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π1(M) in SL(n, C) is given by the Chern-Simons integral(1.1) ĉ(ρ) =

1

2

∫

M
s∗
(
Tr(A ∧ dA +

2

3
A ∧ A ∧ A)

)
∈ C/4π2Z,where A is the �at onnetion in the �at SL(n, C)-bundle Eρ with holonomy ρ, and s : M → Eρis a setion of Eρ. Sine SL(n, C) is 2-onneted a setion always exists, and a di�erent hoie ofsetion hanges the value of the integral by a multiple of 4π2.When n = 2, the imaginary part of the Cheeger-Chern-Simons invariant equals the hyperbolivolume of ρ. More preisely, if D : M̃ → H3 is a developing map for ρ and νH3 is the hyperbolivolume form, Im(ĉ(ρ)) equals the integral of D∗(νρ) over a fundamental domain for M . In partiular,if M = H3/Γ is a hyperboli manifold, and ρ is a lift to SL(2, C) of the geometri representation

ρgeo : π1(M) → PSL(2, C), the imaginary part equals the volume of M . In fat, in this ase we have(1.2) ĉ(ρ) = i(Vol(M) + iCS(M)),where CS(M) is the Chern-Simons invariant of M (with the Riemannian onnetion). Althoughthis result is known to experts, no proof seems to be available (see [8, 21℄ for disussions). Wegive a proof in Setion 2. The invariant Vol(M) + iCS(M) is often referred to as omplex volume.Motivated by this, we de�ne the omplex volume VolC of a representation ρ : π1(M) → SL(n, C) by(1.3) ĉ(ρ) = iVolC(ρ)



THE COMPLEX VOLUME OF SL(n, C)-REPRESENTATIONS OF 3-MANIFOLDS 3and de�ne the volume of ρ to be the real part of the omplex volume, i.e. the imaginary part ofthe Cheeger-Chern-Simons invariant. Surprisingly, as we shall see, the relationship to hyperbolivolume seems to persist even when n > 2.The set of SL(n, C)-representations is a omplex variety with �nitely many omponents, and theomplex volume is onstant on omponents. This follows from the fat that representations in thesame omponent have ohomologous Chern-Simons forms. Hene, for any M , the set of omplexvolumes is a �nite set.We show that the de�nition of the Cheeger-Chern-Simons invariant naturally extends to ompatmanifolds with boundary, and representations ρ : π1(M) → SL(n, C) that are boundary-unipotent,i.e. take peripheral subgroups to a onjugate of the unipotent group N of upper triangular matrieswith 1's on the diagonal. We formulate all our results in this more general setup.The main result of the paper is a onrete algorithm for omputing the set of omplex vol-umes. The idea is that the set of (onjugay lasses of) boundary-unipotent representations an beparametrized by a variety, alled the Ptolemy variety, whih is de�ned by homogeneous polynomialsof degree 2. The Ptolemy variety depends on a hoie of triangulation, but if the triangulation issu�iently �ne, every representation is deteted by the Ptolemy variety. We show that a point cin the Ptolemy variety naturally determines an element λ(c) in Neumann's extended Bloh group
B̂(C), suh that if ρ is the representation orresponding to c, we have(1.4) R(λ(c)) = iVolC(ρ),where R : B̂(C) → C/4π2Z is a Rogers dilogarithm.There is a anonial group homomorphism(1.5) φn : SL(2, C) → SL(n, C)de�ned by taking a matrix A to its (n − 1)th symmetri power (see Setion 11). The map φnpreserves unipotent elements, and we show that omposing a boundary-unipotent representation in
SL(2, C) with φn multiplies the omplex volume by (n+1

3

). If M = H3/Γ is a hyperboli 3-manifold,the geometri representation ρgeo always lifts to a representation in SL(2, C), but if M has usps,lifts are not neessarily boundary-unipotent. In fat, by a result of Calegari [5℄, if M has a singleusp, any lift of the geometri representation takes a longitude to an element with trae −2. When
n is even, we shall thus, more generally, be interested in boundary-unipotent representations in(1.6) p SL(n, C) = SL(n, C)

/
〈±I〉.Suh representations have a omplex volume de�ned modulo π2i, and our algorithm omputes theseas well. By studying representations in p SL(n, C), we make sure that when M is hyperboli, thereis always at least one representation with non-trivial omplex volume, namely φn ◦ ρgeo.Walter Neumann has onjetured that every element in the Bloh group B(C) is an integral linearombination of Bloh group elements of hyperboli 3-manifolds. Sine the extended Bloh groupequals the Bloh group up to torsion, Neumann's onjeture would imply that all omplex volumesare, up to rational multiples of iπ2, integral linear ombinations of omplex volumes of hyperboli

3-manifolds. In partiular, the volumes should all be integral linear ombinations of volumes ofhyperboli manifolds.Our algorithm has been implemented by Matthias Goerner. The algorithm uses Magma [3℄to ompute a primary deomposition of the Ptolemy variety, and then uses (1.4) to ompute theomplex volumes. For n = 2, we have omputed primary deompositions of the Ptolemy varietiesfor all ensus manifolds with ≤ 8 simplies (these usually �nish within a fration of a seond) andall link omplements with ≤ 16 simplies in the SnapPy ensus [9℄ of knots with up to 11 rossingsand links with up to 10 rossings. When there are more than 16 simplies some of the omputations



