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Abstract

We consider perfect matchings of the square-octagon
lattice, also known as “fortresses” [16]. There is a natural
local Markov chain on the set of perfect matchings that is
known to be ergodic. However, unlike Markov chains for
sampling perfect matchings on the square and hexagonal
lattices, corresponding to domino and lozenge tilings,
respectively, the seemingly related Markov chain on
the square-octagon lattice appears to converge slowly.
To understand why, we consider a weighted version of
the problem. As with domino and lozenge tilings, it
will be useful to view perfect matchings on the square-
octagon lattice in terms of sets of paths and cycles on a
corresponding lattice region; here, the paths and cycles
lie on the Cartesian lattice and are required to turn left
or right at every step. For input parameters λ and µ, we
define the weight of a configuration to be λ|E(σ)|µ|V (σ)|,
where E(σ) is the total number of edges on the paths and
cycles of σ and V (σ) is the number of vertices that are
not incident to any of the paths or cycles in σ. Weighted
paths already come up in the reduction from perfect
matchings to turning lattice paths, corresponding to the
case when λ = 1 and µ = 2.

First, fixing µ = 1, we show that there are choices
of λ for which the chain converges slowly and another for
which it is fast, suggesting a phase change in the mixing
time. More precisely, the chain requires exponential
time (in the size of the lattice region) when λ < 1/(2

√
e)

or λ > 2
√
e, while it is polynomially mixing at λ = 1.

Further, we show that for µ > 1, the Markov chainM is
slowly mixing when λ <

√
µ/(2
√
e) or λ > 2µ

√
e. These

are the first rigorous proofs explaining why the natural
local Markov chain can be slow for weighted fortresses
or perfect matchings on the square-octagon lattice.

1 Introduction

Perfect matchings have been the cornerstone problem
underlying many fundamental computational complexity
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questions. The seminal work of Edmonds [5] established
that the decision and construction problems were in P,
while Valiant [23] showed that counting perfect match-
ings is #P-complete. Jerrum, Sinclair and Vigoda [11]
showed how to approximately count and sample perfect
matchings in any bipartite graph efficiently, although
the complexity remains open on general graphs.

Likewise, perfect matchings also have captivated the
statistical physics community, who study them in the
context of dimer models. In this setting, edges in a
matching represent diatomic molecules, or dimers, and
perfect matchings correspond to dimer coverings of a
graph. Physicists study the thermodynamic properties
of physical systems by relating fundamental quantities
to weighted sums over the set of configurations, such as
perfect matchings on finite lattice regions. Kasteleyn et
al. showed how to exactly count perfect matchings on any
planar graph in polynomial time by calculating a Pfaffian
on a directed version of the adjacency matrix [12, 22].
When the underlying graph is a lattice region, there
are alternative, faster determinant-based methods for
counting matchings [7, 13]. For the most common
lattices regions on Z2 and the hexagonal lattice, where
perfect matchings correspond to domino and lozenge
tilings, respectively, various stochastic approaches have
been explored to improve both the efficiency and the
simplicity of the algorithms. For example, a common
approach for sampling perfect matchings on Z2 that
is popular among experimentalists is based on dimer
rotations, where we choose a unit face uniformly, and
if this 4 cycle contains two edges of the matching, the
Markov chain can replace those two with the other two
edges around the alternating cycle. A similar approach
on the hexagonal lattice replaces, if possible, the three
alternating edges around the face with their complement.

The Markov chain based on dimer rotations was
first studied by Propp and Wilson [18]. They showed
that their “coupling-from-the-past” algorithm could be
run on dimer covers of the Cartesian lattice Z2 to
generate perfect uniform samples of perfect matchings,
although they supplied no guarantees that the algorithm
would terminate in polynomial time. The proof that the
expected time to converge is polynomially bounded was
provided by Luby et al. [15], Randall and Tetali [19] and
further improved by Wilson [25]. Using the paradigm



of coupling-from-the-past, matchings on many other
lattices have been explored as well, providing perfectly
random samples (although not always efficiently) and
generating many conjectures about convergence times
and stationary distributions underlying these chains.
A compelling example is perfect matchings on the
square-octagon lattice, Λso, where the dual is a dimer
problem on a graph of squares and triangles known as
“fortresses” [17]. Many remarkable properties of lozenge
and domino tilings, such as the existence of frozen regions
at equilibrium, are known to hold for fortresses [17].

There is a natural analogue of the dimer-rotating
Markov chain as well, which has been used experimen-
tally to study these matchings. This chain is known
to connect the state space of perfect matchings [1], but
nothing is known rigorously about its convergence time.
Although related Markov chains on other lattices are
known to converge in polynomial time, including the
Cartesian and hexagonal lattices, simulations suggest
that on the square-octagon lattice this chain may in fact
require exponential time.

