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Abstract

Many statistical physics models are defined on an in-
finite lattice by taking appropriate limits of finite lat-
tice regions. A key consideration is which boundary
to use when taking those limits, since the boundary
can have significant influence on physical and compu-
tational properties of the limit. We consider configura-
tions on finite regions with free or partially free bound-
ary conditions and show that by randomly extending
the boundary by a few layers, choosing among only a
constant number of allowable extensions, we can gen-
eralize the arguments used in the fixed boundary set-
ting to infer bounds on the mixing time for free bound-
aries. We demonstrate this principled approach using
randomized extensions for 3-colorings of regions of Z?
and lozenge tilings of regions of the triangular lattice,
building on arguments for the fixed boundary cases due
to Luby et al. [14]. Our approach yields an efficient
algorithm for sampling free boundary 3-colorings of re-
gions with one reflex corner, the first result to efficiently
sample free boundary 3-colorings of any nonconvex re-
gion. We also consider self-reducibility of free bound-
ary 3-colorings of rectangles, and show our algorithm
can be used to approximately count the number of free-
boundary 3-colorings of a rectangle.

1 Introduction

Sampling proper k-colorings uniformly has been the
focus of much research. Given a graph G = (V, E) and
an integer k, a k-coloring is an assignment of colors
[k] = {1,...,k} to the vertices so that all pairs of
neighboring vertices have distinct colors. A natural
Markov chain known as Glauber dynamics starts with
any valid coloring, chooses (v,¢) € V x [k] uniformly,
and recolors v with color ¢ if this yields a valid coloring.
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Glauber dynamics have been extensively studied,
primarily in the case when k is large compared to A,
the maximum degree of G. If k > A + 2 the chain is
known to connect the state space. Vigoda [22] showed
that the chain is rapidly mixing, or converging rapidly
to its stationary distribution, as is necessary for efficient
sampling, when & > 11A/6. For graphs with large
girth and large A, this degree constraint can be reduced
[10, 12, 18]. Bubley et al. [2] showed that the chain is
rapidly mixing when k > 5 whenever A = 3 or when
k> 7, A =4 and G is triangle free, notable because this
includes the Cartesian lattice Z2. See [6] for a survey
on efficiently sampling k-colorings.

While Glauber dynamics have proven more chal-
lenging to analyze when the number of colors is small, a
notable exception is the interesting case of 3-coloring on
finite regions on Z2. Colorings of the Cartesian lattice
are of interest in statistical physics to study phase tran-
sitions of the k-state anti-ferromagnetic Potts model, a
basic model of anti-ferromagnetism. In this model, ver-
tices are assigned “spins” from {1,...,k}; in the anti-
ferromagnetic case, neighbors have a preference for un-
equal spins, and at zero temperature this preference be-
comes required, mapping the valid configurations pre-
cisely to the set of proper k-colorings, each occurring
with equal probability. While much less has been shown
for Glauber dynamics when & is small, 3-colorings on Z?
are known to map bijectively to Eulerian orientations of
the graph, well-known in the statistical physics commu-
nity as the “ice model.” This structure allows more
analysis, and Luby et al. [14] showed that a related
Markov chain based on “tower moves” that can at once
update a linear collection of sites is rapidly mixing on
any simply connected region of Z2, provided the bound-
ary is fixed in advance (known as fized boundary condi-
tions). Randall and Tetali [20] subsequently showed fast
convergence of Glauber dynamics itself could be inferred
from the comparison method of Diaconis and Saloff-
Coste [4]. Unfortunately this analysis does not extend
to higher dimensions, and it is expected by physicists
that the chain will converge slowly in high dimensions,
perhaps even dimensions 3 or 4. Recently this has been
verified by Peled and Galvin et al. in Z? for sufficiently



high dimensions d [7, 8, 19].

There remain basic questions of convergence of
Glauber dynamics, even in the case of sampling 3-
colorings in Z?, particularly in the context of free bound-
ary conditions. This question is interesting computa-
tionally because for some models the convergence rates
are known to depend significantly on the types of bound-
aries (see, e.g., [1, 16, 17]). Goldberg, Martin and
Paterson [9] extended the Markov chain studied by
Luby et al. to the case of free boundary conditions on
rectangular subregions of Z2, but their argument does
not seem to extend to other simply connected regions.
While rectangular regions are of the most significance
in physics, the restriction to this class of graphs pre-
cludes “L-shaped” regions that are necessary for the
self-reducibility that allows us to approximately count
using a well-known reduction between sampling and ap-
proximate counting due to Jerrum, Valiant and Vazi-
rani [11]. Moreover, the proof of Goldberg et al. [9]
identifies a set of weights for linear towers near or in-
tersecting the boundary, and shows that these weights
allow the coupling of proof of Luby et al. [14] to extend
to rectangular regions with free boundary conditions.
There is no explanation for why their weights work or
why a similar approach apparently fails for more general
lattice regions.

Similarly, lozenge tilings on the triangular lattice
are easier for fixed boundaries and remain challeng-
ing for free boundaries. A lozenge tiling is a cover-
ing of a lattice region with rhombus shaped lozenges,
each covering exactly two adjacent triangles, so that
every triangle is covered by a unique lozenge (thus it
is dual to perfect matchings on hexagonal lattice re-
gions). This 2-dimensional tiling problem has received
a lot of attention because of its remarkable properties:
each lozenge tiling seems to jump out of the page to
form a 3-dimensional structure comprised of supported
boxes, and indeed this “height function” has allowed
many deep mathematical discoveries, most notably the
“Arctic circle theorem” [3].

Fixed boundaries are most natural for lozenge
tilings, where all lozenges are required to stay within
the boundary of the region, but there is also some in-
terest in the free boundary case when they may overlap
the boundary arbitrarily. Glauber dynamics identify a
window of 6 triangles arranged in a hexagon and rotate
the lozenges by 60° if the hexagon contains exactly 3
lozenges; this move is equivalent to adding or remov-
ing a box in the height function representation. Luby
et al. [14] show a related tower chain mixes in polyno-
mial time for lozenge tilings in any simply connected re-
gion with fixed boundary conditions, and the argument
of Randall and Tetali again shows Glauber dynamics

also converge quickly. The case of lozenge tilings with
free boundary conditions was studied by Martin and
Randall [15], using a correspondence between tilings and
non-intersecting lattice paths, dynamic programming,
and an approach based on determinants. This allows
us to approximately count the number of configurations
on hexagonal regions with free boundaries, but since the
method does not seem to easily generalize to other re-
gions, we again cannot use self-reducibility to construct
an algorithm for efficiently sampling.

In this paper, we study Glauber dynamics for 3-
colorings on subregions of Z? and lozenge tilings on
subregions of the triangular lattice with mixtures of
free and fixed boundaries. We say the fixed boundary
cells are “compatible” if the heights of all the fixed cells
are determined uniquely from the height of any one in
the height function representation. This includes all
boundaries where the set of free cells and the set of
fixed cells are each continuous, including the cases when
the boundary cells are all fixed or all free. Note that
fixed boundary cells must be compatible for Glauber
dynamics to connect the state spaces; see Figure 6 for
examples of compatible and non-compatible boundaries.

We show Glauber dynamics converge quickly for 3-
colorings and lozenge tilings on any simply connected
region with compatible fixed boundary conditions, pro-
vided all “reflex” boundary cells are fixed. By re-
flex cells we mean those that make a left turn on the
Cartesian lattice when transversing the boundary in the
clockwise direction, or angles greater than 60° on on the
triangular lattice.

A significant special case is 3-colorings on rectan-
gular regions of Z2, as well as lozenge tilings on trian-
gular regions of the triangular lattice, each with free
boundary conditions. Moreover, if first we flip a coin to
determine the color of the single reflex cell in any “L-
shaped” region of Z2, and then run Glauber dynamics
on the remaining cells, our proof shows this chain will
converge quickly; this is the first result to efficiently
sample uniformly from free boundary 3-colorings of any
non-convex region. Another important class for which
this shows fast convergence is L-shaped regions with
hybrid boundaries, where the fixed piece is contiguous
and includes the unique reflex cell. This is precisely the
case required to establish self-reduciblity of the sam-
pling problem, and hence we can use sampling to ap-
proximately count the number of 3-colorings of any rect-
angular region with free boundary conditions efficiently
for the first time. Likewise, a similar argument estab-
lishes self-reducibility for lozenge tilings on triangular
regions, again giving the first reduction between count-
ing and sampling.

Our proofs follow a similar strategy as Gold-



berg et al. [9]; however, rather than checking whether
there are weights for towers near or crossing the bound-
ary that suffice for the coupling, we derive these prob-
abilities using randomized extensions and a type of re-
duction to regions with fixed boundaries. We embed
the region with free boundaries in a larger region with
fixed boundaries by extending the boundary by a few
layers. This extension is randomized so that every free
cell on the boundary can be extended to allow moves
that can either increase or decrease the height. Naively,
this can be accomplished by allowing all exponentially
many extensions of the boundary, but this is too many
to be practical. Somewhat surprisingly, we show that
randomly choosing from merely a constant number of
extensions suffices. We then extend the coupling argu-
ments from [14] to bound the convergence time of the
chain on regions with free boundaries. A comparison
argument allows us to infer that Glauber dynamics is
efficient as well. Handling regions with a reflex corner
is more challenging, so we require all but at most one of
the reflex cells on the boundary be fixed.