4 STAVROS GAROUFALIDIS, DYLAN P. THURSTON, AND CHRISTIAN K. ZICKERTdon't terminate. For n = 3, omputations are feasible for many manifolds with up to 4 simplies,but for n = 4 the omputations run out of memory for all manifolds with more than 2 simplies. Itwould be interesting to perform numerial alulations for n ≥ 4. Our omputations have revealednumerous (numerial) examples of linear ombinations as predited by Neumann's onjeture. Tothe best of our knowledge, our examples are the �rst onrete omputations (the �rst of whih werearried out in 2009) of the Cheeger-Chern-Simons invariant (omplex volume) for n > 2.1.1. Statement of our results. This setion gives a brief summary of our main results. Moredetails an be found in the paper.1.1.1. The Ptolemy variety. Let M be a ompat, oriented 3-manifold with (possibly empty) bound-ary, and let K be a losed 3-yle (triangulated omplex; see De�nition 4.1) homeomorphi to thespae obtained from M by ollapsing eah boundary omponent to a point. We identify eah of thesimplies of K with a standard simplex(1.7) ∆3
n =

{
(x0, x1, x2, x3) ∈ R4

∣∣ 0 ≤ xi ≤ n, x0 + x1 + x2 + x3 = n
}

.Let ∆3
n(Z) be the set of points in ∆3

n with integral oordinates, and let ∆̇3
n(Z) be ∆3

n(Z) withthe 4 vertex points removed.De�nition 1.1. A Ptolemy assignment on ∆3
n is an assignment ∆̇3

n(Z) → C∗, t 7→ ct, of a non-zeroomplex number ct to eah (non-vertex) integral point t of ∆3
n suh that for eah α ∈ ∆3

n−2(Z), thePtolemy relation(1.8) cα03
cα12

+ cα01
cα23

= cα02
cα13is satis�ed. Here, αij denotes the integral point α+ei+ej . A Ptolemy assignment on K is a Ptolemyassignment ci on eah simplex ∆i of K suh that the Ptolemy oordinates agree on identi�ed faes.Remark 1.2. The name is inspired by the resemblane of (1.8) with the Ptolemy relation betweenthe lengths of the sides and diagonals of an insribed quadrilateral (see Figure 1). In the workof Fok and Gonharov [14℄, the Ptolemy relations appear as relations between oordinates on thehigher Teihmüller spae when the triangulation of a surfae is hanged by a �ip.
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Figure 1. A quadrilat-eral is insribed in a irleif and only if ab + cd = ef . Figure 2. Ptolemy assignment for n = 3. ThePtolemy relation for α = 1000 is c2001c1110 +
c2100c1011 = c2010c1101.It follows immediately from the de�nition that the set of Ptolemy assignments on K is an algebraiset Pn(K), whih we shall refer to as the the Ptolemy variety.



THE COMPLEX VOLUME OF SL(n, C)-REPRESENTATIONS OF 3-MANIFOLDS 5The extended pre-Bloh group P̂(C) is generated by tuples (u, v) ∈ C2 with eu + ev = 1, and theextended Bloh group B̂(C) ⊂ P̂(C) is the kernel of the map P̂(C) → ∧2(C) taking (u, v) to u ∧ v.We refer to Setion 3 for a review. Using (1.8), we obtain that a Ptolemy assignment c on ∆3
n givesrise to an element(1.9) λ(c) =

∑

α∈T 3(n−2)

(c̃α03
+ c̃α12

− c̃α02
− c̃α13

, c̃α01
+ c̃α23

− c̃α02
− c̃α13

) ∈ P̂(C),where the tilde denotes a branh of logarithm (the partiular hoie is inessential). We thus have amap(1.10) λ : Pn(K) → P̂(C), c 7→
∑

i

ǫiλ(ci),where the sum is over the simplies of K. Let RSL(n,C),N (M) denote the set of onjugay lasses ofboundary-unipotent representations π1(M) → SL(n, C). The following theorem (as well as Theo-rem 1.12 below) gives an e�ient algorithm for omputing omplex volumes. For numerous exam-ples, see Setion 10.Theorem 1.3 (Proof in Setion 9.5). A Ptolemy assignment c uniquely determines a boundary-unipotent representation R(c) ∈ RSL(n,C),N (M). The map λ has image in B̂(C), and we have aommutative diagram(1.11) Pn(K)
λ

//

R
��

B̂(C)

