in  Jn ) biv.isDia.go = Bin -
The Pfaffian of B, denoted Pf(B), is defined by

Pf(B) = b

Theorem 3. If B is a skew-symmetric matriz of even size, then det(B) =
Pf(B)2.

A skew-symmetric matrix, (), will take the role of the matrix P in theorem 1,
but instead of the determinant of @, we look at its Pfaffian. For 1 <i < j <1
and 1 < h < k <1, let a;j(h,k) denote the number of non-intersecting paths

DPin  Dik )
Pjn DPjk
using theorem 1, where, recall, p;, is the number of paths from s; to tj.

Let qij = Y <f, @ij(h, k). Then g;; is the number of pairs of non-intersecting
paths with sources s; and s;, where the sinks range over all pairs where
precedes tp in the ordering of 7 . Finally, let ¢; denote the number of paths
with source s; to any sink in 7.

We assume that [ is odd; if not, we can add an additional isolated vertex
si+1 to S. The following is due to Stembridge[11]:

in D with sources s;,s;, and sinks tp,t,. We find oy;(h, k) = det (

Theorem 4. Let S = (s1,-..,8;) be an l-tuple of vertices in an acyclic digraph
D, with I odd. Let T be an ordered subset of vertices that is compatible with
S. Let @ be the skew-symmetric matriz where the upper triangular entries are
given by o

[Qli; = (1)1 + 4
for 1 <i<j <lIl+1, where qj; = qij for j <1 and ¢,y = gi- Then & = Pf(Q)
is the number of free routings of D.



The matrix () looks like:

0 1+ qio . —14qu 1+q:

—1—q12 0 1+QQ1 —1+QQ
Q= : : _ : :
—1—q1 1—Q2 —].—ql 0

Stembridge uses this theorem to study shifted tableaux, plane partitions,
and Schur’s Q-functions. As we will see in section 4 it can be used to count
and generate tilings with free boundary conditions. We first give an extension of
Stembridge’s result.

2.3 Fixing sources

We can extend theorem 4 to count the number of free routings where we specify
that certain sources must be used (or unused) in a routing,.

Informally, if s; is used as a source then we replace terms +1 4 ¢;; in @ by
gij , and if not used, by £1. The following theorem formalizes this:

Theorem 5. Let S = (s1,-..,5;) be an l-tuple of vertices in an acyclic digraph
D, with | odd. Let T be an ordered subset of vertices that is compatible with S .
Suppose Sin,Sout €S with S;;,NSeue = 0. Let Q be the skew-symmetric matriz
where the upper triangular entries are given by

0 if s; € Sin and sj € Sout, (or vice-versa)
i if § <1 and (s; and/or s; in S, neither in Sout)
[Qli; = (—1)Hti-1 if j <1 and (s; and/or s; in Sout, neither in Sy,
v q; ifj=1+1 and s; € Sip

(.—1‘)"“ ifj=1+1 and s; € Sous
(1)1 qi; otherwise, where gj; is as in theorem /

for 1<i<j<l+1. Then & = P{(Q) is the number of free routings of D with
Sin included in the set of used sources, and Sy in the set of unused sources.

Proof. For J C {1,2,...,n},let Ay denote the square submatrix of A obtained
by selecting the rows and columns indexed by J. We use the result (from [11,
lemma 4.2]) that (for n even, A and B n x n in size) we can write

Pf(A+B) =3 (~1)")~'= Pf[4,]P{[B,c] (1)
J
where o(J) = > ;c;Jj, and the sum is taken over all partitions J, JC of

{1,...,n} with |J| even.