An intuitive explanation for why the convergence
time of this Markov chain is likely exponential can
be seen by interpreting these perfect matchings as a
“contour model” [1, 8, 14] Given any perfect matching on
a simply connected region of the square-octagon lattice,
we can contract all vertices of each square into a single
vertex, leaving only the edges that border two octagons.
The resulting configuration will be a collection of edges
on the Cartesian lattice, where every vertex, except
possibly those on the boundary, must have even degree,
and where each vertex of degree 2 must be incident to
one horizontal and one vertical edge (see Fig. 1). We
can decompose these sets of edges into a collection of
“turning paths” that connects certain boundary vertices
and closed “turning cycles.” The turning property refers
to the fact that traversals of the edges of a path or cycle
are required to turn left or right at every step.

It is important to note that this map is not bijective,
and each turning graph is the image of 2k perfect
matchings on the square-octagon lattice, where k is
the number of degree 0, or free, vertices in σ (see
Fig. 2). Each free vertex corresponds to a square on Λso
containing two matched edges, and there are exactly
two ways this can occur. Thus, in order to generate
perfect matchings on the square octagon lattice, it
suffices to generate turning graphs with the weight of
each configuration σ proportional to 2V (σ), where V (σ) is
the number of free vertices in σ; configurations with more
free vertices will have greater weight, and this weighting
penalizes configurations with long paths and cycles.
This is the key insight gained by considering this path
representation, letting us use analysis similar to many

(a)

(b)

Figure 1: The mapping between (a) perfect matchings
of G and (b) turning graphs of G∗.

other models in statistical physics, most notably the
Ising model, that are slowly mixing at low temperatures
when long contours are similarly disfavored [14].

To make this more concrete, we designate 4 odd
degree vertices on the boundary, which then must be
connected by paths in one of the two non-crossing
ways; moving between these two classes of configurations
requires passing through configurations where the two
paths touch (or nearly touch). For this to happen,
the paths must be quite long, which is exponentially
less likely at equilibrium. One should expect that for
appropriate settings of the parameters, it will take
exponential time to reach such a configuration, implying
that the Markov chain will require exponential time
to get close to stationarity. Formalizing this type
of intuition is often challenging, however, and this
particular problem has been open since proposed by
Jim Propp in 1997 [16, 17].

1.1 Weighted models and phase transitions
For many statistical physics models, we see a relationship
between the rate of convergence of local Markov chains
and an underlying phase transition in the physical model
itself. For the Ising model, a fundamental model of
ferro-magnetism, local algorithms are known to converge
in polynomial time (in the diameter of the region) at
high temperature, but require exponential time at low
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Figure 2: Two possible orientations (a) and (b) for each
free vertex in G∗ (c).

temperature [10, 14, 20]. On Z2, there is a sharp phase
transition: there is a critical temperature below which
the chain is slowly mixing (requiring exponential time),
and at and above which it is rapidly mixing (converging
in polynomial time) [14]. A similar behavior is seen
for weighted independent sets on Z2 as we change the
“activity” (or “fugacity”), a parameter that controls the
expected density of an independent set. Local sampling
algorithms for independent sets are known to be rapidly
mixing when this parameter is small, favoring sparse
independent sets [24], and slow to converge when this
parameter is high, favoring denser independent sets [2].

A natural approach to many such problems is to
introduce an activity (or weight) in order to understand
these phase transitions by learning when a Markov
chain converges in polynomial or exponential time.
Such an approach was taken recently in the context
of triangulations [4] and rectangular dissections and
dyadic tilings [3], revealing similar dichotomies. A
similar approach was previously considered to study
a different, nonlocal Markov chain on sets of perfect and
near-perfect matchings on the square-octagon lattice [1],
but the behavior of the more natural local dimer-rotating
Markov chain studied here remains open.

1.2 Our results
We can now state our results. For simplicity of notation,
our terminology throughout the paper is based on
weighted turning graphs rather than matchings. Let
G ⊂ Z2 be a finite region on the Cartesian lattice, and
let T be the set of turning graphs on G. (i.e., all vertices
v ∈ G \ ∂(G) have even degree, and any traversal must
“turn” at each vertex.) For input parameters λ > 0 and

µ > 0, we define the distribution as follows. Let σ ∈ T
be a turning graph. Then

πλ,µ(σ) = λ|E(σ)|µ|V (σ)|/Z,

where E(σ) are the edges in σ, V (σ) are the “free”
vertices in σ, those that are not incident with any
edge. Z =

∑
τ∈T λ

|E(τ)|µ|V (τ)|, is a normalizing constant
known as the partition function.