R
��

RSL(n,C),N (M)
i VolC

// C/4π2Z.Moreover, if the triangulation is su�iently �ne (a single baryentri subdivision su�es), the map
R is surjetive. �Remark 1.4. We show in Setion 9 that there is a one-one orrespondene between points in Pn(K)and generially deorated (see Setion 5) boundary-unipotent SL(n, C)-representations. Under thisorrespondene, the map R is just the forgetful map ignoring the deoration. Note that Pn(K)depends on the triangulation and may be empty.Let H ⊂ SL(n, C) denote the group of diagonal matries, and let h denote the number of boundaryomponents of M . In Setion 4.1 we de�ne an ation of Hh on Pn(K). We denote the quotient by
Pn(K)red. The ation only hanges the deoration, so R fators through Pn(K)red.De�nition 1.5. A boundary-unipotent representation ρ : π1(M) → SL(n, C) is peripherally wellbehaved if the image of eah peripheral subgroup is either trivial or ontains an element with amaximal Jordan blok. If the latter ondition holds for eah peripheral subgroup, we say that ρ isperipherally non-degenerate.Remark 1.6. When n = 2 all representations are peripherally well behaved.Theorem 1.7 (Proof in Setion 9.5). The image of R : Pn(K)red → RSL(n,C),N (M) onsists of theset of representations admitting a generi deoration (see De�nition 5.2). If suh a representationis peripherally non-degenerate, the preimage in Pn(K)red is a single point. If ρ is peripherally wellbehaved, any two preimages of R have the same image in B̂(C).Corollary 1.8. A peripherally well behaved boundary-unipotent representation ρ in SL(n, C) de-termines an element [ρ] ∈ B̂(C) suh that R([ρ]) = iVolC(ρ). �



6 STAVROS GAROUFALIDIS, DYLAN P. THURSTON, AND CHRISTIAN K. ZICKERTRemark 1.9. In general the pre-image of a representation under R an have large dimension.1.1.2. Hyperboli manifolds and p SL(n, C)-representations. Let φn : SL(2, C) → SL(n, C) denotethe anonial irreduible representation. Note that when n is odd φn fators through PSL(2, C). Ifa representation ρ is in the image of Pn(K) → RSL(n,C),N (M), we say that Pn(K) detets ρ.Theorem 1.10 (Proof in Setion 11.1). Suppose M = H3/Γ is an oriented, hyperboli manifoldwith �nite volume and geometri representation ρgeo : π1(M) → PSL(2, C). If the triangulation of
K has no non-essential edges, and if n is odd, Pn(K) is non-empty and detets φn ◦ ρgeo. �When n is even, φn ◦ ρgeo is only a representation in p SL(n, C) = SL(n, C)

/
〈±I〉.De�nition 1.11. Let σ ∈ Z2(∆3

n; Z/2Z) be a oyle. A p SL(n, C)-Ptolemy assignment on ∆3
nwith obstrution oyle σ is an assignment of Ptolemy oordinates to the integral points of ∆3
nsuh that(1.12) σ2σ3cα03

cα12
+ σ0σ3cα01

cα23
= cα02

cα13
.Here σi ∈ Z/2Z = 〈±1〉 is the value of σ on the fae opposite the ith vertex of ∆3

n. A p SL(n, C)-Ptolemy assignment on K with obstrution oyle σ ∈ Z2(K; Z/2Z) is a olletion of p SL(n, C)-Ptolemy assignments ci on ∆i with obstrution lass σ∆i
suh that the Ptolemy oordinates agreeon ommon faes.The set of p SL(n, C)-Ptolemy assignments on K with obstrution oyle σ is an algebrai set

P σ
n (K), whih up to anonial isomorphism, only depends on the ohomology lass of σ. The ob-strution lass to lifting a boundary-unipotent representation in p SL(n, C) to a boundary-unipotentrepresentation in SL(n, C) is a lass in H2(M,∂M ; Z/2Z) = H2(K; Z/2Z). For σ ∈ H2(K; Z/2Z),let Rσ

p SL(n,C),N (M) denote the set of (onjugay lasses of) boundary-unipotent representations in
p SL(n, C) with obstrution lass σ. If M is hyperboli we let σgeo ∈ H2(K; Z/2Z) denote theobstrution lass of the geometri representation.Theorem 1.12 (Proof in Setion 9.5). Let n be even. For eah σ ∈ H2(K; Z/2Z), we have aommutative diagram (B̂(C)PSL is de�ned in Setion 3.2)(1.13) P σ

n (K)
λ

//

R
��

B̂(C)PSL

R

��

Rσ
p SL(n,C),N (M)

i VolC
// C/π2Z.If the triangulation of K is su�iently �ne, R is surjetive. If M = H3/Γ is hyperboli, and if Khas no non-essential edges, P

σgeo
n (K) detets φn ◦ ρgeo. �Remark 1.13. The analogue of Theorem 1.7 also holds, exept that the preimage of a peripherallywell behaved representation is now parametrized by Z1(K; Z/2Z) (see Setion??).Remark 1.14. If the triangulation has a non-essential edge, all Ptolemy varieties are empty. Hene,if P σ

2 (K) is non-empty for some σ, and if M is hyperboli, the Ptolemy variety P σgeo(K) will detetthe geometri representation.Theorem 1.15 (Proof in Setion 11). Let ρ be a peripherally well behaved representation in SL(2, C)or PSL(2, C). The extended Bloh group element of φn ◦ ρ is (n+1
3

) times that of ρ. In partiular,omposition with φn multiplies omplex volume by (n+1
3