Decompose ) into a sum of two matrices, A and B, where [4];; € {0,1,—-1}
and [B];; € {0,4q};, —g;;}- Now apply the above result for the Pfaffian of a sum.
We have Pf[A;] =0 if JNS;, # 0 since A will contain a row of zeros. Similarly,
Pf[Byc] = 0 if JY NSyou # 0. So the only terms that survive in the sum (1)



are those with S;,, C J¢ and S,y C J. Note that if g;; or g; appears in one
of the terms of @, that term corresponds to a set of paths (not necessarily non-
intersecting) that uses s;. Thus, if s; € S, by the choice of the entries of @
we ensure that s; is used in every routing of D, as one of the g;;’s or ¢; will
appear in each term of @. Similarly, if s; € S,u¢ then none of the g;;’s or g;
appears in @, so that s; is unused as a source in every routing of D. O

3 Generating random routings

We present an algorithm to uniformly generate a free routing of a planar acyclic
digraph D with compatible sources and sinks. This algorithm is similar to the
determinant algorithm of [12] for generating fixed routings. Once again, we as-
sume that |S| =|7| =1, with [ odd.

We use self-reducibility to find the routing by building paths one edge at a
time. We move through the graph, deciding (probabilistically) if a source s; is
used in the routing. Then, if used, we select one of its out-going edges, with
appropriate probabilities, and add it to the routing, thereby starting a path
using s;. We push the source forward to w, the other end of the selected edge,
and will eventually complete a path from s; into 7. We use the fact that ratios
of Pfaffians can be computed efficiently to determine the probability of using a
particular source or edge. The following theorem is analogous to the result in [1]
for ratios of determinants of matrices that differ by a single row.

Theorem 6. Let A be an invertible, skew-symmetric matriz and let B be a
skew-symmetric matrix which differs from A by only the ith row and column.
Then PE(B)

— ) _IBA ...

Pf(A) [ ]ll
Proof. The proof relies on a closely related fact that if A is an invertible matrix
and C differs from A by only the ith row, then

det(C)
det(A)

(which follows from Cramer’s rule). Given A, an invertible, skew-symmetric
matrix and B, a skew-symmetric matrix which differs from A by only the ith
row and column, let C' be the matrix formed by replacing the ith row of A with
the ith row of B (so C differs from A by the ith row and from B by the ith
column). Assume first that C' is invertible. Then we have that det(C)/det(4) =
[CA~Y);; and det(B)/det(C) = [BTC~! T];; = [C~!B];;. Finally, we use the
fact that since A and C differ in only the ith row and A; = Cj; = 0 since
A and B are skew-symmetric, then the ith rows of A~! and C~! must agree.
Hence,

=[CA™ s

= [CilB]u[CAil]”

Pf(B)\*> _ det(B) det(B) det(C)
(Pf(A)) T det(A)  det(C) det(A) |
= [A'Bla[BA "y = ([BA ). (2)



If C is not invertible, let B’ be obtained from B by perturbing the ith row
of B by e - (random vector) and the ith column so that B’ is skew-symmetric
(and differs from A only in the ith row and ith column). With C' as the matrix
formed by replacing the ith row of A by the ith row of B’ we proceed as before
(C' is invertible), then let ¢ — 0 (so B’ — B) to get the same result as in (2).

Taking square roots, and recalling that A=! = adj(A4)/ det(A), where adj(A)
is the (classical) adjoint of A, we can write (2) as

Pf(B) det(A) = + Pf(A)[B adj(A)]s;. (3)

Taking an invertible skew-symmetric matrix A and letting B = A, the sign
in that case is +, and by continuity the sign for a whole neighborhood of the
parameter values is also +. By taking partial derivatives and evaluating at 0,
we see that the coefficients of the polynomials must be equal, so that the sign
in (3) is everywhere +. O

We use the Sherman-Morrison formula for updating A~! after changing a
single row or column of the matrix A. In our case we will be changing both a row
and a column, but we can update the inverse by applying the Sherman-Morrison
formula twice. Updating A~! can be done in ©(I?) time using this method
(for details see, e.g., [1, 12]). (The Sherman-Morrison formula for updating an
inverse has shown some numerical instability in practice; we may achieve greater
numerical stability by using other schemes for updating A~! at a small cost in
the running time of the algorithm.) Now we are ready to describe the algorithm.