When µ = 1, we weight configurations σ ∈ T by
λ|E(σ)|, favoring shorter contours when λ < 1 and longer
ones when λ > 1. We show that when µ = 1 and
λ < 1/(2

√
e) or λ > 2

√
e, the Markov chain M mixes

slowly. (A duality in the lattice implies that when µ = 1,
if the chain is slow for λ = λ∗ then it is also slow for
λ = 1/λ∗.) For µ > 1, we show that if λ <

√
µ/2
√
e or

λ > 2µ
√
e, the Markov chain M again mixes slowly.

The proofs that M is slowly mixing use so-called
“Peierls arguments” to identify exponentially small cuts
in the state space, implying that the chain will take
exponential time to move from one side of the cut to
the other. It is fairly simple to show that the chain
mixes exponentially slowly when λ > 4 or λ < 1/4.
We improve this by using a more careful combinatorial
analysis, thereby showing slow mixing when λ < 1/[2

√
e]

or λ > 2
√
e. The proof that M is rapidly mixing when

µ = 1 and λ = 1 relies on a novel bijection between
turning graphs and 3-colorings of the grid.

2 Preliminaries

We start by formalizing our terminology. Let Gso =
(V,E) be a finite region of the square-octagon lattice, Λso.
We are interested in sampling from the set of random
perfect matchings on Gso, which we denote PM(Gso). It
is important to distinguish two types of edges of Gso, the
edges that border both a square and an octagon, which
we denote square edges, and those that have octagons
on both sides, which we refer to as octagon edges. Given
a perfect matching σso ∈ PM(Gso), let #N(σso) be the
number of octagon edges. Given an input parameter
λ > 0, we let the weight of σso be defined as λ#N(σso)/Z,
where Z =

∑
σso∈PM(Gso) λ

#N(σso) is the normalizing
constant, also known as the partition function. The local
Markov chain M∫o, at any initial perfect matching σso,
chooses a face ∈ Gso uniformly at random and attempts
to “rotate” the edges of σso about the face. For example
if it chose an octagonal face with all 4 square edges
present, the Markov chain would attempt to “rotate”
to the configuration with all 4 octagon edges present
instead. About a square face, the Markov chain would
attempt to rotate between one pair of opposite edges of
the square and the other pair.

All of our arguments follow more naturally in the
context of paths and cycles, so we now formalize the



representation of perfect matchings on Λso as turning
contours on Z2. Let the graph G = (V ′, E′) be the
graph formed when each square in Gso is contracted
to a single vertex, eliminating all self-loops. The
graph G is the region of Z2 formed from the remaining
octagon edges of Gso. Likewise, the edges of perfect
matching σso ∈ PM(Gso) maps to configuration σ that
corresponds to the remaining octagon edges of σso.

We observe that in any σso ∈ PM(Gso), there
must be an even number of octagon edges incident to
any interior square. Therefore, the any vertex in the
corresponding σ must have even degree. Furthermore, if
only two edges are incident to a vertex, they must form a
right angle, and cannot be both be vertical or horizontal
edges. The vertices on the boundary of Gso can have
even or odd parity depending depending on which edges
of the square are included and excluded. The squares
on the boundary therefore can be mapped to vertices
with an “even” or “odd” designation that indicates the
allowed parity of incident edges. It follows that any valid
perfect matching on Gso corresponds to edges in G that
can be decomposed into cycles and paths that begin and
end at an odd-parity vertex on the boundary. These
cycles and paths are composed of edges that alternate
between horizontal and vertical edges of G, and for this
reason we call such configurations turning graphs [1].

There is a well-structured many-to-one map between
the set of perfect matchings of Gso and turning graphs of
G. For every σ ∈ G with k vertices with degree zero (i.e.,
with no incident edges), there are exactly 2k pre-images
∈ Gso. This follows from the fact that each “free” vertex
in σ corresponds to a square in Gso whose edges can be
matched in exactly two ways, independently of all other
vertices.

It will be convenient to consider a generalized model
of weighted turning graphs on G. Let Ω be the set of
all turning graphs σ of G. A free vertex of a turning
graph configuration σ is a vertex that is not incident to
any edge present in σ. A free face of σ is a unit square
of G whose four edges are not present in σ, while an
occupied face of σ is similarly a unit square of G whose
four edges are all present in σ. In order to be a useful
representation of perfect matchings, a particular turning
graph σ should be sampled with probability

π(σ) = πλ(σ) =
2kλ|σ|

Z
,

where k is the number of free vertices in the graph with σ.
Given a turning contour on G sampled according to the
prescribed probability distribution, we can easily sample
a perfect matching on Gso by choosing one of the two
orientations of the perfect matching at each free vertex.
We generalize this model by introducing a parameter µ,

and letting the weight of a configuration

π(σ) = πλ,µ(σ) = (µkλ|C|)/Z,

where
Z =

∑
τ∈T

λ|E(τ)|µ|V (τ)|.