An interesting feature of this new approach is that
our proofs rely only on these reductions to larger regions
with fixed boundary conditions, and do not require
advance knowledge of the probabilities of tower moves
near or crossing the original boundary. Instead these
probabilities can be determined from the proof, and
for 3-colorings on rectangular regions of Z2 with free
boundaries, the probabilities we derive exactly coincide
with those found by [9], as they must. Moreover,
our approach of deriving these probabilities allows us
to generalize the arguments to lozenge tilings and
regions with hybrid free and fixed boundary conditions.
We believe that the method of randomized extensions
will hold for other problems for which self-reducibility
requires a mixture of free and fixed boundary cells.

2 Background: Tower chains and mixing times

It has proven difficult to construct direct proofs bound-
ing the convergence times of Glauber dynamics on var-
ious planar lattice structures such as 3-colorings and
lozenge tilings. Luby et al. [14] instead introduced
“tower-based Markov chains” that sample from these
structures efficiently by updating multiple locations at
once. Randall and Tetali [20] subsequently used the
comparison method of Diaconis and Saloff-Coste [4] to
show that the single-site Glauber dynamics are also
rapidly mixing. We carefully desribe these chains and
this analysis, as this will be relevant in what follows.

Three-colorings. We begin by considering 3-
colorings. Let R be an mXxn rectangle, subdivided into
mn cells of unit width and height. A 3-coloring of R

assigns to each cell one of three colors, denoted 0, 1,
and 2, such that no two cells that are horizontally or
vertically adjacent have the same color; see Figure 1(a).
A tower in a 3-coloring is set of contiguous cells in a
row or column whose values can all be incremented or
decremented by one (modulo 3) to obtain another valid
3-coloring; applying this change to all cells in a tower
simultaneously is a tower move. The height of a tower is
the number of cells whose color changes in a tower move.
We specifically consider towers of height A > 2 and refer
to towers of height 1 as flips. For any tower of height
at least two, exactly one of the tower’s extremal cells
must have all four neighbors with the same color. Let
that cell be called the end of the tower, and the other
the start of the tower. The start color of the towers i
the color the start cell is changed to by the tower move.
We will denote the boundary of R by OR. A tower
abutting a boundary of R has its start or end cell next
to OR, and a tower adjacent to a boundary of R has
all cells next to OR. Figure 1(a) shows towers that are
abutting a boundary (top right), adjacent to a boundary
(bottom), and both (top left). In Section 3.3 we consider
3-colorings of regions that are not rectangles, but the
conditions we impose ensure these remain the only types
of towers we need to consider.

There is a well-known bijection between 3-colorings
and FEulerian orientations of regions of the two-
dimensional Cartesian lattice. Luby et al. [14] define a
Markov chain in the context of Eulerian orientations on
lattice regions where the orientations of boundary edges
are fixed and are part of the input. This chain, M.,
can be used to efficiently sample Eulerian orientations,
and therefore 3-colorings. Each Eulerian orientation de-
composes naturally into two routings, where a routing
is a collection of edge-disjoint lattice paths leading up
and to the right. Specifically, all directed edges point-
ing right or up in the Eulerian orientation belong to
one routing, while edges pointing down or left belong to
the other. Markov chain M,,; only incorporates tower
moves from one of these two routings, but it can just as
easily include moves for both. This corresponds more
naturally to colorings. We let M.,,; denote the Markov
chain that uniformly chooses one of the two routings
(right /up or down/left), and then makes a move of M.,
in that routing. This corresponds to all tower moves on
3-colorings that change the color of a linear set of cells
in one move. It is known that M,,; is rapidly mix-
ing, following immediately from the analysis of M.y
by Luby et al.

Lozenge tilings. Tower chains for lozenge tilings
are defined similarly. Let R be any subregion of
the triangular lattice in the plane. A lozenge tiling
of R is a matching in which every triangle in R is
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Figure 1: (a) A 3-coloring of a rectangle R. (b) Lozenge
tower moves, of heights 1, 2, and 3. (c¢) A free boundary
lozenge tiling of triangle E.

matched with another triangle with which it shares an
edge. In a fized boundary tiling all paired triangles
must be inside R, while in a free boundary tiling
triangles may paired across the boundary of R. Luby
et al. also presented a tower Markov chain M;,, that
efficiently samples fixed boundary lozenge tilings of a
finite, simply connected region of the triangular lattice.
M, specifically considers only towers in the vertical
direction. We let M,,, denote a version of their chain
which includes towers in all directions and at each
iteration uniformly chooses one of the three principle
directions. Rapid mixing of My,, is a simple extension
of work in [14].

We focus on lozenge tilings of equilateral trian-
gle shaped regions with free boundary conditions, de-
noted E. A tower in a lozenge tiling of FE is an ar-
rangement of lozenges as outlined in Figure 1(b), which
shows towers of heights 1, 2, and 3, or some rotation
of this configuration. A tower move collectively rotates
by 180° the lozenges in the tower. Edge e of the tri-
angular lattice shown in bold starts the tower move.
As shown in Figure 1(c), free boundary lozenge tilings
similarly have towers abutting a boundary (top right),
adjacent to a boundary (bottom), or both (top left).
Tower moves in these boundary cases are the natural
extension of interior tower moves, as are edges starting
a tower, also shown in bold. A tower whose outline is
six triangles forming a hexagon is a flip; the height of a
tower is the minimum number of flips needed to move
from one tower configuration to the other.

Markov chains and mixing times. Our in-
tention is to bound the mixing time of certain Markov
chains, i.e., the time it takes to nearly converge to equi-
librium. The time a Markov chain M takes to converge
to its stationary distribution 7 is measured in terms
of the distance between 7 and P?, the distribution at
time ¢. Let P*(z,y) be the t-step transition probability

and €2 be the state space. The mizing time of M is
() = minf{t : [P, 7]l <€, VI =1},

where [|P!, 7|l = maxeeq § 3, cq [P, y) — w(y)] is
the total variation distance at time t. As is standard
practice, we assume € = 1/4 and consider mixing time
7 =7(1/4). We say M is rapidly mizing if T is bounded
above by a polynomial in n and slowly mixing if it is
bounded below by an exponential in n. (For more on
standard definitions regarding Markov chains, see [13]
or [21].)

A coupling of a Markov chain M is a joint
Markov process (A, B) on © x Q such that each of the
marginals A and B is a faithful copy of M and, once
the two coordinates coalesce, they move in unison: if
Ay = By, then A;1q = Byy1. Path coupling arguments
are a convenient way of bounding the mixing time of
a Markov chain by considering only a subset U of the
joint state space Q x € of a coupling. To show that
M is rapidly mixing, we consider an appropriate metric
® on ) and prove that the two marginal chains, if in
a joint configuration in subset U, get no farther away
in expectation after one iteration. The version due to
Dyer and Greenhill [5] is stated below.

THEOREM 2.1. ([5]) Let ® : Q x Q — Z be a metric
which takes values in [0,B], where ®(o,7) = 0 iff
o =171. Let M be an ergodic Markov chain on € and
let (A,B) be a coupling of M, with ®; := ®(As, By)
and APy = Dy — O Let U C Q x Q be such
that for all (Ay, By) € Q x Q, there exists a path

X = 20,21, Zr =Yy such that (Z;,Z;11) € U for
0<i<rand

r—1

Z(I)(ZiaZiJrl) =®(X4,Yy).

i=0

Suppose that whenever (Ay, By) € U, the coupling
satisfies

E[A®, | A;, By] <0.
Additionally, assume there exists o > 0 such that for all
t such that ®; # 0,

Then the mizing time of M satisfies
2

e < | | ot



3 Three-colorings of subregions of 7>

Our interest will be studying a tower chain M for
3-colorings of regions with a hybrid of free and fixed
boundary conditions.!

3.1 Rectangles with one free boundary.

We first demonstrate our approach in the simplest
setting of an mxn rectangle R where the boundary cells
on three sides of R are fixed (including all four corners),
while the colors on the last side are allowed to change.
Without loss of generality, assume R’s right side has
free boundary colors. See Figure 2(a), where cells with
fixed colors are shaded. We wish to sample from such
3-colorings of R, and introduce an approach to do so.

Random extensions. Our strategy will be to
extend the boundary in a carefully defined way. Starting
from a rectangle R with one free side, we create a
rectangle R’ that extends three units beyond R to
the right. Given a coloring x of R, we extend it
to a coloring x’ of R’ as follows. First, within R,
X' = x. Along the right side of R, the colors in the
additional columns will each be a copy of the values
of x in R’s rightmost column C, denoted x(C), with the
values incremented or decremented by 1 (mod 3). With
probability 1/2, the colors of the first column to the
right of R are x(C)+ 1(mod 3), the colors of the second
column are x(C) —1 = x(C) +2(mod 3), and the colors
of the third column are x(C) 4 1(mod 3). The colors
in these columns can be seen as x(C) incremented,
then incremented again, and then decremented; we
will refer to such a configuration as “up-up-down,”
or UUD for short. With the remaining probability
1/2, the columns right of C' will have a “down-down-
up” (DDU) configuration, consisting of, left to right,
x(C)—1(mod 3), x(C)+1(mod 3), and x(C)—1(mod 3).
We then treat the colors along the boundary of this new
region R’ as fixed. See Figure 2(b) and (c).

The Markov chain M. We now describe a
Markov chain, defined using these randomized exten-
sions, that samples from the desired distribution. Re-
call R is m x n; we label the lower left cell of R as (0, 0),
the lower right cell as (m — 1,0), the upper left cell as
(0,n — 1), and the upper right cell as (m — 1,n — 1).
Rectangle R’ then has coordinates from 0 to m + 2 in
the = direction and 0 to n — 1 in the y direction.