The input to the algorithm is the planar digraph, D, having n vertices and
m edges, and sets S and T, the sources and sinks, respectively. The variable
x; records the current position of source i, and the array R records the routing
as it is constructed. We maintain a matrix @), initially equal to the matrix @ of
theorem 4, and a matrix U, initially the inverse of ), which we use to compute
probabilities of using sources or edges in the routing. ) and U are updated as
we move through the digraph. We compute P[v, ], which will be the number of
paths from vertex v to sink ¢;, and PJu, }], the number of paths from v to any
of the sinks #;,t;41,...,t. (We use the P[v,i]’s to help initialize the matrix @
in time O(I®) instead of O(I*), and later for updating entries of ) as we move
through D.) With “v — w” denoting that there is a directed edge from v to w
the algorithm is:

FreeRoute(D,S,T)

1. Do a topological sort on D, numbering the vertices 1 through n, so that v — w

implies v < w. (O(n) time.)
2. For v =1 to n, set ¢, = 0. (O(n) time.)
3. For ¢ =1 down to 1 (Dynamic programming step) (O(In) time.)

(a) Set z; = s;.
(b) For v =n down to 1
i. f v=t;, set Plv,i] =1, e.lse set Plv,i]=>  Plw,i].
(Plv, 4] now contains the number of paths from v to ¢;.)
ii. Set gu = qv + P[v,1].



iii. If i =1, set P[v,i] = P[v,i], else set P[v,i] = P[v,i+ 1] + P[v,
4. For i=1tol (O(
(a) Find v such that v = s;.
(b) Set ¢; = qv. (Initialize g;’s.)
(c) For j=4i+1tol
i. Find w such that w =s;.
i. Set gij = zkzll det ( ﬁ[[z:’lz]] 11;[[5;7’;:11]] ) . (Initialize g;j;’s.)
5. Initialize the matrix Q as in theorem 4 using the ¢;’s and ¢;;’s, find U = Q7'
and set Sin =0 and Sou: = 0. (O(1?) time.)
6. For v =1 to n, if v = x; for some i then
(a) If v € S\(Sin USout) then decide if v is used as a source (see details below).
If it is, add v to Sin. If not, add v to Sou: and set R[v] =0.
In either case, update row and column % of @ and U. (O(n + I?) time.)
(b) If v € S;, then decide which edge leaving v to include in the path of the
routing (see details and remarks). Let w be the other endpoint of this edge.
If w = s for some k, see remark 1 below.
Set R[v] =w, z; = w, and add w to Sin.
Set ¢; = qu . Update the ith row and column of Q and update U. (O(I*n)
time.)

i.

1%) time.)

Remark 1. In step 6(b), we may try to push v = =z; forward to an (as yet)
unused source w = s € S. In this case, we want to add w to S,y SO that it
is not used during some later step to begin a different path. However, we also
want to add w to S;;, so that in later iterations of step 6(b) we push w forward
to complete a full path into 7 that started from s;. This conflicts with the
condition of theorem 5 that S;, N S,ut = 0. We get around this difficulty as
follows: Remove z; from S;, and add it to S,u:, then add w = s; to S;, so
that it is pushed forward in later steps of the algorithm. Update row and column
i of @ to reflect that x; is unused, then row and column & so that s is used,
and update U accordingly with successive applications of the Sherman-Morrison
formula. Finally, set R[v] = w to join the path between s; and w to the path
from w into 7. We will see examples of digraphs in which this situation might
arise in section 4 where we consider tilings of reduced Aztec diamonds.

Remark 2. During step 6(b) it is possible that x; € T but we might still push z;
forward. This could occur if z; has out-neighbors that are also in 7 . Informally,
in this situation we may consider that z; is joined to a phantom sink by a
single (phantom) edge. Pushing z; forward to this phantom sink corresponds
to terminating the path at z; and not continuing to any of z;’s neighbors. In
practice, we need not handle this situation as a special case, since we can examine
all of the out-neighbors of z; in turn and if we reject using any of them then
terminate the path, i.e., x; is not pushed.