For convenience, we denote this probability model on
Ω as Tλ,µ of G. The case where µ = 2 corresponds to
perfect matchings of the square-octagon lattice.

By setting µ = 1 in this model, we effectively ignore
the free vertices and the weight of a configuration is
more directly influenced by the underlying geometry of
the turning graphs. We show that techniques used to
analyze this special case can be extended to the general
case of arbitrary µ. A natural Markov chain that has
been considered in the context of perfect matchings on
the square-octagon lattice iteratively took a square or
octagon face and rotated all the edges present if this
resulted in a valid configuration. Rotations on square
faces did not affect the weight of a configuration, while
rotations of an octagonal face could increase or decrease
the weight of a configuration multiplicatively by λ4.

We define the local Markov chain M on turning
graphs Ω, starting at any initial configuration σ0. The
number of steps t required to produce samples sufficiently
close to equilibrium will be discussed subsequently.

The Markov chain M

Repeat for t steps:

� Choose a face x of G uniformly at random.

� If x is empty, let σ be the turning path created by
adding the edges of face x.

� If x is occupied, let σ be the turning path created
by removing the edges of face x.

� With probability min(1, π(σ)
π(σt)

), let σt+1 = σ, and

with the remaining probability, let σt+1 = σt.

Note that this Markov chain represents precisely the
octagon rotating moves of M∫o, an ignores the square
rotating moves. The fact that the chainM connects the
state space Ω of turning graphs and is aperiodic follows
from the ergodicity of M∫o on perfect matchings of the
square octagon lattice [16].

For all ε > 0, the mixing time τ(ε) of a Markov
chain M is defined as

τ(ε) = min{t : max
x∈Ω

1

2

∑
y∈Ω

|P t(x, y)−π(y)| ≤ ε,∀ t′ ≥ t}.

We say that a Markov chain is rapidly mixing (or
polynomially mixing) if the mixing time is bounded



above by a polynomial in n and log(ε−1) and slowly
mixing if it is bounded below by an exponential function.
In Section 3, we bound the mixing time of the Markov
chain M on the turning graph model at various input
parameters λ when µ = 1, and in Section 4, we extend
these results to the more general model where µ > 1.

3 Mixing of the Markov Chain M on Tλ,1

We first consider turning graphs when µ = 1, so
contours are weighted by the lengths of the contours,
independent of the number of free vertices. We will show
in Sections 3.1 and 3.2 thatM is slowly mixing on certain
graphs by bounding its conductance. In Section 3.3 we
show when M is polynomially mixing by reducing to a
chain on 3-colorings of the grid.

There is a well known relationship between the con-
ductance of a Markov chain and its mixing time (see, e.g.,
[9, 21]) that will be the basis of the proofs of slow mixing.
For an ergodic Markov chain M with stationary distri-
bution π, the conductance of a subset S ⊆ Ω is defined
as Φ(S) =

∑
s1∈S,s2∈S̄ π(s1)P (s1, s2)/π(S). The conduc-

tance of the chain M is then the minimum conductance
of all subsets, Φ = minS⊂Ω{Φ(S) : π(S) ≤ 1/2}. The
conductance of a Markov chain is related to its mixing
time τ(ε) as follows:

Theorem 3.1. (Jerrum and Sinclair [9]) The mixing
time of a Markov chain with conductance Φ satisfies:

τ(ε) ≥
(

1− 2Φ

2Φ

)
ln ε−1.

Our strategy in the proofs of slow mixing is to
identify three sets, ΩL,ΩR and ΩC , that partition the
state space with the middle set ΩC being a cut that
has exponentially smaller weight than the left and
right sets ΩL and ΩR. From Theorem 3.1 it follows
that the conductance of the chain is exponentially
small, and therefore we can conclude that M mixes
in time Ω( 1

n (2λ
√
e)
−4n

).