Starting at any initial 3-coloring xo of R, iterate:
e Choose, uniformly at random, r € {u,d}.
e Extend coloring x; of R to a coloring x} of R': if

1The definition of M, and more precisely the random exten-
sions, will change slightly according to context, as detailed for
each case.

T1211]0]2]0]2J0 L]0
2(t]ol2]1]2]1]2]0]2
tjolt]o]2]ol2fol1]0
ol2]ol2]ol1loft]2]1

2] njo)2]jw]2 tjolt|o]t]ol2folt]0

2|tjoj2jrj2jt 2212t loft]2]1

1lolt]o]2]0]2

ol2]0]2]0l1]0 (b)

1j0j1]0j1]0]2 T1211]0]2]012]t]0]1

2|2 jz]un]e 2(t]ol2]1]2]1]o]2]0
(a) 1joft{of2]|of2]t1]of1
ol2]ol2]ol1lol2]1]2
tjolt]o|t]ol2]t]o]1
2t 2121 lol2]1]2

(©

Figure 2: (a) A 3-coloring of rectangle R; shaded cells have
fixed colors. (b) R’s UUD extension. (c¢) R’s DDU extension.

r = u, the extension has an UUD configuration; if
r = d, the extension is DDU.

e Starting from coloring X} of rectangle R’, apply a
single iteration of Markov chain M\eul with a new
notion of the height of a tower:

— Choose, uniformly at random,

(:177y7 Cﬂp) E {]"25 "'5m+ 1}
x{1,2,...,n—2} x {0,1,2} x (0,1).

— If xi(x,y) # ¢ and no neighbors of (x,y) have
color ¢ in x4, then recolor (z,y) with color c.
— Else, if (z,y) is the start of a tower of color ¢
whose intersection with R has size h > 0,

make this tower move if p < 1/2h.

e Let x;4+1 be the resulting coloring of R.

Ergodicity and reversibility of M. It is not
immediately obvious that the Markov chain Mg is
ergodic or reversible. We will show that the specific
extensions we defined are sufficient to make the chain
converge on R to the uniform distribution. Connectivity
of the state space follows from an argument based on
height functions, similar to connectivity proofs for fixed
boundary 3-colorings [14] and free boundary 3-colorings
of rectangles [9]. Moreover, the self-loops imply the
chain is aperiodic, so M¢ is ergodic. Showing Mg
is reversible, which we need in order to show samples
are generated from the uniform distribution, is more
subtle. To do this, we enumerate all types of moves
and determine the probabilities with which they occur.
There are five cases to consider: interior flips, interior
towers, boundary flips, towers abutting the boundary,
and towers adjacent to the boundary. Because there
is only one free boundary, there are no towers that
fall into both the last two cases. We first consider
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Figure 3: Colorings o and 7 differ by a tower of height 2
(dark grey) abutting R’s free boundary. The circled moves
transition 7 to o and vice versa.

towers abutting the boundary as a detailed illustrative
case, and then continue to analyze the remaining four
cases. We define ¢ := 1/(3(m + 1)(n — 2)) to be the
probability of picking a given color and given location
in R’ (excluding its fixed boundary).

Tower abutting the free boundary, height h > 1.
Consider two 3-colorings ¢ and 7 of R, differing by a
tower of height h > 2 abutting R’s free right boundary,
as in Figure 3 where h = 2. Without loss of generality,
let the tower’s leftmost cell be (Z,7), where o(Z,5) =0
and 7(Z,y) = 2, and suppose the tower’s colors de-
crease (mod 3) from left to right. From coloring o,
the transitions yielding coloring 7 are (u,Z,7,2,p) for
p < 1/2h and (d,7,9,2,p) for p < 1/2h. These towers
may go beyond the boundary of R, but due to the
nature of our extensions they will always terminate
before the fixed boundary of R’ and so will never be
rejected.  Additionally, although their height in R’
may be larger than h, their intersection with R will
always be of height exactly h. From 7, the transitions
yielding o are (d,m — 1,7,¢1,p) and (d,m,7,c2,p),
each for p < 1/2h. There is exactly one value of ¢; and
exactly one value of co which will yield a non-stationary
transition; in Figure 3, ¢; = 2 and ¢ = 1. Again, one
of these towers has height larger than h in R’, but its
intersection with R is of height A and this determines
the probability with which the move occurs. It follows
that

1
2-(m+1)(n—2)-3-2h

=P(r,0).

Plo,7)=2"
-4
2h

Interior flip. Consider two 3-colorings o and T
of R, differing at a single location (z,y) that is not
on R’s free right boundary. Suppose, without loss of

generality, o(Z,7) = 0 and 7(Z,y) = 1, meaning all
neighbors of location (Z,7) have color 2. It follows
that, for any values of f and any values of p, the move
(f,Z,7,1,p) transitions o to 7 and the move (f,Z,7, 0, p)
transitions 7 to o. Thus,

1
P = = = ]P .
) = x5 ¢~ Fm)
Interior tower, height h > 1. Consider two 3-

colorings ¢ and 7 of R, differing by a tower of
height h > 1 that is not abutting or adjacent to
the free boundary of R. Without loss of generality,
suppose this tower stretches in the horizontal direction
from location (Z,y) to location (Z + h — 1,7), with
o(z,y) =0, 7(z,y) =1, c(T+h —1,7) = ¢; and
T(Z+h—1,9) = ¢ + 1(mod 3). It follows that, for any
values of f, the move (f,Z, ¥, 1,p) is a transition from o
to 7 if p < 1/2h and the move (f,Z+h—1,7,¢1,p) is a
transition from o to 7 if p < 1/2h. These are the only
transitions between o and 7. Thus,

1 _ 4 _
(m+1)(n—2)-3-2h  2h

Free boundary flip. Consider two 3-colorings o
and 7 of R, differing at a single location (Z,%), where
T = m — 1. Without loss of generality, suppose
o(m—1,7) =1 and 7(m — 1,7) = 2. There are three
moves that can transform o to 7: a tower whose inter-
section with R is height 1, (u,m —1,7,2,p) for p < 1/2;
a single flip (d, m—1,7, 2, p) for any p; and another tower
whose intersection with R is of height 1, (d,m,7,1,p)
for p < 1/2. Similarly, there exist three moves that
can transform 7 to o: (d,m — 1,7,1,p) for p < 1/2,
(u,m—1,7,1,p) for any p, and (u, m,7,2,p) forp < 1/2.
This yields

P(o,7) = P(r,0).

2 1
2 (Mt )n—2)-32 2 (m+D(n-2)3
1
C(m+1)(n—2)-3
Tower adjacent to the free boundary, height h > 1.
Lastly, consider two 3-colorings o and 7 of R, differing
by a tower of height h > 1 that is adjacent to R’s free
right boundary. Without loss of generality, suppose this
tower stretches from (m—1,7) to (m—1,7+h—1), with
om-1,7)=1,7(m—-1,7) =2, 0(m—-1,7+h—1)=¢
and 7(m — 1,7+ h — 1) = ¢; + 1(mod 3). There is one
move that can transform o to 7, namely a tower move
of height h selected by (d,m — 1,7,2,p) with p < 1/2h.
There is also one move that can transform 7 to o,
specifically (u,m — 1,5+ h—1,¢1,p), for any p < 1/2h.
It follows that

P(o,7) =

=q=DP(r,0).

1 q

Plor) = s mea 320~ 1

=P(r,0).



Type of move between o and T

Interior flip

Boundary flip

Interior tower, height h > 1
Tower abutting the boundary, height A > 1
Tower adjacent to the boundary, height h > 1

Table 1: Types of moves and the probabilities with which

they occur in M¢, where q := m

This completes our case analysis, proving M¢ is
indeed reversible for rectangles with one free boundary.
A summary of the probabilities with which these moves
occur can be found in Table 1.

Rapid mixing of M. Our final concern is the
convergence time. We use a path coupling argument to
show M is rapidly mixing and can efficiently sample
3-colorings with one free boundary. Consider a joint
process (A, B) on Q x Q, where each of A and B is a
copy of Markov chain M¢. Let A; and By, respectively,
be their marginal distributions at iteration ¢. We couple
by making the same choice of (r,x,y,¢,p) for both A
and B at each iteration. The distance ® between
two 3-colorings of R is the number of flips needed to
transform one 3-coloring into the other. We consider
the case where A; and B; differ by a single flip, and we
analyze the change in distance A®; := ®(Ay11, By1) —
(D(At, Bt)

LEMMA 3.1. Suppose A; and By differ by one flip, that
is, ®(Ay,By) = 1. After one iteration of the joint
process (A, B),

E[A¢: | A¢, Bi] < 0.

Proof. Let (Z,7) be the cell where A; and B; differ.
There are two cases to consider, where (Z,7) € int(R)
or (T,7) is on the free boundary of R. Cell (Z,7) could
be adjacent to fixed-color cells, but A and B are most
likely to move apart when it is not so we suppose this
is the case. For (Z,7) € int(R), that A and B move
no farther apart in expectation follows from the path
coupling argument for fixed boundary 3-colorings of
Luby et al. [14]; we do not reproduce those details here.

