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ABSTRACT
We investigate stochastic, distributed algorithms that can accom-

plish separation and integration behaviors in self-organizing particle
systems, an abstraction of programmable matter. These particle sys-

tems are composed of individual computational units known as

particles that have limited memory, strictly local communication

abilities, and modest computational power, and which collectively

solve system-wide problems of movement and coordination. In this

work, we extend the usual notion of a particle system to treat het-
erogeneous systems by considering particles of different colors. We

present a fully distributed, asynchronous, stochastic algorithm for

separation, where the particle system self-organizes into segregated

color classes using only local information about each particle’s

preference for being near others of the same color. Conversely, by

simply changing the particles’ preferences, the color classes be-

come well-integrated. We rigorously analyze the convergence of

our distributed, stochastic algorithm and prove that under certain

conditions separation occurs. We also present simulations demon-

strating our algorithm achieves both separation and integration.

CCS CONCEPTS
• Theory of computation→ Distributed algorithms; Random
walks and Markov chains; • Computing methodologies → Self-
organization;
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1 INTRODUCTION
Examples of heterogeneous entities separating and integrating exist

at many scales, from molecules exhibiting attraction and repulsion

to inherent human biases that influence how we form and maintain

social groups. Another example is species such as ants co-mingling

peacefully when resources are plentiful but prioritizing the survival

of their own colony when resources are scarce. This fundamental

behavior of separation or integration in response to environmental

stimuli spans remarkably diverse disciplines.

We focus on programmable matter, a physical material or sub-

stance that can intelligently respond to user input or environmental

stimuli by changing its physical properties to achieve a goal. We ab-

stractly envision programmable matter as a self-organizing particle
system, an ensemble of simple active computational particles that
individually execute distributed, local, asynchronous algorithms

to cooperatively achieve macro-scale objectives. Here we consider

heterogeneous particle systems — where particles have immutable

colors — and seek local, distributed algorithms which result in sepa-
ration of color classes.

To develop distributed algorithms for separation, we use concepts

from stochastic processes. Of particular relevance is the Schelling

model [11, 12]which explores howmicro-motives can inducemacro-

phenomena such as racial segregation in residential neighborhoods.

Stochastic dynamics for the Ising model of ferromagnetism from

statistical physics [13] exhibit a similar dependence of global behav-

ior on a single parameter controlling local preferences. Our work

harnesses this interplay between local preferences and global be-

havior to develop a stochastic, distributed, asynchronous algorithm

that provably accomplishes separation.

https://doi.org/10.1145/3212734.3212792
https://doi.org/10.1145/3212734.3212792
https://doi.org/10.1145/3212734.3212792


PODC ’18, July 23–27, 2018, Egham, United Kingdom S. Cannon, J.J. Daymude, C. Gokmen, D. Randall, and A.W. Richa

(a) (b)

Figure 1: (a) A section of the triangular lattice. (b) Contracted and
expanded particles. The former are shown as black circles, and the
latter as two black circles joined by a black line.

1.1 The Amoebot Model
In the amoebot model, programmable matter consists of individ-

ual, homogeneous computational elements called particles. A full

description of the model is available online [6]. In the geometric
amoebot model, we further assume the underlying geometry is the

infinite triangular lattice (Fig. 1a). Each particle occupies a single

node (it is contracted) or a pair of adjacent nodes (it is expanded);
see Fig. 1b. Particles move via a series of expansions and contrac-
tions: a contracted particle can expand into an unoccupied adjacent

node, and completes its movement by contracting to once again

occupy a single node. Two particles occupying adjacent nodes are

neighbors. A particle communicates only with its neighbors, has

constant-size memory, and does not have any global information

such as a coordinate system, orientation, or compass. A particle

system is connected if the subgraph of the triangular lattice induced

by its occupied nodes is connected. A hole of a particle system is a

maximal finite, connected component of unoccupied nodes.