3.1 Slow mixing of M on Tλ,1 for λ < 1/2
√
e

We start by showing that when λ < 1/2
√
e, the Markov

ChainM mixes slowly. Specifically, we show slow mixing
on the so called “Aztec Diamond” graph G [6]. Starting
with Gn, the standard Aztec Diamond graph of order n,
we add extra edges EB to the four corners of the graph,
as shown in Fig 3.1. Because a perfect matching in
the original Gso must include those edges, and this
serves to set the “parity” of the boundary vertices. For
convenience, we do not consider the extra edges EB as
part of Gn, and treat them as boundary conditions on
the graph Gn. We see that with the given boundary
conditions, we see that these four corners are the only

(a) Top to left turning path (b) Top to right turning path

(c) Crossing pair of paths

Figure 3: Configurations in (a) ΩL, (b) ΩR, and (c) ΩC .

vertices with odd parity in Gn. Therefore, in any turning
graph of Gn, there must be either a turning path from
the top vertex to the left vertex and a turning path from
the bottom vertex to the right, or vice-versa.

We define ΩL to be the set of configurations where
these two paths do not cross each other and the top
vertex has a path to the left vertex. Similarly, we let ΩR
be the set of configurations where these paths do not
cross and the top vertex connects to the right vertex.
The cut ΩC consists of all other states where these two
paths do cross (or touch), and in order to pass from
configurations in ΩL to ΩR, the Markov chain M must
pass through a crossing configuration in ΩC [1]. For
any σ ∈ ΩC , we decompose the edges into a crossing
pair of paths, the union of a top-left turning path and a
bottom-right turning path that share a vertex, which we
call a crossing vertex. For any crossing pair of paths, we
can uniquely identify the lexicographically first crossing
vertex as a special vertex. Note that a crossing pair of
paths can simultaneous be interpreted as the union of a
top-right and bottom-left path that also pass through
the same crossing vertex. These paths partition G into
four regions, one for each diagonal boundary; we will
refer to these regions by the side of G that they border.

Theorem 3.2. When λ < 1/(2
√
e), the Markov



Chain M on Tλ,1, weighted turning graphs of the Aztec
Diamond Gn, is at least

τ(ε) ≥ n
(
2λ
√
e
)−4n

ln ε−1.

Proof. Our goal is to show that ΩC is an exponentially
small cut in our state space by exhibiting a mapping
φr : ΩC → Ω such that for any σ ∈ ΩC , the weight of the
image π(φr(σ)) is exponentially larger in n than π(σ).
We construct φr(σ) for σ ∈ ΩC as follows (see Fig. 4).
Given a state σ ∈ ΩC , take a maximal pair of crossing
paths in σ. We then remove the edges of this crossing
path from G. We then shift all edges in σ from the
bottom left region up by one and all edges from the top
right region down by one. Finally, we add in edges along
the bottom left and top right boundaries of G to form a
valid turning graph.

We first partition ΩC into sets ΩC,h,v for h, v ≥ 0
as follows. Given σ ∈ ΩC , consider the lexicographically
first pair of crossing paths in σ. We separate these into
“top-left” and “bottom right” turning paths that meet at
their lexicographically first crossing point x. We define
the “horizontal path” as the sub path of the top-left
path from the leftmost vertex to x, concatenated with
the sub path of the bottom-right path from x to the
rightmost vertex. We similarly define the “vertical path”
from the topmost vertex to x to the bottommost vertex
passing through x. This horizontal path, when viewed as
a path from the left vertex to the right vertex, contains
some number h ≥ 0 “backwards” edges from right to left.
Similarly the “vertical path” has some v ≥ 0 backwards
edges from bottom to top. We say that σ ∈ ΩC,h,v.

Note that since the horizontal path ends exactly 2n
edges to the right of its origin, it must contain exactly
2n+2h total horizontal edges. Since it is the union of two
turning paths, which alternate horizontal and vertical
edges, the number of vertical edges in the horizontal
path must be 2n + 2h + δh, where |δh| ≤ 2. Similarly,
the vertical path has exactly 2n+ 2v vertical edges and
2n+ 2v+ δv horizontal edges, for some |δv| ≤ 2. We will
see that the values of δh and δv will only affect our final
bounds by a constant, and we may safely ignore them
for convenience. For both the horizontal and vertical
paths, we may encode the entire path essentially as two
separate interleaved bit sequences, one for the horizontal
moves, another for the vertical moves, and a single special
symbol x to indicate the location of the crossing.

To bound the number of pre-images of this map, we
note the number of left-right paths of type h is at most

n

(
2n+ 2h

h

)(
2n+ 2h

n+ h

)
.

Similarly, the number of top-down paths of type v is at

(a) A configuration σ ∈ ΩC . (b) Remove the crossing paths.

(c) Shift away from boundary. (d) Add the boundary to get φ(σ).

Figure 4: The mapping φ : ΩC → Ω.

most

n

(
2n+ 2v

v

)(
2n+ 2v

n+ v

)
.