Suppose (Z,y) is on the free right boundary of R,
ie. T = m — 1. Without loss of generality, suppose
Ai(m — 1,7) = 0 and Bi(m — 1,7) = 1. We analyze
the moves of the coupling that may affect the distance
between A and 5. Moves not in the same row or column
as (m—1,7) or an adjacent row or column have the same
effect in A; and By, and contribute 0 to the expected
change in distance. Interior towers going right in rows

y—1or y+ 1 will end at or before column m — 1,
because (m — 1,7)’s left, up, and down neighbors must
all have the same color, 2. Interior towers in column
m — 2 coming up or down towards row y will similarly
end before they reach row 3. Towers moves contained
in column m have no effect once any coloring of R’ is
restricted back to R, and so cannot affect the distance
between A; and B;.

Suppose the extension is such that there is a tower
in column m — 1 coming towards location (m — 1,7),
starting at (m — 1,y’) where ¢y’ > 7+ 1, and that this
tower reaches (m—1,7+1). It follows that (m—1,75+1)’s
left and right neighbors must have the same color, either
0 or 1. In one of A; and B; (specifically, the one where
(m — 1,7)’s color matches the color of (m — 1,5+ 1)’s
neighbors), this tower will end at (m — 1,7 + 1), and
in the other it will end at (m — 1,7). In the first of
these cases it has height 4’ — 7, and in the second it
has height 3/ — g7+ 1. For p < 1/(2(y' — 3 + 1)), this
tower move will occur in both A; and By, resulting
in a change in distance of —1 as Ay41 = Byy1. For
/2y —y+1)) <p < 1/(2(y —7)), only the tower
move ending at (m — 1,7 + 1) will occur, resulting in a
change in distance of +(y’ — 7). Altogether, this means
that as the desired values ¢ and r that yield this tower
occur with probability 1/6, conditioning on the proper
choice of (x,y) by this iteration of the Markov chain,

E[A®, | (2,y) = (m - 1,)]

1 1
-5 (mr=rty
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1 . 1+y -7\
12 y —y+1)

The expected change in distance due to such a move
is 0. The same analysis holds for tower moves in column
m— 1 starting at (m —1,y’) where y’ < 7—1 that reach
neighbor (m — 1,57 — 1) of (m — 1,7). The expected
change in distance due to such move is also 0.

Analysis is similar for a tower starting at location
(2',7), where 2’ < m — 2, and coming right to location
(m — 2,7). Towers originating here in A; and B;
will differ in their height’s intersection with R by one,
although one of these towers may continue into the
extension. As above, in one of A; and B, this tower
will end at (m — 2,y). In the other, where the tower
ends depends on the frame. For one value of r, the
tower will end at (m — 1,y), while for the other value
of r, the tower will end at (m + 1,y). In either case,
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Figure 4: Two colorings A; and B; differing by a single flip.
Moves increasing ®(A;, B) are circled.

the size of the tower intersected with R, the notion of
height used in M, is the same and equal to m — 2. In
all, this means that as the desired value of ¢ that starts
this tower move occurs with probability 1/3, regardless
of the value of r we have

It remains to consider moves beginning at (m—1,7),
its neighbors, and in the random extension in rows 7,
y— 1, and ¥ + 1. We split these up into three cases:
Moves beginning in row § — 1, moves beginning in row
Yy, and moves beginning in row y + 1.

Consider moves beginning in row 3 — 1; the analysis
for moves beginning in row 7+ 1 will be symmetric. We
differentiate into two cases, whether (m — 1,7 — 2) and
(m — 2,7 — 1) have the same colors or different colors.
First, suppose they have the same color, and without
loss of generality suppose it is color 0; see Figure 4. If
(m—1,7—1) is selected by the coupling, a move occurs
only if ¢ = 1. For r = u, in A; a flip will occur and in By
a tower move of height 2 in the upward direction will
occur if p < 1/4. If both moves occur, the change in
distance is —1, while if only the flip occurs, the change

in distance is +1. Altogether, this yields

E[A®, | (r,z,y,¢) = (u,m — 1,7 —1,1)]

- i<_1) + (1 - i) (+1) = %

In the same case for r = d, in A; there is a tower whose
intersection with R is height 1 while no move occurs
in By, increasing the distance by 1.

1
E[Aq)t | (T,$,y,c> = (dvm - 1,5_ 17 1)] = +§

Finally, we must examine moves for (z,y) = (m,7 — 1)

and (z,y) = (m + 1,7 — 1). Inspection shows the
second of these produces no moves in A; or B;. For
(z,y) = (m,y — 1), if r = d there are no moves in

either, while if r = u then there is a tower in A; whose
intersection with R is height 1 while no such move
occurs in By, increasing the distance by one.

1
E[A®, | (r,z,y,¢) = (u,m, T —1,2)] = +§.

Altogether, noting that each extension occurs with
probability 1/2, each color is selected with probability
1/3, and the correct value of € {m — 1,m,m + 1} is
selected with probability 1/3, it follows that in the case
where (m — 1,7 — 2) and (m — 2,7 — 1) have the same
color,

E[AD, | (z,y) €{m —1,m,m+ 1} x {y — 1}]
1 1 1 1 1
18'<2+2+2)12'

Next, consider the case where (m — 1,7 — 2) and
(m — 2,5 — 1) have different colors, where without loss
of generality (m —1,5—2) has color 1 and (m—2,5—1)
has color 0. Note a vertically reflected version of this
case can be seen in row y + 1 in Figure 4. In A,
for value r = d, there are no nonstationary choices
of (z,y) € {m — 1,m,m + 1} x {y — 1}, and the
same holds for B; and r = u. Meanwhile the moves
(dym—1,5—1,1,p) and (d,m,y — 1,2,p) both begin
left-going towers in B;. These tower moves may end
at a fixed boundary of R and be rejected, but in the
worst case they do not so we assume this happens.
Both occur if p < 1/2h and increase the distance by h.
In A the move (u,m — 1,5 — 1,0,p) begins a down-
going tower that in the worst case is not rejected and
is of some height A'; the move occurs if p < 1/2h/,
and increases the distance by h’. In total, noting that
each extension occurs with probability 1/2, each color
is selected with probability 1/3, and the correct value
for x € {m — 1,m,m + 1} is selected with probability



1/3, we see that in the case where (m — 1,7 — 2) and
(m — 2,7 — 1) have different colors,

E[AD; | (z,y) € {m —1,m,m+ 1} x {g— 1}]
< %8 (21]1(/1) + %(h) + 21h,(h’)) _ %

We have shown that no matter the colors of (m—1,7—2)
and (m — 2,7 — 1), it is true that

1
<

(%) E[A®, | (z,y)e{m —1,m,m+1}x{y—1}] < 3

The same analysis hold for moves occurring in row 5+ 1:

() E[A®, | (z,y)e{m — L,m,m+ 1}x{7 + 1}] < %

It remains to consider moves in row § where x €
{m —2,m — 1,m,m + 1}. Consider a move beginning
at (m — 2,7). If this cell’s three neighbors other than
(m — 1,7) are all the same, suppose without loss of
generality they are equal to 0; see Figure 4. Then for a
selection of (m—2,7,1), in A; a flip occurs, and in B; a
tower whose intersection with R is height 2 going right
occurs if p < 1/2h, regardless of the value of r. If both
moves occur the change in distance is —1, while if only
the flip occurs the change in distance in 1:

E[Aq)t | (Ivya C) = (m - 23?5 1)]

_ i(_n + (1 - i) (+1) = %

If (m — 2,7)’s three neighbors other than (m —1,y)
are not all the same, then two must be the same and
the third different; we suppose two are color 0, and the
third is color 1. In Ay, cell (m — 2,y)’s fourth neighbor
is also color 0, and so (in the worst case) there is a
tower of height h beginning at (m — 2,7) going in the
direction of its neighbor with color 1. Meanwhile in By,
cell (m — 2,7) has two neighbors with color 1 and two
neighbors with color 0, so no move occurs. It follows
that also in this case,

1
E[A® =(m-27,1)]<=—(h)==.
[ t|(:C,y,C) (TTL 'Y, )]_Qh( ) 2
In both cases, noting that the value of c is selected with
probability 1/3, it follows that

1

11
E[AD s = —2’7 <. =1,
() EIA® | ()= (m-29] <5 5=
Finally, we consider moves in row y beginning in
columns m — 1, m, and m + 1. Inspection shows
all such moves will coalesce the two chains, and the

nonstationary moves that do so are precisely those

discussed in the analysis of the reversibility of boundary
flips in the previous section. Across both A; and By
and both extensions, there are two flips and four towers
whose intersection with R is of height 1 that coalesce
the two chains, each occurring for a different (f,z,c)
triplet; each such triplet occurs with probability 1/18.

(x)  E[A® | (z,y) € {m —1,m,m+ 1} x {7}]

_ 1i8 (2(1) 14 <;>> (=1) = —g.

For each case above, each choice of (x,y) occurs
with probability m Conditioning on possible
values of (z,y) and using the above results labeled with
(*) that summarize all nonzero contributions to the

expected change in distance,

E[AD]
1 1 1

2
+3— 41— 3~) — 0.

1
<(m+1)(n_2)<3'1z 216

We have shown that at iteration ¢, Markov chains A
and B get no further apart in expectation according to
distance function ®, concluding the proof. O

THEOREM 3.1. On m X n rectangles with one free
boundary, Mc is rapidly mizing.

