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Abstract. We determine, up to a log factor, the mixing time of a
Markov chain whose state space consists of the successive distances be-
tween n labeled “dots” on a circle, in which one dot is selected uniformly
at random and moved to a uniformly random point between its two
neighbors. The method involves novel use of auxiliary discrete Markov
chains to keep track of a vector of quadratic parameters.

1 Introduction

Randomized approximation algorithms using Markov chains have proven to be
powerful tools with an astounding variety of applications. Most notably, when
the state space consists of configurations of a physical system, random sampling
provides a method for estimating the thermodynamic properties of the model.
Showing that these chains converge quickly to their stationary distributions is
typically the vital step in establishing the efficiency of these algorithms.

Over the last 15 years there has been substantial progress in developing meth-
ods for bounding the mixing rates of finite Markov chains, including coupling,
canonical paths, and various isoperimetric inequalities (see, e.g., [4], [6], and
[11] for surveys). As a consequence, there are now provably efficient algorithms
for many discrete sampling problems, such as matchings, independents sets and
colorings. However, there has been a scarcity of results for problems defined on
continuous spaces, mostly because methods used to analyze discrete chains seem
to break down in the continuous setting. This is likely an artifact of the appear-
ance of the “minimum stationary probability” parameter which often arises in
the discrete cases, and not anything inherent in continuous chains, which often
seem to be efficient. Thus, an obvious challenge to the mixing community is to
develop new tools amenable to Markov chains on continuous spaces.

For example, the hard-core lattice gas model from statistical physics examines
the possible configurations of n balls of radius r in a finite region R of R", where
balls are required to lie in non-overlapping positions. Although the centers of the
balls can occupy any real point in R™, the model is typically discretized so that
they lie on lattice points in A,, C Z™. In this setting, if r is chosen to be slightly
more than 1/2, then configurations correspond to independent sets on the lattice
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graph. While much analysis has focused on rigorous means of efficiently sampling
discrete models such as independent sets in A, (e.g., [3], [8]) very little is known
about sampling in the continuous setting.

One powerful tool for sampling points in a continuous state space is a walk
used to estimate the volume of a convex body in R™ [2]. Notice that this chain
provides a way to sample sets consisting of n real points on the unit interval
because these configurations can be mapped to points in the unit simplex. How-
ever, the moves arising from walks in the simplex are less natural in the context
of independent sets since they move all the points in the independent set in a
single move.

Alternative chains for sampling lattice gas configurations were considered in
[5]. The first variant is a single particle, global chain that connects all pairs
of states that differ by the position of one point. It is shown that the chain
is rapidly mixing in R™ if the density of points is sufficiently low. The second
variant examined is a single particle, local chain where steps involve moving one
point to a new position in its current neighborhood. Although it is believed that
this chain mixes rapidly in many settings, it was only shown that a discretized
version of the chain mixes rapidly in one dimension. In this chain, the unit
interval is subdivided into m discrete points and at each step one of the n
particles is chosen and moved to an adjacent point if that point is currently
unoccupied. The mixing time for this chain was shown to be O(n®*m?).

In [12], the authors of this paper previously considered a natural chain whose
stationary distribution is the set of configurations of n dots on the real interval
[0,1] and showed that the mixing time is ©(n3logn). The analysis was based on
a “two phase coupling”: the first phase brings the dots of one chain close to the
corresponding dots of the other; the second aligns them exactly.

Here, we tackle another simple and natural chain whose stationary state is
uniform on the unit n-simplex. A state of the chain consists of the successive
distances (along the circle) between n sequentially-numbered points on a unit-
circumference circle. Moves consist of moving a random such point to a spot on
the circle chosen uniformly at random between its two neighbors. We formalize
the moves in the next section. The mixing time 7 of the chain is then shown to
satisfy

en® <1 < cnPlogn,

for constants c, c'.

This chain seems superficially similar to the chain “n dots on an interval.”
However, the methods used there required a lattice structure for the state space
and an eigenfunction for the chain, neither of which is available here. Instead
we use an entirely different and apparently novel approach involving auxiliary
discrete Markov chains, borrowing only the two phase coupling from [12].

2 n Dots on a Circle

To avoid confusion with other points on the circle, the n designated points
defining the chain will be called dots and the chain itself will be called “n dots
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on a circle.” The circle will be assumed to have circumference 1 and its points
are permanently identified with points in the half-open interval [0, 1), modulo 1.