Then P (h, v), the total number of paths of type (h, v),
is therefore at most

P (h, v) =

n2

(
2n+ 2h

h

)(
2n+ 2h

n+ h

)(
2n+ 2v

v

)(
2n+ 2v

n+ v

)

<
n224n+2h+2v

π
√
n+ h

√
n+ v

(
2n+ 2h

h

)(
2n+ 2v

v

)

<
n224n+2h+2v

π
√
n+ h

√
n+ v

(2n+ 2h)h

h!

(2n+ 2v)v

v!

<
n224n+2h+2v

π
√
hv
√
n+ h

√
n+ v

(
e(2n+ 2h)

h

)h(
e(2n+ 2v)

v

)v

<
n224n+2h+2v(2e)h+v

π
√
hv
√
n+ h

√
n+ v

(
1 +

n

h

)h (
1 +

n

v

)v

<
n224n+2h+2v(2e)h+v(e)2n

π
√
hv
√
n+ h

√
n+ v

,



where the first inequality follows from Stirling’s for-
mula and the last uses the well known fact that(
(1 + a)b ≤ eab

)
for all positive b.

Since we go from a configuration with 8n+ 4v + 4h
total edges in the crossing path to a configuration with
exactly 4n new edges, it follows that for all σ ∈ ΩC,h,v,
the gain in weight π(φr(σ))/π(σ) = λ−(4n+4h+4v).
Summing over all possible 0 ≤ h, v ≤ n2, we conclude:

π(ΩC) =
∑
h,v

π(ΩC,h,v))

≤
∑
h,v

∑
σ∈ΩC,h,v)

π(φ(σ))
π(σ)

π(φ(σ))

≤
∑
h,v

∑
σ∈ΩC,h,v)

π(φ(σ))λ(4n+4h+4v)

≤
∑
h,v

λ(4n+4h+4v)n
224n+2h+2v(2e)h+v(e)2n

π
√
hv
√
n+ h

√
n+ v

≤
∑
h,v

n2

π
√
hv
√
n+ h

√
n+ v

(2λ
√
e)4n+4h+4v

(2e)h+v

≤ n
(
2λ
√
e
)4n

.

For any constant λ < 1/2
√
e, we see that π(ΩC)

is exponentially small in n. We conclude that the
conductance ΦM of the Markov chain M must be
bounded by

ΦM ≤
∑

s1∈ΩR,s2∈ΩR

π(s1)P (s1, s2)/π(ΩR)

≤ π(ΩC)/π(ΩR)

= 2π(ΩC)/(1− π(ΩC))

≤ 2n
(
2λ
√
e
)4n

.

By Theorem 3.1, it follows that τ(ε), the mixing time
of M, satisfies

τ(ε) ≥ 1

4n

(
2λ
√
e
)−4n

ln ε−1,

which is exponentially large in n.

3.2 Slow mixing of M on Tλ,1 for λ > 2
√
e

Next, we show that when each edge present in the turning
contour is given weight at least λ > 2

√
e, the Markov

Chain M also mixes slowly on some graphs. Rather
than prove this case directly, we exhibit a bijection
between the model on graph G for any λ < 1, and the

(a) G,λ (b) G′, λ′ = 1/λ

Figure 5: Weight-preserving bijection between σ ⊂ G at
parameter λ and σ′ ⊂ G′ at λ′ = 1/λ.

complimentary model on G′ = G with altered boundary
conditions for λ′ = 1/λ > 1.

For each vertex v in G with parity p(v), set the
parity of that vertex to deg(v)− p(v) in G′. It follows
that the complementary turning graph C ′ = E\C on G′

will be a valid turning graph that, by construction,
will satisfy the parity boundary conditions of G′, as
a vertex v with k incident edges in G corresponds to
a vertex with deg(v) − k incident edges in E′. Let G
be the Aztec diamond graph described in the previous
section, and let G′ be the Aztec Diamond graph with
boundary conditions modified as in Fig. 5.

Corollary 3.1. When λ > 2
√
e, the mixing time of

the Markov Chain M on Tλ,1, weighted turning graphs
of the Aztec Diamond Gn, is at least

τ(ε) ≥ n
(
2λ
√
e
)−4n

ln ε−1.

Proof. We show that the missing edges in this model G′

behave exactly like the present edges in G, and will form
turning paths of missing edges between vertices that have
difference in parity between its degree and other parity
requirement. It follows then that the unnormalized
weight of a turning graph C ′ with parameter λ′ = 1/λ
is exactly

G′ = λ′
|C′|

= λ′
|E|−|C|

= λ′
|E|
λ′
−|C|

= λ′
|E|
λ|C|.