Proof. We apply the path coupling theorem (Theo-
rem 2.1). M is ergodic. Metric @ takes on values in
[0, mn? + m?n] and satisfies the stated path condition,
with U being the set of all pairs of colorings differing
by a single flip. Whenever A;, B; differ by a single flip,
E[A®; | A;, By] <0 (Lemma 3.1). It remains to check
a; it follows from the analysis in Section 6.B of [9], using
a height function argument and noting that the height
value at every fixed boundary cell will be the same, that
P(A®, #0) > 1/(24(m+1)(n—2)(m+n)). We've now
verified that all the conditions of Theorem 2.1 hold, so
the mixing time of M satisfies

re) < {B} Nlog(e™)]

=0 ((m®n® +m°n®)log (7)) .

O

COROLLARY 3.1. Glauber dynamics on rectangle R
with one free boundary is rapidly mizing.

Proof. This corollary follows directly from work of
Randall and Tetali [20] comparing the mixing time of
fixed-boundary chains using the comparison method of
Diaconis and Saloff-Coste [4]. O
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Figure 5: (a) A free boundary 3-coloring and the sides of
one of its 16 extensions. (b) The corners of the extension.

3.2 Rectangles with free boundary conditions.

We are now prepared to tackle rectangles where all four
sides have free boundary conditions. We extend each
side randomly as before. A key insight was to extend
each side independently, leading to 16 possible random
extensions. An important consideration is that the
corners must be carefully completed so M is reversible
and mixes rapidly. We show this in what follows.

Random extensions.  On the right side of R,
extend R with coloring x to R’ with coloring x’ as
above. Rectangle R is also extended three cells along
all remaining sides in the same way; independently, the
values of coloring x on the boundary row or column are
repeated, in order moving away from R, incremented,
decremented, incremented (mod 3) with probability 1/2
(UUD), and decremented, incremented, decremented
(mod 3) with the remaining probability 1/2 (DDU).
This results in 16 possible configurations for the sides
of the random extension, each occurring with equal
probability. One is shown in Figure 5(a).

Given )’ on the sides of the extension, corners are
completed deterministically. If two sides meeting at
a corner have opposite UUD and DDU configurations,
four colors within the corner are uniquely determined
because x’ must be a valid 3-coloring. In other cases,
the corner cell closest to R should be given the unique

color different from the color in the closest corner of R
that still yields a valid 3-coloring. In both cases,
the remaining colors in the corners will not affect any
Markov chain moves intersecting R, so can be completed
arbitrarily; we choose to complete them canonically by
repeatedly giving each cell with at least two colored
neighbors the lowest admissible color. See Figure 5(b).

Markov chain M. In the case of four free
boundaries, M is nearly identical to the previous
section. Onme of sixteen possible extensions is selected
uniformly at random, and then a move of M., is
performed on the random extension.

Suppose R is mxn; as before, we label the lower
left cell of R as (0,0), the lower right cell as (m — 1,0),
the upper left cell as (0,n — 1), and the upper right cell
as (m — 1,n — 1). Rectangle R’ then has coordinates
ranging from —3 to m + 2 in the x direction and —3 to
n + 2 in the y direction.

Starting at any initial 3-coloring xg of R, iterate:

e Choose, uniformly at random, a four character
string f € {u,d}*.

e Extend coloring x; of R to a coloring x; of R'. If
the first character of f is u, the top of the random
extension has an UUD configuration; if it is d, the
extension is DDU. The same holds for the left,
bottom, and right sides of R and the second, third,
and fourth characters of f, respectively.

e Starting from coloring x; of rectangle R’, apply a

single iteration of Markov chain M.,;:
— Choose, uniformly at random,

(x,y,¢,p) € {—2,—-1,...m+ 1}
) {=2,—1,...,n+1} x {0,1,2} x (0,1).

— If (z,y) € R, xi(x,y) # ¢, and no neighbors
of (x,y) have color ¢ in x}, then recolor (z,y)
with color c.
— Else, if (z,y) is the start of a tower of color
¢ whose intersection with R has size h > 0,
make the tower move if p < ﬁ
e Let x;t1 be the resulting coloring of the subrectan-
gle R of R'.

Ergodicity and reversibility of M. Markov
chain Mc¢ includes all moves of irreducible Markov
chain M of [9], which acts on the same state space as
Mg, so M is irreducible. As it has self loops, M¢ is
also aperiodic and thus ergodic. That M is reversible
on free boundary rectangles follows from the arguments
for reversibility of M on rectangles with one free
and three fixed boundaries in Section 3.1. The main
difference is the value ¢, the probability of picking any
given location and color, which is now ¢ = 1/(3(m +
4)(n+4)). However, there are also two additional cases




for the types of moves that two 3-colorings could differ
by: colorings ¢ and 7 could differ by flips and towers at
corners of R.

Corner flip. Consider two 3-colorings ¢ and 7 of R,
differing at a single location that is one of the four
corners of R. Suppose, without loss of generality, this
occurs at the bottom left corner (0,0), ¢(0,0) = 1,
and 7(0,0) = 2. Cells (0,1) and (1,0) must then have
color 0 in both tilings. The first and last characters
of f will have no effect on any moves between ¢ and 7,
and for any given values of these characters (labeled
as *’s below) there are five moves that will transform o
to 7, specifically four towers whose intersection with R
is height 1 and a single flip: (xdux,0,0,2,p) for p < 1/2;
(xudx*,0,0,2,p) for p < 1/2; (xdd*,0,0,2,p) for any p;
(xdd*,—1,0,1,p) for p < 1/2; and (xdd*,0,—1, 1, p) for
p < 1/2. Similarly, there are five moves that transform 7
to o. Altogether, it follows that

4
B = s s 3.2
1
T mid)(ntd) 3
:ﬁ:P(T,O’).

4

Tower abutting and adjacent to the free boundary.
Consider two 3-colorings ¢ and 7 of R, differing by a
tower of height A > 1 that is both abutting and adjacent
to a boundary of R (that is, it contains a corner of R).
Without loss of generality, suppose this tower stretches
in the horizontal direction from location (0,0) to
location (h —1,0), the colors of the tower cells increase
from left to right (mod 3), ¢(0,0) = 0, 7(0,0) = 1,
o(h —1,0) = ¢; and 7(h — 1,0) = ¢; + 1(mod 3).
For any given first and last characters of f, there are
two moves that transition o to 7: (x d d %,0,0,1,p)
for p < 1/2h and (x d d %,—1,0,0,p) for p < 1/2h.
Similarly there are two moves that transform 7 to o,
namely (x u u x,h — 1,0,¢1,p) for p < 1/2h and
(xdux*,h—1,0,c1,p) for p < 1/2h. This implies

_ 2 -4
C2:2-(m+4)(n+4)-3-2h  4h

P(o, 1) =P(r,0).

The probabilities of all moves, including towers and
flips at the corners of R, can be seen in the first two
columns of Table 2. It follows that M converges to the

uniform distribution over (free boundary) 3-colorings
of R, as desired.

Relating M~ to previous Markov chains.
Goldberg et al. presented a tower-based Markov chain
M for 3-colorings of rectangles with free boundary
conditions [9]. Their probabilities for the various moves

(a)
(b)
Figure 6: (a) Three regions we can sample efficiently; gray

cells must have fixed colors. (b) The two possible 3-colorings
are not connected by flips, so M¢ is not irreducible.

enabled a path-coupling proof, but they did not provide
any justification for the probabilities chosen. Here we
see the transitions probabilities of M are identical to
those we derived for M¢, up to a small multiplicative
factor that arises because R is smaller than R’ and M
has higher stationary probability. See Table 2, where
g=1/3(m+4)(n+4)) and s = 1/(12mn).

Rapid mixing of M. As M is rapidly mixing,
M is as well with just an additional constant multi-
plicative factor. Goldberg et al. [9] show that Glauber
dynamics is also rapidly mixing using the comparison
method.

3.3 Regions with mixed boundary conditions.

In Section 3.1, we examined M¢ on a rectangle with
some boundary cells fixed and some free; this is an
example of mized boundary constraints. For a more
general statement, we only require that R be simply
connected, the boundary cell at any reflex corner be
fixed, and M¢ be irreducible, that is, the state space of
3-colorings for the region and its boundary constraints
must be connected by flip moves. We will discuss
a necessary and sufficient condition for Mg to be
irreducible later in this section. Some regions that
satisfy our conditions, with fixed cells gray, are shown
in Figure 6(a).

Random extensions. Markov chain Mo sam-
ples from mixed boundary 3-colorings in the same way
as in the more restrictive cases in the previous sections.
Given a coloring x of a region G, we extend to G’ and x’
probabilistically, with each free boundary side receiving
an UUD or DDU configuration with probability 1/2; we
make a fixed-boundary move on this larger region; and
we restrict back to G. However, for shapes with reflex
corners, this is complicated by the fact that extensions




Type of move

Probability in Mc | Probability in M of [9] |

Interior flip

Boundary flip

Corner flip

Interior tower, height h > 1

Tower abutting the boundary, height h > 1

Tower adjacent to the boundary, height h > 1

Tower abutting and adjacent to the boundary, height h > 1

o oo e fefe o] 2 [
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Table 2: Types of moves for rectangles with free boundaries, and the probability with which they occur in M¢ and in M

1
3(m+4)(n+4)

1

and s = 12mn "’

from [9]. Here ¢ =

of the sides adjacent to the reflex corner will overlap.
We deal with this by considering combinatorial exten-
sions, and region G’, while locally planar, doesn’t have
a global embedding into the plane, or even into three-
dimensional space. We can define M simply by con-
sidering only the probabilities of moves restricted to the
original region, which are the same as listed in Table 2.
We now let towers start and end in cells adjacent to
the boundary, as Goldberg et al. did in their definition
of M [9].