The configuration T = (1,...,Z,) of chain X at any particular time is the
vector of locations of dots 1 through n. The dots are assumed to be labeled
clockwise around the circle.

A step of the chain is determined by a uniformly random integer k£ between
1 and n, and an independent real A chosen from the Lebesgue distribution on
[0, 1]. If the previous configuration of the chain was Z, the new configuration will
be

¥ = (1, Th—1, (1= AN)Zp—1 + AThp1, Tht1,-- -5 Tn)

where the subscripts are taken modulo n.

For the state of X we take not Z, but the difference vector & = (uy,- .., uy)
with u; := z;41 — z; € [0,1). One reason for this reduction is that otherwise, the
mixing time of the chain is dominated by the less interesting issue of the location
of the dots’ “center of gravity” along the circumference. It is not difficult to show
that this point executes a driftless random walk around the cycle which takes
time ©(n?) to mix.

However, it is convenient for us, at times, to consider the unreduced chain
X+ whose state is the configuration z.

Theorem 1. The stationary state of the unreduced “n dots on a circle” chain
Xt is uniform on [0,1)" subject to clockwise labeling modulo 1.

Proof. This follows from detail balance (or simply noticing that the position of
Z, in a uniform point is indeed uniformly random between zx_1 and xg41)-

It is convenient here to define the mizing time of a Markov chain X to be
the least number ¢ of steps such that, beginning at any state, the total variation
distance 2[|X(t) — o||; between the state of X at time ¢ and the stationary
distribution ¢ of X is less than ;.

Theorem 2. The mizing time of the reduced “n dots on an circle” chain X is
O(n®logn).

Proof. For the upper bound, it suffices to exhibit a coupling which will achieve
coalescence of any chain X with a stationary chain Y in time O(n3logn), with
probability at least %. Our coupling proceeds in two phases, first bringing the
dots of one chain close to the dots of the other, then aligning them exactly.

Our second (“exact alignment”) phase is much like the corresponding phase
in “n dots on a line.” The first phase employs the familiar linear coupling, but
our argument will rest on quite a different eigenfunction. Let z := T — ¢, where g
is the (current) configuration of the Y chain. Coupling will be achieved exactly
when Z = c1 for some ¢ € [0,1), i.e. when 23 = 22 =+ = zp,.

The first-stage “linear” coupling of X and Y is achieved simply by using the
same random k and A at each step.

Let so 1= 3).0 27, 81 = D1y %i%i-1, Sm = 2 1 ZiZi—m for m =
2,...,q—1 where ¢ = [n/2], and s; := ). | 2izi—q, where 8 = 2 when n is
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odd but only 1 when n is even. Let us observe what becomes of 5 := (sq, ..., 5q),
in expectation, as a step of the chain is taken.
In case dot k is chosen, z; will fall uniformly between z;_1 and 241, hence

1 Zk41
Ez;‘; = 7/ z2dz =

2 2
(’zk—l + zk_lzk+1 + zk—‘,—l) .
Zk+1 — Rk—1

Wl

Zp—1

It follows that over all choices of k (using primes to denote future values),

-1 1 1 1
Esf):nTso+3—n(S—0+8—2+s—0):(1——>so+—sz.

3 3 2 3 3n 2n
Similarly,
2 1 So 1 89 1 1
ESI1:<1——)81 w3 55_3—80+(1——)S1+%82,

2 1 1 2 2 1
Esl, = (1——)32+2—81+2—S—3:—81+(1——)32+—83,
n n n 2 n n n

and for 2 <m < g—1,

1 2 1
Es = —Sm—1 + (1 — ﬁ) Sm + LS -
Finally,
1 2 2
Es, | = SSa-2F (1 - E) Sq—1 + B
and

1 2
Es; = —Sg-1 + (1 - /3_”> Sq -

Let us now define a completely separate, discrete Markov chain on the state

space {0,1,...,q}, which behaves according to the following transition matrix
D 1-&4 &= 0 0 0 0

0 1-2 2 0 0 0
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Fig. 1. The chain D for n = 8. The dotted arrow represents a transition of probability
1/3n, other thin arrows 1/2n.