). �



THE COMPLEX VOLUME OF SL(n, C)-REPRESENTATIONS OF 3-MANIFOLDS 71.1.3. The Cheeger-Chern-Simons lass. The Cheeger-Chern-Simons invariant an be viewed as aharateristi lass H3(SL(n, C)) → C/4π2Z, and the result underlying the proof of ommutativityof (1.11) is Theorem 1.16 below, giving an expliit oyle formula for the Cheeger-Chern-Simonslass. The formula generalizes the formula in Goette-Zikert [17℄ for n = 2. Reall that a homologylass an be represented by a formal sum of tuples (g0, . . . , g3). To suh a tuple, we an assign aPtolemy assignment c(g0, . . . , g3) de�ned by(1.14) c(g0, . . . , g3)t = det
(
{g0}t0 ∪ · · · ∪ {g3}t3

)
, t = (t0, . . . , t3),where {gi}ti denotes the ordered set onsisting of the �rst ti olumn vetors of gi. One an alwaysrepresent a homology lass by tuples, suh that all the determinants in (1.14) are non-zero.Theorem 1.16 (Proof in Setion 8). The Cheeger-Chern-Simons lass ĉ fators as(1.15) H3(SL(n, C))

λ
// B̂(C)

R
// C/4π2Z ,where λ is indued by the map taking a tuple (g0, . . . , g3) to λ(c(g0, . . . , g3)) ∈ P̂(C). �1.1.4. Thurston's gluing equations. When n = 2, Thurston's gluing equation variety V (K) is anothervariety, whih is often used to ompute volume. It is given by an equation for eah edge of K andan equation for eah generator of the fundamental groups of the boundary-omponents of M (seeSetion 12).Theorem 1.17 (Proof in Setion 12). Suppose M has h boundary omponents. There is a surjetiveregular map(1.16) ∐

σ∈H2(K;Z/2Z)

P σ
2 (K) → V (K)with �bers disjoint opies of (C∗)h. �Remark 1.18. The Ptolemy variety seems to o�er signi�ant omputational advantage over thegluing equations, but aording to Fabrie Rouillier (private ommuniations) one an manipulatethe gluing equations to mitigate this.1.1.5. Algebrai K-therory. As shown in Zikert [30℄, the extended Bloh group an also be de�nedover a number �eld F , and we have a anonial isomorphism B̂(F ) ∼= K ind

3 (F ).Theorem 1.19 (Proof in Setion 13). Let F be a number �eld. A boundary-unipotent representation
ρ : π1(M) → SL(n,F ) determines an element of B̂(F ) = K ind

3 (F ) suh that for eah embedding
τ : F → C, we have(1.17) R(τ([ρ])) = iVolC(τ ◦ ρ).If ρ is irreduible, [ρ] lies in B̂(Tr(ρ)), where Tr(ρ) ⊂ F is the trae �eld of ρ. �1.2. Neumann's onjeture. The fat that (1.10) has image in B̂(C) as opposed to P̂(C) hasvery interesting onjetural onsequenes. It is well known (see e.g. Suslin [27℄) that the Blohgroup B(C) is a Q-vetor spae, and Walter Neumann has onjetured that it is generated by Blohinvariants of hyperboli manifolds. More generally, Walter Neumann has proposed the followingstronger onjeture [22℄:Conjeture 1.20. Let F ⊂ C be a onrete number �eld whih is not in R. The Bloh group B(F )is generated (integrally) modulo torsion by hyperboli manifolds with invariant trae �eld ontainedin F .



8 STAVROS GAROUFALIDIS, DYLAN P. THURSTON, AND CHRISTIAN K. ZICKERTUsing Theorems 1.3 and 1.12, Conjeture 1.20 implies:Conjeture 1.21. Let ρ be a boundary-unipotent representation of π1(M) in SL(n, C) or p SL(n, C).There exist hyperboli 3-manifolds M1, . . . ,Mk and integers r1, . . . , rk suh that(1.18) VolC(ρ) =
∑