Markov chain M.
coloring xq of G,

e Choose, uniformly at random, a cell g of G, a color
c €{0,1,2}, and a value p € (0,1).

e If g is not a fixed-color boundary cell, xi(g) # ¢,
and no neighbors of g have color ¢ in X}, then
recolor g with color ¢ with probability 1 if g is not
a convex corner of G and probability 3/4 if g is a
convex corner of G.

e Else, if g starts a tower with start color ¢ and height
h > 2 not containing any fixed-color boundary cells,
make the tower move if p < 1/bh, where b = 4 for
a boundary adjacent tower and b = 2 otherwise.

Starting at any valid 3-

Despite stating this Markov chain in a way that doesn’t
use randomized extensions, we note it was our insights
into randomized extensions that allowed us to realize
sampling from mixed extensions was possible, determine
what the conditions on non-convex regions must be
to allow such sampling to be efficient, and decide the
probabilities of different types of moves.

Conditions for Irreducibility of M. As
Figure 6(b) demonstrates, there are some mixed
boundary conditions for which M¢ is not irreducible.
We present a necessary and sufficient condition for Mg
with mixed boundary constraints to be irreducible.

It is well-known [9, 14] that grid 3-colorings can
be mapped to height functions. One can do this by
choosing any cell and fixing its height h to be its
color. Then heights of remaining cells are determined

according to the following rules. If cell a is immediately
left of cell b and a’s color is incremented (mod 3) to
obtain b’s color, then h(a) + 1 = h(b), while if a’s
color is decremented (mod 3) to obtain b’s color, then
h(a)—1 = h(b). The same rule holds if a is immediately
above b. This height function will be consistent in the
sense that neighboring cells will differ in height by 1
and h(a) = x(a)(mod 3). There may be many height
functions depending on the chosen a starting point, but
any two h and b’ will satisfy h(g) — h'(g) = 3k for all g
and for a fixed constant k.

A mixed boundary condition for S is height consis-
tent if there is a height function h* on the fixed bound-
ary cells of S such that for any valid 3-coloring of R,
there is a mapping of this coloring to a height function h
that agrees with h* on all fixed boundary cells. We note
that height consistency can depend on the values of the
fixed boundary cells; the example in Figure 6(b) is not
height consistent, but if one of its fixed cells had a dif-
ferent value it would be.

LEMMA 3.2. Mized boundary conditions for a region R
are height consistent if and only if Mc¢ is irreducible.

Proof. This follows from the irreducibility argument
of [9], with a few minor modifications to account for
fixed boundary constraints. It is precisely the fact
that every 3-coloring has the same height values at all
fixed boundary locations that enables this proof to go
through. For boundary conditions that are not height
consistent, the state space €2 is not connected because no
moves change the height values of fixed color boundary
cells. O

Ergodicity and reversibility of Ms. As Mc
has self loops it is aperiodic, so if the mixed bound-
ary conditions are height consistent then it is ergodic.
If not, M remains ergodic on each connected compo-
nent of its state space. Reversibility of M when it is
defined as above is straightforward; moves are defined
by specific probabilities that won’t change.




Rapid mixing of M. This follows from our

previous work on Mg.

THEOREM 3.2. If M¢ is irreducible on a region R of
area A with mixed boundary conditions such that every
reflex cell is fixed, then it is rapidly mizing.

Proof. We apply the path coupling theorem (Theo-
rem 2.1) using the same distance function as above,
first verifying the hypotheses hold. Mg is ergodic.
Metric ® takes on values in [0, A?], and satisfies the
stated path condition with U being the set of all pairs
of colorings differing by a single flip. If A; and B, dif-
fer on a single flip, locally it will look like an interior
or boundary flip as considered in the analysis of Sec-
tion 3.1, or a corner flip; this latter case is analyzed
in [9]. Possible additional adjacent cells will be fixed,
but this will only lead to fewer moves that increase
the distance between A and B. In all cases, we have
E[A®;|A¢, B:] < 0. Bounding the variance of A®, away
from 0 simply requires height consistent mixed bound-
ary conditions, which we have by Lemma 3.2. One can
show, adapting the analysis in Section 6.B of [9], that
P(A®, # 0) > Q(1/A?). By Theorem 2.1, the mixing
time of M satisfies 7(g) < O(A%log(e™1)). O

COROLLARY 3.2. Whenever Glauber dynamics is irre-
ducible, it is rapidly mizing for simply-connected regions
with mized boundary conditions where all reflex cells are
fized.

Proof. This follows directly from the comparison argu-
ment in [20] and is very similar to the comparison ar-
gument given for free-boundary 3-colorings in [9]. g

3.4 Efficiently sampling non-convex regions.

As a corollary to our above result, we present the
first method to efficiently sample from any non-convex
region. Consider any L-shaped region L, as in the
leftmost part of Figure 6(a). Fix the color at L’s single
reflex vertex uniformly at random. Now, in polynomial
time, M can generate a uniformly random 3-coloring
of L with this mixed boundary condition. This method
results in a uniformly random 3-coloring of L.

4 Lozenge tilings on the triangular lattice

Next, we demonstrate randomized extensions are a gen-
eral approach that can be applied to additional struc-
tures: lozenge tilings with free and mixed boundaries.

4.1 Tilings with free boundaries.

Let E be an nxnxn triangle in the triangular lattice.
Let o be any free boundary lozenge tiling of FE, where
lozenges are allowed to cross the boundary of E but

the interior of £ must be tiled completely. Of note, F
has no fixed boundary lozenge tilings, but exponentially
many free boundary lozenge tilings. We efficiently
sample free boundary lozenge tilings of E with a Markov
chain based on the same principled approach from
the previous sections: we build a random extension
around F, fix its boundary, do a single move of the
tower Markov chain M;,, for fixed-boundary lozenge
tilings, and restrict the result back to E.

Random extensions. Given a free-boundary
lozenge tiling o of E, we randomly extend to form a
tiling ¢’ of a region E’. Where random extensions for
3-colorings were formed with “up-up-down” or “down-
down-up” configurations, here random extensions are
formed with “left-left-right” (LLR) or “right-right-left”
(RRL) arrangements of lozenges. However, the exten-
sions of different sides of the triangle are not indepen-
dent as they are in the 3-coloring case.

Consider any edge e of the triangular lattice that
is contained in the boundary of E, and suppose there
is no lozenge of o crossing the boundary of F at e.
We define e’s left shadow as the six faces of the trian-
gle lattice shaded in Figure 7(a), rotated appropriately,
and e’s right shadow symmetrically as in Figure 7(b).
To form a random extension of E, we will choose e’s
left shadow with probability 1/2 and e’s right shadow
with probability 1/2, where each shadow is tiled as in
Figure 7. For any edge of the triangular lattice on the
boundary of E that bisects a lozenge of tiling o, e’s
right and left shadows also consist of six faces of the
triangular lattice, but slightly different faces; see Fig-
ure 7(c) and (d) for these shadows and their tilings.
Shadows for edges on other boundaries of E are rota-
tions of this construction. In both cases above, the left
shadow of edge e is tiled by two lozenges “shifted” left
followed by a lozenge “shifted” right, a configuration
we will call “left-left-right” (LLR). Similarly we define
a “right-right-left” configuration (RRL).

To construct an extension E’ tiled by o’ for E
and o, we extend all edges of the triangular lattice in
the boundary of E via their left shadow with probabil-
ity 1/2 and via their right shadow with the remaining
probability 1/2. These extensions are not independent,
and all edges are extended in the same direction. An
LLR configuration and RRL configuration for one side
of E are depicted in (a) and (b), respectively, of Fig-
ure 8. Once the sides of the random extension are gen-
erated, the corners can be completed deterministically
as in Figure 8(b) in the case of an LLR extension, and
with a reflection of that tiling for an RRL extension. We
call the union of all these tiles £’, and fix its boundary.
Unlike with 3-colorings, the extension surrounding E is
not always the same shape, although it will be very sim-




()

(d)

Figure 7: Edge e C OF not crossed by a lozenge, (a) its left
shadow, and (b) its right shadow. Edge e C 9F crossed by
a lozenge, (c) its left shadow, and (d) its right shadow.

ilar. A key fact is that the set of edges of the triangular
lattice that have at least one endpoint in the interior
of E’ is always the same, regardless of the tiling o of E
that was used to generate E’ and independent of which
extension is chosen. We will use ¢ to denote the number
of such edges.

Markov chain M. Starting at
boundary lozenge tiling o of F, iterate:

e Choose, uniformly at random, f € {l,r}.

o If f =1, extend tiling o; of F to a tiling o} of a
region E’ via its LLR extension; if f = r, extend
tiling o; of E via its RRL extension.

e Starting from tiling o} of region E’, apply a single

any free-

iteration of Mj,,:

— Choose, uniformly at random, an edge e of the
triangular lattice with at least one endpoint in
the interior of E’.

— Choose, uniformly at random, p € {0,1}.

— If e starts a tower whose intersection with F
is of height A > 0, make the tower move if
p < 1/2h.

e Let 0;41 be the resulting free-boundary tiling of F.
We briefly clarify what we mean by the height of a
tower’s intersection with E. A single tower move can be
seen as the result of a series of rotations of three lozenges
comprising a hexagon H; such rotations are shown at
the top of Figure 1(b). Our previous definition of the
height of a tower is precisely the number of such moves
that collectively comprise the tower move. For a tower
in tiling o} of E’, we say the height of its intersection
with F is the number of the moves comprising the tower
that have a nontrivial intersection with E.

int(E) int(E)

(®)

Figure 8: (a) An LLR extension, (b) an RRL extension, and
(c) an LLR extension, corners completed deterministically.