See Fig. 1 for a schematic of the state space of D.
We see that D is designed so that §- D = E3'. The stationary distribution
of D is .
5 =—(3,1,2,2,2,...,2,2,0) .
S(W) n+ 1 ( ) 7 k) 7 ) 7 ) 7 ﬂ)
If at time 0 the chains X and Y yield a vector 5(0) whose coordinates sum to

p, then after t steps we have Es = 3(0) -D* — -£:(3,1,2,2,2,...,2,2,8) and in

particular f(t) := so(t)/3 — 51(t) = 0. But f(t) = 3 Y0 (zip1(t) — 2i(t))? so
the z;’s are becoming equal; thus, we see that the mixing time of X is intimately
tied to the mixing time of D.

Lemma 1. The discrete chain D mizes in time O(n?).

Proof. We employ a simple coupling on the state space. The coupling is defined
so that pairs of points (i,5) € {0,...,q}? are updated simultaneously, ensuring
that the two points never move in opposite directions. We now define a distance
function on pairs of points by letting d(i,j) = |i — j| if min(i,j) > 2 or if
max(i,j) < 1 and letting d(i,5) = |i — j| — 1/2 otherwise. An upper bound on
this distance function is B = q. For this distance function and the above coupling,
it is easy to see that for any (i,5) € {0,...,q}?, the distance between i and j will
be non-increasing in expectation under moves of the coupled chain. Moreover,
E(Ad(i,7))?) > V = 1/n, whenever i # j. Applying the coupling theorem 4.1
from [7], we find that the coupling time T' < d(io, jo)(2B —d(io, jo))/V = O(n?),
and consequently the mixing time is O(n?).

Observing that p < n?, we deduce from Lemma 1 that

1

t
5(0) - Dt 5 3 _
15(0) - D', 5(00)lxv < an (1 _bn3)

for appropriate constants a and b. Thus, after 10bn®logn steps,

10bn° logn
Bf (1) < |[B5(t), 5(00) oy < an’ (1 - ﬁ) —0(n?) .
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Since f(t) is non-negative, we deduce from Markov’s inequality that for some
constant c, there is a z so that with probability at least .9, |z; — 2| < en™* for
every i.

We may now assume that Y is shifted so that z = 0; the rest of the argument
proceeds just as in the “n dots on a line” chain, using the second coupling to
get T = yr with high probability when dot k is moved, and running n(logn)?
steps to ensure with high probability that every k has been called.

To lower bound the mixing time of X, we will use a somewhat different
auxiliary chain.

Theorem 3. The mizing time of the reduced “n dots on an circle” chain X is
2(n?).

Proof. We now have only one chain, X, and are directly concerned with its state
@. Recall that u; := x;41 — z; is the distance between dots ¢ and i+1.

Put ¢ = |n/2] as before, again with 8 = 2 for n odd and g = 1 for n
even. Define rg := Y1 u?, 1y = B 1, Uilli—g, and rp, := 237 | wiui_m for
0 <m < ¢. Note that >¢ _ rm = u;)? =1.

When dot & is moved, ug_1 and uy are both affected. Each lands uniformly
between 0 and ug—_1 + ug, thus E(u},_;)* = E(u})? = +(ug—1 + ux)? and conse-
quently, over all choices of k,

2 1 2 2
Erl=(01-= 2— 2 2 =(1-— —r .
To ( n)To + n (ro + (T1/ )+ 1r0) = ( 3n)7‘0 + 3n’f'1
Similarly,
2 5 1
ET1:3—TLT0+(1—3—”)T1+ET2,

for2<m<q—1
1 2 1
ET‘;n = —rpm_1+ (1 - _) Tm + —Tm+1 -
n n n
for1<m < q-1,

;1 1 2 2
g=1 = pla-2 e n) et + ﬂ_an )
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We now define another discrete, auxiliary chain on {0,1,...,q} by the fol-
lowing transition matrix D:

1-2 2 0 0 0 0
Z 1-2 L 0 0 0

i 1-2 1 9 0
0 0 1 1-2 1 9 0
0 0 o 1 1-21 9 0
0 o o o o o0 Lli1-2 1
0 0 0o 0 0 0 0 & 1-4

Fig. 2. The chain D for n = 8. Each dotted arrow represents a transition of probability
1/3n, other thin arrows 1/2n.

As before, D has been designed so that D -7 = Ef'. Note that D is re-
versible and very close to being a simple random walk on a path. Its stationary
distribution is

1
’F(OO) = n——i_l(2,2,2,2,2,...,2,2,ﬂ) .

and, as in the case of D:
Lemma 2. The discrete chain D mizes in time O(n?).