ri VolC(Mi) ∈ C/iπ2Q.In partiular, Vol(ρ) =
∑

ri Vol(Mi) ∈ R.We give some examples in Setion 10.Remark 1.22. The Ptolemy oordinates may be onsidered as a 3-dimensional analogue of Fokand Gonharov's A-oordinates [14℄. They were de�ned for 3-manifolds in Zikert [30℄ (under thename ideal ohain), and have subsequently been studied by several other authors. These inludeBergeron-Falbel-Guilloux [2℄, Garoufalidis-Goerner-Zikert [15℄ and Dimofte-Gabella-Gonharov [10℄.1.3. Overview of the paper. Setion 2 gives a detailed review of the Cheeger-Chern-Simonslasses for �at bundles. Many details are inluded in order to give a self-ontained proof of (1.2).Setion 3 gives a brief review of the two variants of the extended Bloh group, and Setion 4 re-views the theory, introdued in Zikert [31℄, of deorated representations and relative fundamentallasses. In Setion 5, we introdue the notion of generi deorations and de�ne the Ptolemy variety
Pn(K). In Setion 6, we onstrut a hain omplex of Ptolemy assignments, and use it to onstruta map from H3(SL(n, C), N) to B̂(C) ommuting with stabilization. This shows that a deoratedboundary-unipotent representation determines an element in the extended Bloh group, whih isgiven expliitly in terms of the Ptolemy oordinates. In Setion 7, we show that the extended Blohgroup element of a deorated, peripherally well behaved representation is independent of the deora-tion, and in Setion 8, we show that the Cheeger-Chern-Simons lass is given as in Theorem 1.16. InSetion 9, we show that the Ptolemy variety parametrizes generially deorated representations, andgive an expliit formula for reovering a representation from its Ptolemy oordinates. In Setion 10,we give some examples of omputations, and list some interesting �ndings. Setion 11 disussesthe irreduible representations of SL(2, C), and Setion 12 disusses the relationship to Thurston'sgluing equations when n = 2. Finally, Setion 13 is a brief disussion of other �elds.1.4. Aknowledgment. The authors wish to thank Ian Agol, Johan Dupont, Matthias Goernerand Walter Neumann for stimulating onversations, and the referees for valuable omments andorretions. We are partiularly grateful to Matthias Goerner for a omputer implementation ofour formulas, and for supplying our theory with omputational data for more than 20000 manifolds.The software has been inorporated into SnapPy [9℄, and omputational data an be found athttp://unhyperboli.org/ptolemy.html.2. The Cheeger-Chern-Simons lassesThe Cheeger-Chern-Simons lasses [6, 7℄ are harateristi lasses of prinipal bundles with on-netion. For general bundles, the harateristi lasses are di�erential haraters [6℄, but for �atbundles they redue to ordinary (singular) ohomology lasses. In this paper we will fous exlu-sively on �at bundles. Let F denote either R or C, and let Λ be a proper subring of F. Let G be aLie group over F with �nitely many omponents. There is a harateristi lass SP,u for eah pair
(P, u) onsisting of an invariant polynomial P ∈ Ik(G; F) and a lass u ∈ H2k(BG; Λ), whose imagein H2k(BG; F) equals W (P ), where W is the Chern-Weil homomorphism(2.1) W : Ik(G; F) → H2k(BG; F).

http://unhyperbolic.org/ptolemy.html


THE COMPLEX VOLUME OF SL(n, C)-REPRESENTATIONS OF 3-MANIFOLDS 9The harateristi lass SP,u assoiates to eah �at G-bundle E → M a ohomology lass SP,u(E) ∈
H2k−1(M ; F/Λ).2.1. Simply onneted, simple Lie groups. If G is simply onneted and simple, H1(G; Z) and
H2(G; Z) are trivial, and H3(G; Z) ∼= Z. Hene, by the Serre spetral sequene for the universalbundle, we have an isomorphism(2.2) S : H4(BG; Z) ∼= H3(G; Z) ∼= Zalled the suspension. The Killing form on G de�nes an invariant polynomial B ∈ I2(G; F), andsine B is real on the maximal ompat subgroup K of G, W (B) is a real lass. Hene, there existsa unique positive real number α suh that W (αB) is a generator of H4(BG; 4π2Z). We refer to αBas the renormalized Killing form, and denote the Cheeger-Chern-Simons lass SαB,W (αB) by ĉ.Reall that every lass in H3(G; F) an be represented by a G-invariant 3-form. The following iswell known (see e.g. Kamber-Tondeur [19, (5.74) p. 116℄).Proposition 2.1. Let P ∈ I2(G; F). The suspension of W (P ) is represented by the invariant
3-form(2.3) σ(P ) = −1

6
P (ω ∧ [ω, ω]) ∈ Ω3(G; F)Gwhere ω is the Maurer-Cartan form on G. �Let E → M be a G-bundle with �at onnetion θ. We an view θ as a map g∗ → Ω1(E; F), soby taking exterior powers, θ indues a map(2.4) θ : Ω3(G)G = ∧3(g∗) → Ω3(E; F).Note that θ(σ(P )) = −1

6P (θ ∧ [θ, θ]). In the following, P denotes the renormalized Killing form.Proposition 2.2 ([6, Proposition 2.8℄). Let E → M be a G-bundle, with �at onnetion θ, over alosed 3-manifold M . The ohomology lass ĉ(E) ∈ H3(M ; F/4π2Z) satis�es(2.5) ĉ(E)([M ]) =

∫

M
s∗
(
θ(σ(P ))

)
∈ F/4π2Z,where s is a setion of E (whih exists sine G is 2-onneted). �Remark 2.3. Sine σ(P ) ∈ H3(G; 4π2Z) is a generator, it follows that a hange of setion hangesthe integral by a multiple of 4π2Z.Example 2.4. For G = SL(n, C), the renormalized Killing form P equals 1

2Tr, where Tr is thetrae form (A,B) 7→ Tr(AB). For a �at onnetion, dθ = −1
2 [θ, θ] = −θ ∧ θ, so (2.5) yields(2.6) ĉ(E)([M ]) =

1

2

∫

M
s∗
(
Tr(θ ∧ dθ +

2

3
θ ∧ θ ∧ θ)

)
∈ C/4π2Zreovering the Chern-Simons integral (1.1). Note that P also equals the (renormalized) seondChern-polynomial c2. It thus follows that ĉ = ĉ2.2.2. Complex groups and volume. Reall that there is a 1-1 orrespondene between �at G-bundles over M and representations π1(M) → G up to onjugation. This orrespondene takes a�at bundle to its holonomy representation. If ρ : π1(M) → G is a representation, we let Eρ denotethe orresponding �at bundle. In the following G denotes a simply onneted, simple, omplex Liegroup, and M a losed, oriented 3-manifold. The following de�nition is motivated by Theorem 2.8below.