Ergodicity and reversibility of M;. To show
M, is irreducible, we note it is possible to transform
any free boundary lozenge tiling into a tiling entirely
with lozenges of the same orientation. As there are also
self-loops, My is ergodic. It remains to demonstrate
that M is reversible, which will imply it converges
to the uniform distribution over free boundary lozenge
tilings of F/, as desired.

We consider two tilings o and 7 differing by a single
move of M. There are several cases to consider,
based on the type of move that separates o and 7. In
every case below, the tiling in the neighborhood of the
difference, where o and 7 agree, is irrelevant.

Interior flip. Consider two tilings ¢ and 7 differing
by a single flip (a tower of height 1) entirely contained
in E. Regardless of f, in o there are three edges
that start height 1 tower moves yielding 7, and each
is selected with probability 1/q. If selected, each tower
move occurs with probability 1/2. The same is true of
moves transforming 7 into . The probability of moving
between two tilings differing by a single interior flip is

11 3

P =3.-.- =2 =P(r,0).
(0.1)=38 5 =5 =B(r0)

Interior tower, height h > 1. Consider two tilings o
and 7 differing by a tower of height h > 1 entirely
contained in FE. Regardless of f, in both ¢ and 7
there is one edge that starts a tower move yielding the




Type of move ‘ P(o,7) =P(7,0) in My, ‘
Interior flip 2%
Boundary flip 4—5(1
Corner flip 4%
Interior tower, height A > 1 Q%h
Tower abutting the boundary, height h > 1 2th
Tower adjacent to the boundary, height A > 1 4(1%
Tower abutting and adjacent to the boundary, height h > 1 4%h

Table 3: Probabilities of different types of moves for My, on a triangle E. Value ¢ is the number of edges of the triangular

lattice with at least one endpoint in int(E’).
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Figure 9: (a) Tilings differing by a boundary flip. (b) Their

LLR extensions. (c) Their RRL extensions. Dashed edges

start moves transitioning between the two.

other. This tower move occurs with probability 1/2h if
the correct edge is selected. The probability of moving
between two tilings differing by an interior tower is

11 1

P(U,T):gﬁ—

Sqh =P(r,0).

Boundary flip. Consider two tilings o and 7 differ-
ing by a single flip along the boundary of E, not at a
corner. In both o and 7, for one extension (LLR or
RRL) there is one edge whose selection yields a move
between the two if p < 1/2, while for the other there
are four; see Figure 9. All of these edges start towers
whose intersection with F is height 1, although these
towers might have larger height in E’. In total, since
the probability of selecting the correct extension and
edge is 1/2q, the probability of moving between these
two tilings is

1 1 5
(@7) =55 5 = 1 = P(r.o)
Corner flip. Consider two tilings o and 7 differing

by a single flip at a corner of E; see Figure 10. In

Figure 10: (a) Tlhngs differing by a corner flip. (b) Their
LLR extensions. (c) Their RRL extensions. Dashed edges
start moves transitioning between the two.

both ¢ and 7, for one extension (LLR or RRL) there
are three edge selections which yield a move between
the two, while for the other there are none. All of these
edges start towers of height 1, and so each move occurs
with probability 1/2. In total, the probability of moving
between these two tilings is

1

1
P —3.2. =
(@1)=35 5

Tower abutting the boundary, height h > 1. Across
the two possible extensions (LLR or RRL), there will
be two edge selections yielding this move, each starting
a tower whose intersection with FE is height h; see

Figure 11(a), where h = 2. The probability of making
this move is then

1 1 1

2h 2¢  2qh

Plo, 2qh

T)=2-" =P(r,0).

Tower adjacent to the boundary, height h > 1.
Across the two possible extensions (LLR or RRL),
there will be one edge selection yielding this move, and

it starts a tower of height h; see Figure 11(b), where




h = 2. The probability of making this move is then

1 1 1

I[D = —— = —— =
(07) = 35 2 =~ Igh

P(r,0).

Tower abutting and adjacent to the boundary,
height h > 1. Across the two possible extensions (LLR
or RRL), there will be one edge selection yielding this
move, and it starts a tower of height h; see Figure 11(c),
where h = 3. The probability of making this move is
then

1 1 1

" 2h 29  4gh
We also briefly note that tower moves for towers abut-
ting two boundaries, whether adjacent to a boundary or
not, occur with the same probabilities as towers abut-
ting one boundary. A summary of the probabilities with
which different types of moves occur can be found in
Table 3, where ¢ is equal to the number of edges of the
triangular lattice with a least one endpoint in int(E’).
Recall ¢ is the same for all random extensions of F, re-
gardless of tiling o of E. While these move probabilities
arise naturally from randomized extensions, it would be
difficult to correctly guess these specific values without
using computational techniques.

P(o, 1) P(r,0).

Rapid mixing of M;. We use a path coupling
argument. Consider a joint process (A, B) on  x Q,
where each of A and B is a copy of M. We faithfully
couple by making the same choice of (f, e, p) for both A
and B at each iteration. The marginal distributions
of these two coupled chains at iteration ¢ are denoted
by A; and By, respectively. We define distance ®
between two free boundary lozenge tilings of E to be
the minimum number of flips needed to transform one
tilling to the other. We say &, := ®(A, By), and let
Ad, = &, — ®;. The first crucial step in the path
coupling argument is to demonstrate that whenever A;
and B; differ by one flip, in expectation A and B get no
farther apart after one iteration of the coupling. That
is, we show E[A®,;] < 0.

We begin with a structural lemma about free
boundary lozenge tilings and our random extensions.
For any given tower, we define the center line of the
tower to be the edge e that starts the tower, extended
to reach the boundary of the tower. We will use OF
to denote the boundary of triangle E. We say that a
tower crosses OF at vertex v if v is the first vertex of
OF that the tower’s center line contains, when it is tra-
versed starting with e. Let the state of edge a € OF
denote whether or not it is crossed by a lozenge or not;
we will talk about a and b having the same state or dif-
ferent states. Consider the following lemma, where we
use the expression outside of F to mean an edge whose
interior is entirely disjoint from E U OF.
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Figure 11: (a) Tilings differing by a tower abutting the

boundary. Center: Their LLR extensions. Right: Their
RRL extensions. (b) Tilings differing by a tower adjacent
to the boundary. Center: Their LLR extensions. Right:
Their RRL extensions. (c) Tilings differing by a tower
abutting and adjacent to the boundary. Center: Their LLR
extensions. Right: Their RRL extensions. Dashed edges
start towers that transition o to 7 or vice versa.
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Figure 12: (a) A sample tiling. (b) An LLR extension.
(c) An RRL extension. Dashed edges start the only towers
that begin outside F and cross 0F at v.

LEMMA 4.1. Let o be any lozenge tiling of E. Let o*
and o® denote 0’s LLR and RRL extensions. Let v be
any vertex in OF that is not a corner, and let a and b
be the two edges in OF adjacent to v. If a and b have
different states, then across both of* and o there are
at most two towers started by an edge outside of E that
cross OF at v. If a and b have the same state, there are
no towers started by edges outside E that cross OF at v.

Proof. We first show if a and b have the same state,
there can be no tower that crosses JF at v. Any
vertex v contained in the interior of the center line of a
tower must be incident to at least two lozenges with a
120° angle at v, and these lozenges must be consecutive
around v. If @ and b are both crossed by a lozenge of o, v
cannot possibly be on the center line of any tower; the
lozenges crossing a and b are the only two incident on v
that have a 120° angle at v, and they are not consecutive
around v. If a and b are both not crossed by a lozenge
of o then it is possible for them to be on the center line
of some tower, but only if that tower runs along OF.
In this case, v cannot possibly be the first vertex of the
tower’s center line in JF. This concludes our proof of
the first statement.

Suppose, without loss of generality, b is clockwise
from a, a is not crossed by a lozenge of o, and b is crossed
by a lozenge of o; see Figure 12(a). In o, there are two
edges outside of F that start a tower whose center line
crosses OF at v, shown in Figure 12(c) where these two
edges are dashed. In o’ there are no such edges; see
Figure 12(b). While in o there is a tower whose center
line crosses OF at v, it is started by an edge inside F,
not an edge outside F. O

LEMMA 4.2. Suppose A, and By differ by one flip of a
hexagon H, that is, ®(As, By) = 1. After one iteration
of the joint process (A, B),

E[A®, | Ay, B,] < 0.

Proof. First, let ¢/ be an edge on the boundary of H,
in the interior of E. Edge ¢’ will start a tower of height
h > 1 in exactly one of A; and By, depending on the

orientation of the lozenge outside H that is also incident
to ¢’. This tower move leads to an increase in distance
of h and occurs with probability i For each such ¢/,

E[A®; |e=¢]= %h = %

As was established by Luby et al. [14], such towers are
the only moves originating in F that can increase the
distance between A and B in expectation. Any other
moves either are disjoint from H and have the same
effect in A; and By or are neutral moves. Neutral moves
coalesce A; and B; with some probability and increase
the distance between them with some probability, but
the expected change in distance between A; and B; can
be calculated to be 0 (we also saw neutral moves in
the context of 3-colorings). For moves originating at an
edge e in the boundary of E outside of H, the same can
be shown to be true in each extension, and thus it is
true in the average of the two extensions, as desired.