Proof. For the upper bound, we follow the approach in Lemma 1 and define the
same coupling on the state space. This time we use the standard distance function
d(i,j) = |i — j| and again find that E(Ad(i,j)) > 0 and E(Ad(i,j))? > 1/n.
This shows that the mixing time is O(n?).

To establish the matching lower bound, we turn to the spectral gap of the
chain. Lemma 3.1 in [10] states that if D and D are Markov chains on the same
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state space with the same stationary distribution, and if there are constants ¢;
and ¢ such that R B R

for all 4 # j, then R _ R
¢1Gap(D) <Gap(D) <c;Gap(D).

Let D be the standard symmetric random walk with transitions 5(i,i +
1) = 1/n, and self-loops elsewhere. This well-studied chain has spectral gap
Gap(D) = O(%). Comparing the two chains and noting that the condition (1)

is satisfied with constants ¢; and cy, we find that Gap(D) = O(%) as well.
Using upper bounds on the spectral gap to lower bound the mixing rate (see,
e.g., [13]), we can conclude that the chain mixes in time 2(n?).

Now we start the chain X with all dots coincident, aiming to show that
after ¢t = cn® steps (for some constant ¢) the total variation distance of its state
distribution from the stationary distribution will still exceed 1/4. To do this
we exhibit a state-dependent event whose probability differs from a stationary
chain’s by more than 1/4. This event will itself be based on a total variation
distance, namely the value d; := ||F(t),7(00)||Tv-

Let us consider the behavior of the auxiliary chainAf) while the chain X
is running. When X has all dots coincident, the chain D starts at state rq =
(1,0,0,...,0) and has total variation distance from 7(o0) close to 1. We know
from Lemma 2 that for some constant c, ||F(0)]ADC"S,F(00)||TV still exceeds, say,
0.6.

Then

Ed; = E|lr(¢),7(c0)llrv > [Er(t), 7(00)lrv = [IF(0)D*, 7(c0)||xv > .6

for t < cn®. Since d; can never exceed 1, it follows that Pr(d; > .2) > .5. It
therefore suffices to show that for the stationary chain Y, Pr(d; > .2) < .25.

In Y, however, the distribution of 7 := #(t) does not depend on ¢, and
is instead determined by a uniformly random vector 4 = (u1,...,u,) in the
simplex

n
S:={a: 41,...,u, >0, Zuiz 1} .

i=1
We know that EF = 7(o0), so we need only that 7 becomes concentrated about its
mean as n — oo. To establish this, we represent @ by a sequence of independent
exponentially distributed random variables y;,...,y, with u; = y;/S where
S =3""_,y;j. We now consider the random variables w; ,;, = yi¥i—m, 0 <m <
qg=|n/2].

For each fixed m > 0, we define a “dependence graph” G, on V ={1,...,n}
by i ~ j iff [i — j| = m; since G, is just a union of cycles, it has an equitable
3-colorable, i.e., there is a partition V = A, U By, U Cp, of the vertices into
three sets of the same size (give or take one vertex) none of which contains
an edge. But then no variable y; appears in more than one term of the sum
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am = ZieAm W;i,m, SO the terms in a,, are i.i.d.; thus from the Central Limit

Theorem, we have that a,,/+/n/3 is normally distributed in the limit. The same
applies of course to b, and ¢,,, and it follows that for n larger than some nyg,
A+ b+ Cm = 5, Wim lies within, say, n?/® of its mean (n) with probability
greater than 1 —1/10n.

For m = 0, the terms w; o = y? are already i.i.d. so again by CLT, there is
some n; > ng such that for n > ny, S0, w; o lies within n?/3 of its mean (2n)
with probability greater than 1 — 1/10n.

We have

n n n n
F= () wio+2) wir+-+2> wig1+BY wiy)/S?
=1 i=1 =1 =1

with E(S?) = n(n + 1) and 0(S?) = /2n(n +1)(2n +3). For n > ny, the
numerator lies within n x n?/3 = n3/3 of its mean with probability at least 9/10,
and by Chebyshev’s inequality the denominator lies within distance 3n3/2 of its
mean with probability at least 8/9.

Putting this all together, we have that Pr (7,7(c0)||lrv > 2) < .25 with
plenty to spare, and the proof is (finally) complete.

We remark that it is equally easy to use just |ro(t) — ro(oc)| instead of the
total variation distance to prove the lower bound, using special properties of the
Markov chain D. The above method was chosen since it appears to be more
generally applicable.
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