10 STAVROS GAROUFALIDIS, DYLAN P. THURSTON, AND CHRISTIAN K. ZICKERTDe�nition 2.5. The omplex volume VolC(ρ) of a representation ρ : π1(M) → G is de�ned by(2.7) ĉ(Eρ)([M ]) = iVolC(ρ) ∈ C/4π2Z.The volume Vol(ρ) of ρ is the real part of VolC(ρ).The bundle Eρ is isomorphi to M̃×ρG, and we thus have a 1-1 orrespondene between setions of
Eρ and ρ-equivariant maps M̃ → G suh that f : M̃ → G orresponds to the setion s(x) = [x̃, f(x̃)].Lemma 2.6. For any ρ-equivariant map f : M̃ → G, we have iVolC(ρ) =

∫
D f∗(σ(P )), where D isa fundamental domain for M in M̃ .Proof. For any invariant form η ∈ Ω3(G)G, the form θ(η) ∈ Ω3(Eρ; F) is indued by the pullbak of

η under the projetion M̃ × G → G. Letting η = σ(P ), the result follows from (2.5). �Let H3 = SL(2, C)/SU(2) be hyperboli 3-spae. We identify the orthonormal frame bundle
F (H3) of H3 with PSL(2, C).Lemma 2.7. For G = SL(2, C), σ(P ) = −h∗ ∧ e∗ ∧ f∗, where h =

(
1 0
0 −1

), e = ( 0 1
0 0 ) and f = ( 0 0

1 0 )are the standard generators of sl(2, C) over C.Proof. As in Example 2.4, P = 1
2Tr. Using the fat that Tr(AB) = Tr(BA), it follows from (2.3)that σ(P ) ∈ Ω3(G)G = ∧3(g∗) is given by(2.8) g × g × g → C, (A,B,C) 7→ −1

2
Tr(A[B,C]).A simple omputation shows that if A = ( a1 a2

a3 −a1
), B =

(
b1 b2
b3 −b1

) and C = ( c1 c2
c3 −c1 )(2.9) − 1

2
Tr(A[B,C]) = − det

( a1 a2 a3

b1 b2 b3
c1 c2 c3

)
= −h∗ ∧ e∗ ∧ f∗(A,B,C).This proves the result. �Theorem 2.8. Let M = H3/Γ be a losed hyperboli 3-manifold, and let ρ : π1(M) → SL(2, C) bea lift of the geometri representation. We have(2.10) ĉ(Eρ)([M ]) = i(Vol(M) + iCS(M)) in C/2π2Z,where CS(M) = 2π2 cs(M), and cs(M) is the (Riemannian) Chern-Simons invariant [7, (6.2)℄.Proof. The fat that the imaginary part equals volume is well known, and follows from the fat (seeDupont [12℄) that the imaginary part of σ(P ) is ohomologous to the pullbak of the hyperbolivolume form. Yoshida [29, Lemma 3.1℄ shows that the real part of the form h∗∧e∗∧f∗ equals 2π2 cs,where cs is the Riemannian Chern-Simons form on F (H3) = PSL(2, C) (pulled bak to SL(2, C).Note that the Riemannian onnetion on F (H3) = PSL(2, C) desends to the Riemannian onnetionon F (M) = PSL(2, C)/Γ. If f : M̃ → SL(2, C) is ρ-equivariant, the omposition(2.11) M̃

f
// SL(2, C) // PSL(2, C) // PSL(2, C)/Γ = F (M)is ρ-invariant, and thus desends to a setion of F (M). The result now follows from Yoshida's resulttogether with Lemma 2.7 and Lemma 2.6. �Remark 2.9. Note that Theorem 2.8 implies that modulo 2π2, the omplex volume of a represen-tation lifting the geometri representation only depends on M and not on the hoie of lift.



THE COMPLEX VOLUME OF SL(n, C)-REPRESENTATIONS OF 3-MANIFOLDS 11Remark 2.10. Sine P is real on K, the imaginary part of σ(P ) is ohomologous to an invariant
3-form on G/K. Sine H3(g, k; R) = R, there is a unique suh form up to saling. We may thusthink of Im(σ(P )) as a volume form.2.3. The universal lasses and group ohomology. The Cheeger-Chern-Simons lasses are alsode�ned for the universal �at bundle EGδ → BGδ. For an expliit onstrution, we refer to Dupont-Kamber [13℄ or Dupont-Hain-Zuker [11℄. In partiular, we have a lass ĉ ∈ H3(BGδ; C/4π2Z). If
ρ : π1(M) → G is a representation, with lassifying map Bρ : M → BGδ, we thus have(2.12) ĉ(Bρ∗([M ])) = iVolC(ρ).It is well known that the homology of BGδ is the homology of the hain omplex C∗ ⊗Z[G] Z,where C∗ is any free Z[G]-resolution of Z. A onvenient hoie of free resolution is the omplex C∗,generated in degree n by tuples (g0, . . . , gn), and with boundary map given by(2.13) ∂(g0, . . . , gn) =