Since this is exactly the weight of the corresponding
turning path C of G multiplied by λ|E|, it follows that
the normalization

Z ′ =
∑
C′∈G′

λ′
|C′|

= λ|E|Z.



Thus, the normalized probability π(C ′) = π(C).
The Markov chain M behaves exactly the same

on both models, by adding or removing edges with
probabilities depending on the relative weights of the
current and proposed next state. Thus M on G with
parameter λ behaves exactly the same as M on G′ with
parameter 1/λ. The corollary then follows immediately
from Theorem 3.2.

3.3 Polynomial mixing of M on Tλ,1 for λ = 1
We start by describing a novel bijection between turning
paths of a region of the grid G = (V,E) subject to given
boundary conditions with three-colorings of G subject
to certain corresponding boundary conditions. We then
infer that the Markov chain M is polynomially mixing
when λ = 1 on any region of the grid G from the fact
that three colorings on finite regions of Z2 with fixed
boundary conditions are polynomially mixing on any
such G [1].

Theorem 3.3. Given vertex boundary conditions on the
grid G, we can construct coloring boundary conditions
on G such that there is a bijection between the Turning
graphs on G satisfying the given vertex boundaries and
the set of 3-colorings satisfying the corresponding coloring
boundaries.

Proof. Say we are given an instance of the turning path
model G with given parities p(v) on each vertex on the
boundary. We describe an assignment of faces on the
external boundary of G that corresponds with a given
p(v). The vertices for which p(v) is odd are starting
points for turning paths, and divide the boundary into
an even number of regions. We say that region R1 and
region R2 share a border if the corresponding faces both
share a vertex v such that p(v) is odd. Each region of
the boundary will be colored by exactly two colors in
alternating fashion. We begin by fixing a face fs of the
external boundary of G and assigning it color 1.

Given σ that satisfies the above turning path
boundary conditions, we show how to construct f(σ), a
3-coloring of G that satisfies the corresponding coloring
boundary conditions.

� Beginning at face fs, we color every face in its region
with the same parity as fs with color 1, and all other
faces in this region with color 2.

� In general, say without loss of generality that a
region R1 is colored a, b, and the third color not
present in the region is c. If R1 borders R2 with
a face colored a, then we color R2 with colors c, b.
Otherwise, we color R2 with colors c, a. After this,
we have colored every face of G, and we call the
resulting 3-coloring is f(σ).

(a)

(b)

Figure 6: Coloring representations of boundary condi-
tions and turning graphs.

For any given turning path σ on G, we construct
the corresponding 3-coloring similarly, using the turning
path itself as the boundary between adjacent regions.
This procedure is well-defined due to the turning
property of the paths in σ - all vertices in a single region
that are directly adjacent to any specific turning path
must have the same parity in Z2, and thus will have
the same color. By construction, the colors chosen on
the boundary form a valid 3-coloring of the tiles of the
boundary.

We now show that f is a bijection by constructing
the inverse f−1. Beginning at face fs, we take the
maximally connected region of faces that are colored 1
or 2. On the boundary, this will include all faces on
both sides of fs up to any external boundary vertex
colored 3. We claim that all faces on the boundary of
this maximal region must have the same color - this
follows immediately from the fact that by construction,
all faces on the boundary of this region must border a



face colored 3. Since none of these faces colored 3 can be
adjacent, it follows that none of the faces bordering these
3-faces on “our side” of the boundary can be adjacent.
Thus, all such faces must be diagonal to each other, and
will therefore have the same parity in Z2 and be colored
the same. Thus the edges on the border of this region
must be a turning path.

Since all steps above are done deterministically, it
follows that this procedure is well defined for all 3-
colorings. There is a known bijection between 3-colorings
of the grid and height functions [1], where the height at
two neighboring faces may only differ by {−1, 1}. We
observe that these turning paths correspond exactly to
alternating level curves of the height function. That is,
the edges in the turning graph are exactly the set of
edges between the vertices at height 2k and 2k+1 for all
integer k. The uniqueness of the height representation of
a 3-coloring [1] implies that this reverse map f−1 must
be injective. Therefore, f must be a bijection.

Corollary 3.2. The Markov chainM when λ = µ = 1
is polynomially mixing on finite grid regions G.

Proof. The Markov chain M that adds or removes a
single square of edges corresponds to the local Markov
chain on 3-colorings that changes the color at a single
square at a time. This chain was shown to be polynomi-
ally mixing on all subsets of Z2 with any fixed boundary
conditions by a coupling argument [1].