1.2 Systems of Heterogeneous Particles
We consider a particle system composed of n heterogeneous par-

ticles, generalizing previous work where particles were identical

and indistinguishable [1, 5]
1
. We model heterogeneity by assuming

each particle P has a color c(P) ∈ {c1, . . . , ck } in its memory, visible

to itself and its neighbors; we will assume k = 2. These colors can

represent anything from differences in equipment between robots

in multi-robot systems to demographic diversity in human commu-

nities. If particles P and Q are neighbors we say they are joined by

an edge; this edge is homogeneous if c(P) = c(Q) and heterogeneous
otherwise.

We define a swap move under the amoebot model that enables

adjacent particles of different colors to switch places. For two neigh-

boring contracted particles P and Q , either P or Q can initiate a

swap in one atomic action, which can be implemented as follows:

P reads x ← c(Q) from the memory of Q , overwrites c(Q) ← c(P)
in the memory of Q , and finally updates c(P) ← x . Implement-

ing a swap as an exchange of in-memory attributes is purely for

modeling convenience. When individuals have immutable “color”

(e.g., ants from different colonies or robots with different hardware),

swaps could be realized by a coordinated movement. Adding this

natural swap move enables faster convergence of our algorithms

in practice, but is not necessary for our results.

1
A particle system with particles of different functional capabilities was considered

in [7]; our particles all have the same capabilities regardless of color.

1.3 The Stochastic Approach
The stochastic (Markov chain) approach to self-organizing par-

ticle systems was introduced in [5] and further validated in [1].

Background on Markov chains can be found in standard textbooks

(e.g., [9]) or in previous work [1, 5]. This approach is motivated by

work in statistical physics that investigates the local micro-behavior

causes of global macroscopic phenomena (e.g., [2, 3, 10]). Like a

spring relaxing, physical systems favor configurations σ that mini-

mize energy, determined by aHamiltonianH (σ ). Each configuration
is given a weight from the Gibbs distribution:w(σ ) = e−B ·H (σ )/Z ,

where B is inverse temperature and Z =
∑
σ e−B ·H (σ ) is the nor-

malizing constant (or partition function).
To achieve separation, we define a Hamiltonian where particle

configurations with many edges and large monochromatic clusters

have the lowest values. We then get Gibbs distribution that simpli-

fies tow(σ ) = λe(σ ) · γa(σ )/Z , where e(σ ) is the number of edges

and a(σ ) is the number of homogeneous edges in σ . Larger λ favors

more compressed configurations, while for smaller λ the opposite

is true, just as in [5]. We expect γ to induce separation when large

and integration when small.

Our main contribution is a Markov chainM whose stationary

distribution π is exactly this Gibbs distribution. We runM indef-

initely; once we reach π , we continue moving among different

configurations but remain at this desirable distribution. Showing

poorly separated configurations are exponentially unlikely in π
is our main technical result. We carefully designM using a Me-
tropolis filter [8], ensuring the probabilities of all transitions ofM

can be calculated with local information, which is necessary for

translatingM into a distributed algorithm.

2 ALGORITHM FOR SEPARATION
Starting at any connected, hole-free particle configuration, Markov

chainM (Algorithm 1) for separation ensures the particle system

remains connected and hole-free throughout its execution. We use

the following notation. For a location ℓ, let Ni (ℓ) denote the set of

particles of color ci adjacent to location ℓ. For neighboring locations
ℓ and ℓ′, let Ni (ℓ ∪ ℓ

′) be the set Ni (ℓ) ∪Ni (ℓ
′), excluding particles

occupying ℓ and ℓ′. When ignoring color, let N (ℓ) =
⋃
i Ni (ℓ);

define N (ℓ ∪ ℓ′) analogously. Let S = N (ℓ) ∩ N (ℓ′) be the set of
particles adjacent to both locations. The following locally-checkable

properties ensure the particles stay connected and hole-free.