∑
(−1)i(g0, . . . , ĝi, . . . , gn).The homology of C∗⊗Z[G]Z is denoted H∗(G), so H∗(G) = H∗(BGδ). Theorem 1.16 gives a onreteoyle formula for ĉ : H3(SL(n, C)) → C/4π2Z.2.4. Compat manifolds with boundary. In Setion 6.1 below, we onstrut a natural extensionof ĉ : H3(SL(n, C)) → C/4π2Z to a homomorphism(2.14) ĉ : H3(SL(n, C), N) → C/4π2Z,where N is the subgroup of upper triangular matries with 1's on the diagonal.De�nition 2.11. Let ρ : π1(M) → SL(n, C) be a boundary-unipotent representation. The omplexvolume of ρ is de�ned by(2.15) ĉ(Bρ∗([M,∂M ])) = iVolC(ρ),where Bρ : (M,∂M) → (B SL(n, C)δ, BN δ) is a lassifying map for ρ.Remark 2.12. Unlike when M is losed, the lassifying map is not uniquely determined by ρ; itdepends on a hoie of deoration (see Setion 4). The omplex volume, however, is independent ofthis hoie (See Remark 8.5).2.5. Central elements of order 2. For any simple omplex Lie group G, there is a anonialhomomorphism (de�ned up to onjugation)(2.16) φG : SL(2, C) → G.The element sG = φG(−I) is a entral element of G of order dividing 2, and equals (−I)n+1 if

G = SL(n, C) (see e.g. Fok-Gonharov [14, Corollary 2.1℄). Let(2.17) pG = G/〈sG〉.Note that φG desends to a homomorphism PSL(2, C) → pG. The following follows easily from theSerre spetral sequene.Proposition 2.13. Suppose sG has order 2. The anonial map p∗ : H4(BpG; Z) → H4(BG; Z) issurjetive with kernel of order dividing 4. �Corollary 2.14. There is a anonial harateristi lass ĉ : H3(pG) → C/π2Z.Proof. By Proposition 2.13, there exists a anonial lass u ∈ H4(BpG;π2Z) suh that p∗(u) =
W (P ) ∈ H4(BG;π2Z). De�ne ĉ = SP,u. �



12 STAVROS GAROUFALIDIS, DYLAN P. THURSTON, AND CHRISTIAN K. ZICKERTIn Setion 6.3, we onstrut a homomorphism(2.18) ĉ : H3(p SL(n, C), N) → C/π2Z,whih extends ĉ to a harateristi lass of bundles with boundary-unipotent holonomy. The omplexvolume of a representation in p SL(n, C) is de�ned as in De�nition 2.11.3. The extended Bloh groupWe use the onventions of Zikert [30℄; the original referene is Neumann [21℄.De�nition 3.1. The pre-Bloh group P(C) is the free abelian group on C \ {0, 1} modulo the �veterm relation(3.1) x − y +
y

x
− 1 − x−1

1 − y−1
+

1 − x

1 − y
= 0, for x 6= y ∈ C \ {0, 1}.The Bloh group is the kernel of the map ν : P(C) → ∧2(C∗) taking z to z ∧ (1 − z).De�nition 3.2. The extended pre-Bloh group P̂(C) is the free abelian group on the set(3.2) Ĉ =

{
(e, f) ∈ C2

∣∣ exp(e) + exp(f) = 1
}modulo the lifted �ve term relation(3.3) (e0, f0) − (e1, f1) + (e2, f2) − (e3, f3) + (e4, f4) = 0if the equations(3.4) e2 = e1 − e0, e3 = e1 − e0 − f1 + f0, f3 = f2 − f1

e4 = f0 − f1, f4 = f2 − f1 + e0are satis�ed. The extended Bloh group is the kernel of the map ν̂ : P̂(C) → ∧2(C) taking (e, f) to
e ∧ f .An element (e, f) ∈ Ĉ with exp(e) = z is alled a �attening with ross-ratio z. Letting µC denotethe roots of unity in C∗, we have a ommutative diagram.
(3.5)

0

��

0

��

0

��

0 // µC
2 log

//

χ

��

C/4πiZ //

χ

��

C∗/µC
//

��

0

��

0 // B̂(C) //

π

��

P̂(C)
bν

//

π

��

∧2(C) //

��

K2(C) // 0

0 // B(C) //

��

P(C)
ν

//

��

∧2(C∗)

��

// K2(C) //

��

0

0 0 0 0The map π is indued by the map taking a �attening to its ross-ratio, and χ is the map taking
e ∈ C/4πiZ to (e, f + 2πi) − (e, f), where f ∈ C is any element suh that (e, f) ∈ Ĉ.



THE COMPLEX VOLUME OF SL(n, C)-REPRESENTATIONS OF 3-MANIFOLDS 133.1. The regulator. By �xing a branh of logarithm, we may write a �attening with ross-ratio
z as [z; p, q] =

(
log(z) + pπi, log(1 − z) + qπi

), where p, q ∈ Z are even integers. There is a wellde�ned regulator map(3.6) R : P̂(C) → C/4π2Z,

[z; p, q] 7→ Li2(z) +
1

2
(log(z) + pπi)(log(1 − z) − qπi) − π2/6.3.2. The PSL(2, C)-variant of the extended Bloh group. There is another variant of theextended Bloh group using �attenings [z; p, q], where p and q are allowed to be odd. This group isde�ned as above using the set(3.7) Ĉodd =