Details for step 6(a): In this step, we determine if the source s; is used in a

routing The probability that s; is used is given by %g)), where Q' is a skew-

symmetric matrix differing from @ in the ith row and ith column. In particular,
the ith row of @' can be found using theorem 5, where we apply the theorem




with s; used in the set of current potential sources (the z;’s, restricting S;y,
and S,yt to that set). We use theorem 6 to compute this probability as the dot
product of the new ith row of ' with column ¢ of U. If v is used, we replace
the ith row of @ by the ith row of @' to reflect this (and then update the ith
column of ) so that it remains skew-symmetric), and add v to S;,. If v is not
used, we update row and column ¢ of ) as appropriate in theorem 5, where v is
now in S,y - In either case, we update U (so that it is still equal to Q~1), using
two successive applications of the Sherman-Morrison formula, once for changing
row i of @, and again for changing column 4. Updating U takes time ©(/?),
and hence the total time spent in step 6(a) is O(n + 3).

Details for step 6(b): Moving the source z; forward in step 6(b) changes the
ith row and column of (). As before, the probability that the edge v — w is
used is %%’)), where ' is the matrix with w used as a source in place of z;. If
this edge is taken, we update ) (and U) by replacing the ith row and column
of @ with those of Q'. In the special case that w € S, we proceed as outlined in
remark 1. The time to update U (at any instance when @ is updated) is ©(1?),

so the total time spent in step 6(b) is O(I’n).

We have demonstrated the following theorem:

Theorem 7. Let D be a planar acyclic digraph with n vertices, having com-
patible sources and sinks. FreeRoute uniformly samples a free routing of D in
time O(I*n).

4 Lattice paths

In this section, we demonstrate applications of the techniques from the previous
section. We show how to generate random domino tilings of the reduced Aztec
diamond with free boundary conditions and lozenge tilings of the hexagon with
free boundary conditions. The key idea is the existence of a bijection between
the set of tilings of this region and the set of free routings in a related digraph.
For details of the analogous bijections in the case of fixed boundary conditions,
we refer the reader to [8].

4.1 Domino tilings of the reduced Aztec diamond

The reduced Aztec diamond of order n, denoted I',, is a region composed of
2n? unit squares arranged as 2n centered rows of squares, where the kth row
has min{2k — 1,4n — 2k + 1} squares in it. A domino tiling is a cover of I,
using non-overlapping dominoes, where a domino covers two adjacent squares.
A domino tiling with free boundary conditions is a tiling in which all the squares
of I, are covered, but the dominoes are allowed to “stick out” of (or overlap)
the boundary of the region. We assume that we know the orientation of a domino
that overlaps the boundary, i.e., a single square (or half-domino) is designated
as the bottom, top, left or right half of a domino.



Given a tiling of I, with free boundary conditions (or simply, a free tiling),
we define a routing of a digraph, D,,. To get D, , first color the left square of
row n of I, black, then extend the coloring to I3, using alternating black and
white squares (as on the underlying infinite chessboard). Mark the midpoint
of each vertical edge that has a black square to its right. Fix (0,0) as the
coordinates of the point on the left edge of row n. Add n + 1 additional points
at coordinates (—1,-1),(0,-2),(1,-3),...,(n —1,—n — 1), and another n +
1 points at (n,n),(n + 1,n —1),(n + 2,n — 2),...,(2n,0). Join a point with
coordinates (z,y) to the points (z + 1,y + 1),(z + 1,y — 1), and (z + 2,y).
Finally, delete edges that lie completely outside the boundary of I, .

t1
S1 to
S2 t3
53 ta
S4 . ts
Sy e \/\/\/\ tﬁ
S6 tr
87 ts
S8 tg
S9 Dy

Fig. 2. The reduced Aztec diamond

The marked points form the vertex set of D,,, and the edges of D,, are those
that remain between points after the deletion step. Direct edges from left to
right. Starting at the source in the top square, label the sources sy, s, ..., S2n41
in the counterclockwise direction, and then label each sink ¢; where s; is the
last unmatched source. The left picture of figure 2 is Iy, the reduced Aztec
diamond of order 4, along with the sources and sinks of D4. The right picture
is the digraph Dy.