We now analyze in detail the five possible cases (up
to rotations) for the location of H, shown in Figure 13.
Recall ¢ is the number of edges that have at least one
endpoint inside E’, and this number is independent of
the tiling o used to generate E'.

Case 1: If H is contained in E and not adjacent to
the boundary of FE, there are six moves that increase
the distance between A; and B;. Specifically, these are
the six towers started by the edges of the boundary
of H, each occurring in exactly one of A; and B; with
probability 1/2¢h and leading to an expected increase
in distance of h. The total contributions of each of these
moves to A®; is then (h)1/2gh = 1/2¢g. There are also
six moves that decrease the distance, specifically the six
edges of the triangular lattice in the interior of H, each
starting a tower of height 1 in exactly one of A; and B;.
Each of these moves occurs with probability 1/2¢ and
decreases the distance by 1. Altogether,

E[Ad] = 6 - (;q) +6. (;q . (1)) 0.

Any moves originating in the extension in this case will
be neutral in expectation, as the random extension is
the same for both A; and B;.

Case 2: If H is contained in F and adjacent to the
boundary of E, then in each extension, locally H and
its neighborhood are as in Case 1, above. Averaging
across both extensions, we find

E[AG] = 5(0) + 5(0) =0.

Case 3: Suppose H is bisected by one boundary
of E and not adjacent to any other boundary of E.



Figure 13: If A:; and B, differ by the rotation of three
lozenges in a single hexagon H, there are five cases to
consider for the location of H.

We first consider moves that coalesce A; and B;. In
the boundary flip discussion in the previous subsection,
we showed that P(A4:, B;) = P(B:, A;) = 5/4¢q. This
includes both tower moves started by the four edges in
int(H) N (E'UOE) and tower moves started in the ex-
tension near H. Inspection shows these probabilities are
disjoint, as moves transforming A; to B; are started by
different edges than moves transforming B; to A;. Each
of these transitions decreases the distance between A;
and By by one, and so contributes —5/4q to the expected
change in distance.

We now consider transitions that cause A; and B;
to move farther apart. Here there are three boundary
edges of H inside E. As above, for each of these three
edges, in exactly one of A; and By the edge starts a tower
move that occurs with probability 1/2¢h and increases
the distance between A; and B; by h. These tower
moves occur regardless of which extension o’ or o is
chosen, although this choice may cause the height of a
tower in E’ to vary. Each edge contributes an expected
1/2q to A®,. Again, all other moves started by edges of
EUOF contribute 0 to the expected change in distance.

To complete our examination of moves that might
change the distance between A; and B, we consider
towers that begin outside £ but intersect E. Towers
that cross OF at H’s center point will decrease the
distance between A; and By, and have been included in
the coalescence probabilities above. Towers that cross
OF away from H will have the same effect in A; and By
and contribute 0 to A®,. Let v be one of the two vertices
in 0E N OH. In exactly one of A; and By, the two
edges in OF adjacent to v are in the same state. In the
other of A; and By, the two edges are in different states.
Suppose, without loss of generality, they are in different
states in A;. By Lemma 4.1, across both ¢ and o’
there are two towers crossing OF at v in Ay, while there
are no such moves in B;. Each tower move potentially
increases the distance by h, the height of its intersection
with F, and occurs with probability 1/2¢h - 1/2. The

Figure 14: (a) A; and B differ on hexagon H. (b) An LLR
extension. (c) An RRL extension. The dashed edge starts a
neutral move, and the bold edges start moves increasing ®;.

latter term is present because the correct extension must
be chosen for these moves to occur. Each such move
increases the distance by 1/4q in expectation, and there
are four such moves, two for each vertex of OF N JH.
In total, we see that

-5 1 1
— +3-—+4-—=0.

E[A®,] <2-
4q 2q 4q

Case 4: We note here that the analysis is very sim-
ilar to Case 3, despite the seeming complexity. Again
by the boundary flip discussion in the previous subsec-
tion, P(A¢, By) = P(By, Ay) = 5/4q. These probabilities
are disjoint, because moves transforming A; to B; are
started by different edges than moves transforming B;
to A;. Each of these transitions decreases the distance
between A; and B; by one, and so contributes —5/4¢ to
the expected change in distance.

The two edges of H inside E both contribute 1/2¢
to the expected change in distance. If w is the vertex
of H farthest from the corner, by Lemma 4.1, in one
of A, and B; there are two towers that start outside F
and cross the boundary at w and in the other there
are no such towers. FEach of these contributes 1/4q.
Edge ¢/ € OH N OE, in each of the extensions o” and
o, locally looks like an edge of H inside E. As in
Case 2, in each extension, €’ starts a tower in exactly
one of A; and By, and on average contributes 1/2¢ to the
expected change in distance. All other moves started by
edges of £ UJFE contribute 0 to the expected change in
distance. It only remains to consider towers that first
cross the boundary of E at corner vertex v.

We can see that there are three possible edges in the
extension whose selection yields a tower crossing OF at
v in at least one of A; and B;. All are adjacent to v; see



Figure 14. One of these edges, parallel to the side of E
that bisects H and dashed in Figure 14, starts a tower
of height h = 1 in one of A; or B; and a tower of height
h = 2 in the other. Selecting this edge is a neutral move,
contributing 0 to the change in distance. The tower
moves started by this edge occur in both A; and B,
decreasing the distance by one, with probability 1/4q.
With probability 1/2¢ — 1/4q = 1/4q, only the height 1
tower moves occurs, increasing the distance by one. In
total, the contribution to the change in distance from
this edge is 0. The two remaining towers crossing 0F
at v each occur in only one extension, with probability
1/2gh-1/2, and increase the distance by h, contributing
1/4q each. In total, we have

-5 1 11 1
42 42— 42— =0.

E[AD,] <2
(A% < 4q 2q dq  2q 4q

Case 5: We first consider moves that may increase
the distance between A; and B;. The single edge of 0H
inside E contributes an expected 1/2¢ to the change
in distance as above. For each of the two vertices in
OH NOE, by Lemma 4.1 and the argument above there
are two towers originating in the extension of E that
cross OF at that vertex. Each of these towers, of which
there are four total, two crossing JF at each vertex,
contributes an expected 1/4q to the change in distance.

The only remaining moves that could affect the dis-
tance between A; and B; are precisely those that co-
alesce the two chains. As demonstrated in the corner
flip discussion of the previous subsection, the proba-
bility that A; becomes By is 3/4q, as is the probability
that By becomes A;. The moves transforming A; into B;
are started by different edges than the moves transform-
ing B; into A;, so these probabilities are disjoint. All
of these moves change the distance between A; and By
by —1. In total, we have

1 1 3 1
EA®;| <1 -—+4-—+(-1)- —+(-1)-— =
[A®;] < 7l 4q+( )4q+( ) 3
We have seen that for every case of A; and By at
distance 1, E[A®,;] < 0, as desired. O

THEOREM 4.1. My is rapidly mizing and efficiently
samples free boundary lozenge tilings of E. Its mizing
time satisfies O(n®log(e™1)), where n is the length of
one side of E.

Proof. We apply the path coupling theorem (Theorem
2.1). My is ergodic. Metric ® takes values in [0, n?],
which follows from adapting the fixed-boundary anal-
ysis of [14]. Metric ® satisfies the stated path con-
dition, with U the pairs of tilings differing by a flip.
Whenever A; and B; differ by a flip, we showed that

E[A®, | A;, B)] <0 (Lemma 4.2). Again adapting work
of [14], P[(A®, # 0] > 1/2qh, as one can always find a
move that decreases ® in expectation, where ¢ = O(n?)
and h = O(n). All of the necessary conditions are met,
so by Theorem 2.1, the mixing time of M, satisfies

rie) < [ 2] ogte 1 = [4522] gy

= 0(n%log(c™)). U

The results in this section can be generalized to
efficiently sample mixed-boundary lozenge tilings of
simply connected regions R. We require any corners of
angle other than 60° be contained in the fixed boundary.
Additionally, we require My be ergodic, that is, the
fixed boundary is such that flip moves are sufficient to
move from any lozenge tiling to any other.

5 Approximate counting

We have thus far focused only on sampling. Seminal
work of Jerrum, Valiant and Vazirani [11] shows how
efficient algorithms for sampling can be used to con-
struct efficient algorithms to approximately count, pro-
vided the underlying problem is self-reducible. Algo-
rithms that require regions to have a specific shape, such
as a rectangle in Z? or a triangle in the triangular lat-
tice, typically fail to be self-reducible. The reduction
requires incrementally fixing the value of a cell (for col-
orings choosing the most likely color, for example). This
requires us to draw samples from nearly square (or tri-
angular) regions where the colors (resp., tiles) on some
of the boundary cells have been fixed. Figure 15 gives a
typical step of the reduction from sampling to approxi-
mate counting. Our mixed boundary Markov chains al-
low us to sample from exactly those regions that appear
in the reduction from sampling to counting. Any reflex
angles on the boundary will always be fixed, meaning
Theorems 3.2 and 4.1 apply and M and My, can be
used to sample iteratively. Now both problems are self-
reducible as required, and we use the reduction to effi-
ciently count. While there are other known methods to
efficiently count lozenge tilings on certain lattice regions
with free boundary conditions [15], this new algorithm
applies to a broader class of regions. In addition, this
approach based on random extensions yields the first ef-
ficient algorithm for approximately counting 3-colorings
on classes of lattice regions with free boundaries.
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