4 Mixing of M on Tλ,µ for general µ > 1

We extend our analysis of the special case when µ = 1
to the general model for any µ > 1 by considering
an amortized “cost” for each non-free vertex in σ,
distributed among its incident edges.

Theorem 4.1. When λ <
√
µ/(2

√
e), the mixing time

of the Markov ChainM on Tλ,µ, weighted turning graphs
of the Aztec Diamond Gn, is at least

τ(ε) ≥ n
(
2λ
√
e
)−4n

ln ε−1.

Proof. To handle the case where µ > 1, we need to
consider the change in the number of vertices used by the
turning graph. We follow the structure of Theorem 3.2,
keeping both the structure of the proof and the map φ.

Let σ be a configuration in ΩC,v,h. As in Theo-
rem 3.2, we see that σ has 8n+ 4h+ 4v edges in some
pair of crossing paths. It follows that the sum of all
degrees of all vertices incident to these edges must add
to 16n+ 8h+ 8v. This pair of crossing paths includes
at least the topmost and bottommost vertex at each x
coordinate, and thus must contain at least 4n vertices of
degree 2. The degrees of the remaining vertices therefore

sum to 8n+ 8h+ 8v. Since the maximum degree of any
vertex is 4, there must be at least 2n + 2h + 2v other
vertices used by this pair of crossing paths.

The map φ(σ) removes this pair of crossing paths,
and adds two paths of exactly 4n edges and 4n vertices.
Thus, we have a net gain of at least 2n+ 2h+ 2v vertices
between σ and φ(σ). Thus, the change in weight for any
σ ∈ ΩC,h,v will be

π(φr(σ))/π(σ) ≥ µ2n+2h+2vλ−(4n+4h+4v)

= (λ/
√
µ)−(4n+4h+4v).

As in Theorem 3.2, this directly implies that M mixes
slowly when λ/

√
µ < 1/2

√
e, or more simply λ <√

µ/2
√
e.

We now analyze the case where λ > 1 similarly,
and obtain a result analogous to Corollary 3.1 for
this more general case. Following the bijection in
Corollary 3.1 that maps a turning graph in G with
the complementary graph in G′, we could immediately
conclude from Theorem 4.1 that for any µ < 1, M is
slowly mixing whenever λ > 2

√
e/
√
µ. However, we are

chiefly interested in the case when µ > 1, especially
when µ = 2. In this case, we can reason directly from
Corollary 3.1.

Theorem 4.2. When λ > 2µ
√
e, the mixing time of

the Markov Chain M on Tλ,µ, weighted turning graphs
of the Aztec Diamond Gn, is at least

τ(ε) ≥ n
(
2λ
√
e
)−4n

ln ε−1.

Proof. We proceed similarly to the proof of Theorem 4.1,
but with one important difference. By the nature of
the bijection, the mapping φ in this context doesn’t
remove edges and add shorter ones, it removes non edges,
and adds a shorter path of unchosen edges, potentially
increasing the total number of chosen vertices in the
process.

However, as in the argument of Theorem 4.1, the
sum of the degrees of vertices incident to these edges,
other than the boundaries, adds to 8n + 8h + 8v. It
follows then that at most 4n+ 4h+ 4v vertices will be
added by the map φ in the complementary context.

Thus, as before, the change in weight for any
σ ∈ ΩC,h,v is

π(φr(σ))/π(σ) ≥ µ2n+2h+2vλ−(4n+4h+4v)

= (λ/µ)−(4n+4h+4v).

Treating µ as a constant, by Corollary 3.1 we conclude
that M mixes slowly whenever (λ/µ) > 2

√
e, or when

λ > 2µ
√
e.



5 Conclusions

Our arguments verify that, in the weighted setting,
the Markov chain on perfect matchings of the square-
octagon lattice can be either fast or slow to converge to
equilibrium, suggesting the presence of a phase transition.
An important facet of our results is the strategy of
adapting a slow mixing result for the simpler setting
when µ = 1 to arbitrary µ. Note that if we could show
thatM is slowly mixing when µ = 1, and λ < 1/

√
2 + ε,

then this would imply that M is slowly mixing when
µ = 2 and λ = 1. This setting of the parameters precisely
corresponds to uniformly sampling perfect matchings
on regions of the square-octagon lattice. Our specific
methods do not seem to be sufficient for extending the
proofs to this setting. Hence it is still open whether the
chain converges slowly when on the set of unweighted
perfect matchings, as simulations suggest. We believe
that a more refined analysis of the tradeoffs between the
“energy” (the weighting that discourages long turning
paths) and the “entropy” (bounding the number of
configurations with turning paths of different lengths)
will be the key to extending these arguments.
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