Theorem 8. There is a bijection between free boundary tilings of I, and free
routings of D, .

Proof. Given a free tiling of I3, we map it to a free routing of D,, as follows:
Examine the sources in this order: s,,Sp—1,.--,51,Sn+1,Sn42,---,S2n41- It’s
possible that no source lies on the edge of a domino, in which case the routing
is empty. Otherwise, the routing consists of the paths constructed as follows: If
sn, lies on the edge of a domino, this determines the first edge in a path starting
at s, (otherwise move onto s,_1). Connect s, to the unique vertex in D,, that
lies on the right side of the domino. This new vertex must lie on the left side of
another domino, so repeat this process. Stop when we reach a vertex in 7 that
does not have a domino to its right. Choose the next source, in the prescribed
order, that is not on a path already constructed, and repeat this procedure. The
paths are non-intersecting since dominoes cannot overlap and because of the
order in which the sources were examined. See figure 3 for an example of a free
boundary tiling of I'y and the corresponding routing. (An arrow in the tiling



points to the location of the other half of a domino that overlaps the boundary.)
The proof that this map forms a bijection is analogous to the proof given in [8]
which establishes a similar bijection between domino tilings of regions with fixed

boundary conditions and fixed routings of related regions. O
s ) t
S1P ot2 81_/. e t2
#2, ot3 S2g M. g t3
S3 T t4 . . Kl
£ ots
4 S5 te S5 ey
S t7 . :'. .': /
ST td ST ¥t
Sge to 880'---:.'t9
Sge S9 o
A free domino tiling Marked tiles The corresponding routing

Fig. 3. A domino tiling with free boundary conditions and its free routing

It follows from this connection between tilings of I, and routings of D,
that we can generate free boundary tilings of I3, by using the algorithm given
in section 3 for generating free routings of D,,.

4.2 Lozenge tilings of the hexagon

We use a similar approach as in the previous section to generate lozenge tilings
of a hexagonal region of the triangular lattice with free boundary conditions.
There is a bijection between the collection of free boundary tilings, and the set
of free routings of a related digraph.

Let H, denote a hexagonal region on the triangular lattice with n edges
on each side. A lozenge tiling of H, is a covering of the region with lozenges,
where a lozenge covers two adjacent triangles, and lozenges do not overlap. As
in the previous section, a lozenge tiling of H,, with free boundary conditions is
a tiling in which lozenges may overlap the boundary of the region. We describe
a digraph, G, associated with H,, in which free routings correspond to free
boundary tilings of H,, . First, augment H,, to get a region H, by adding the
triangles in the underlying lattice that share an edge with the boundary of H,.
Mark the midpoint of each vertical edge in H,,. These marked points form the
vertex set of G,. Join two points if they lie on adjacent triangles. These are the
edges of G,,. Direct these edges from left to right. A free boundary lozenge tiling
of H,, corresponds to a free routing of G, . Again, the proof of this bijection
follows analogously to the proof given in [8] for establishing a bijection between
fixed lozenge tilings and fixed routings. Figure 4 provides a pictorial illustration
of this correspondence.

Applying the FreeRoute algorithm of section 3 allows us to uniformly gen-
erate free routings of G, which we may then map to their corresponding free
boundary tilings of H,.



A free lozenge tiling The corresponding routing

Fig. 4. A lozenge tiling with free boundary conditions and its free routing
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