Property 1. |S| ∈ {1, 2} and every particle in N (ℓ ∪ ℓ′) is con-
nected to exactly one particle in S by a path through N (ℓ ∪ ℓ′).

Property 2. |S| = 0, and both N (ℓ) \ {ℓ′} and N (ℓ′) \ {ℓ} are
nonempty and connected.

To translateM into a fully local, distributed, asynchronous algo-

rithmA run by each particle concurrently, we decompose the steps

ofM into individual particle activations, in which a single particle

performs some computation and at most one movement [6]. This

decouples a particle’s expansion and contraction (Steps 4–7) and P
and Q’s coordinated swap (Steps 9–11) each into two particle acti-

vations. We use flag-locking mechanisms similar to [5] to ensure

consistent snapshots of particle neighborhoods; details are omitted.

We prove the following results aboutM, which then also hold

for A. Proofs can be found in [4].
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Figure 2: From left to right, a 2-color particle system after 0; 50,000; 1,050,000; 17,050,000; and 68,250,000 iterations ofM with λ = 4 and γ = 4.

Algorithm 1Markov ChainM for Separation and Integration

1: Choose a particle P uniformly at random from all n particles;

let ci be its color and ℓ its location.
2: Choose a neighboring location ℓ′ and q ∈ (0, 1) uniformly at

random.

3: if ℓ′ is unoccupied then
4: P expands to occupy both ℓ and ℓ′.

5: if (i) ℓ and ℓ′ satisfy Property 1 or 2 and (ii) q <

λ |N (ℓ
′) |− |N (ℓ) | · γ |Ni (ℓ

′) |− |Ni (ℓ) | then
6: P contracts to ℓ′.

7: else P contracts back to ℓ.

8: else if ℓ′ is occupied by particle Q of color c j then
9: P calculates |Ni (ℓ)| and |Nj (ℓ) \ {Q}| and sends them toQ .

10: Q calculates |Ni (ℓ
′) \ {P}| and |Nj (ℓ

′)|.

11: if q < γ |Ni (ℓ
′)\{P } |−|Ni (ℓ) |+ |Nj (ℓ)\{Q } |−|Nj (ℓ

′) | then Q
swaps with P .

Lemma 2.1. The particle system remains connected and hole-free
throughout the execution ofM.

Lemma 2.2. M is ergodic, converging to unique stationary distribu-
tion π given by π (σ ) = λe(σ ) ·γa(σ )/Z , where Z =

∑
σ λe(σ ) ·γa(σ ).

Informally, a configuration with two colors is separated if there

is a set R of particles such that most particles in R have color c1,

most particles in its complement R have color c2, and the boundary

between R and R is small. If this holds, R and R are clusters. Formally,

a configuration is (β ,δ )-clustered, for β > 0 and δ < 1/2, if there

are at most δ |R | particles of color c2 in R, at most δ |R | particles of

color c1 in R, and the boundary between R and R is of size at most

β
√
n, where n is the number of particles.

Theorem 2.3 (Informal). Among the particle system configura-
tions within an α factor of the minimum possible perimeter, for any
β > 4α and δ < 1/2, the probabilityM is not in a (β ,δ )-clustered
configuration at stationarity is exponentially small when λ, γ , and
the number of particles are large enough.

3 SIMULATIONS
We simulatedM on a system of 100 particles with two colors. Fig. 2

shows the progression ofM over time with parameters λ = 4 and

γ = 4, the regime where we expect compression and separation.

Fig. 3 shows the results of runningM from the same initial config-

uration for the same number of iterations, varying only λ and γ ;
we observe four distinct phases: expanded-integrated, expanded-

separated, compressed-integrated, and compressed-separated.

γ = 0.58 (Integration) γ = 5.20 (Separation)

λ = 0.58
(Expansion)

λ = 5.20
(Compression)

Figure 3: A 2-color particle system starting in the leftmost configu-
ration of Fig. 2 after 50 million iterations ofM for various λ and γ .
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