{
(e, f) ∈ C2

∣∣ ± exp(e) ± exp(f) = 1
}

,and �ts in a diagram similar to (3.5). We use a subsript PSL to denote the variant allowing odd�attenings. We have an exat sequene(3.8) 0 // Z/4Z // B̂(C) // B̂(C)PSL
// 0.For odd �attenings, the regulator (3.6) is well de�ned modulo π2Z.Theorem 3.3 (Neumann [21℄, Goette-Zikert [17℄). There are natural isomorphisms(3.9) H3(PSL(2, C)) ∼= B̂(C)PSL, H3(SL(2, C)) ∼= B̂(C)suh that the Cheeger-Chern-Simons lasses agree with the regulators. �The following result is needed in Setion 7. The �rst part is proved in Zikert [30, Lemma 3.16℄,and the seond has a similar proof, whih we leave to the reader.Lemma 3.4. For (e, f) ∈ Ĉ and p, q ∈ Z, we have

(e + 2πip, f + 2πiq) − (e, f) = χ(qe − pf + 2pqπi) ∈ P̂(C),(3.10)
(e + πip, f + πiq) − (e, f) = χ(qe − pf + pqπi) ∈ P̂(C)PSL.(3.11) �3.3. Arbitrary �elds. In Zikert [30℄, extended Bloh groups B̂E(F ) and B̂E(F )PSL are de�nedfor an arbitrary �eld F and a primitive extension E of F ∗ by Z. The de�nitions are as above usingthe sets(3.12) ÊF =

{
(e, f) ∈ E2

∣∣ π(e) + π(f) = 1
}

, (ÊF )odd =
{
(e, f) ∈ E2

∣∣ ±π(e) ± π(f) = 1
}

.If F is a number �eld, the extended Bloh groups are up to anonial isomorphism independent ofthe hoie of extension, so we may omit the subsript E.Theorem 3.5 (Zikert [30, Theorem 1.1℄). Let F be a number �eld. There is a natural isomorphism(3.13) K ind
3 (F ) ∼= B̂(F )respeting Galois ations. �Corollary 3.6 (Zikert [30, Corollary 7.14℄). For eah embedding τ : F → C, the indued map

τ : B̂(F ) → B̂(C) is injetive. �Corollary 3.7 (Galois desent; Zikert [30, Corollary 7.15℄). Let F2 : F1 be an extension of number�elds. An element in B̂(F2) is in B̂(F1) if and only if it is invariant under all automorphisms of F2over F1. �



14 STAVROS GAROUFALIDIS, DYLAN P. THURSTON, AND CHRISTIAN K. ZICKERT4. Deorations of representationsIn this setion we review the notion of deorated representations introdued in Zikert [31℄.Throughout the setion, G denotes an arbitrary group, not neessarily a Lie group. Let H besubgroup of G. An ordered simplex is a simplex with a �xed vertex ordering.De�nition 4.1. A losed 3-yle is a ell omplex K obtained from a �nite olletion of ordered
3-simplies ∆i by gluing together pairs of faes using order preserving simpliial attahing maps.We assume that all faes have been glued, and that the spae M(K), obtained by trunating the
∆i's before gluing, is an oriented 3-manifold with boundary. Let ǫi be a sign indiating whether ornot the orientation of ∆i given by the vertex ordering agrees with the orientation of M(K).Note that up to removing disjoint balls (whih does not e�et the fundamental group), themanifold M(K) only depends on the underlying topologial spae of K, and not on the hoie of
3-yle struture. Also note that for any ompat, oriented 3-manifold M with (possibly empty)boundary, the spae M̂ obtained from M by ollapsing eah boundary omponent to a point has astruture of a losed 3-yle K suh that M = M(K).Let K be a losed 3-yle, and let M = M(K). Let L denote the spae obtained from theuniversal over M̃ of M by ollapsing eah boundary omponent to a point. The 3-yle strutureof K indues a triangulation of L, and also a triangulation of M by trunated simplies. Theovering map extends to a map L → K, and the ation of π1(M) on M̃ by dek transformationsextends to an ation on L, whih is determined by �xing, one and for all, a base point in Mtogether with one of its lifts. Note that the stabilizer of eah zero ell is a peripheral subgroup of
π1(M), i.e. a subgroup indued by inlusion of a boundary omponent.De�nition 4.2. Let H be a subgroup of G. A representation ρ : π1(M) → G is a (G,H)-representation if the image of eah peripheral subgroup lies in a onjugate of H.De�nition 4.3. Let ρ be a (G,H)-representation. A deoration (on K) of ρ is a ρ-equivariant map(4.1) D : L(0) → G/H,where L(0) is the zero skeleton of L.Note that if D(e) = gH, we have g−1ρ(Stab(e))g ⊂ H, where Stab(e) is the stabilizer of e. Sine
D is ρ-equivariant, it follows that D determines subgroup of H for eah boundary omponent whihis well de�ned up to onjugation in H.De�nition 4.4. Two deorations of ρ are equivalent for eah boundary omponent of M the or-responding subgroups of H are onjugate (in H).Remark 4.5. If D is a deoration of ρ, then gD is a deoration of gρg−1. Sine we are onlyinterested in representations up to onjugation, we onsider suh two deorations to be equal.Proposition 4.6. Let E be a �at G-bundle over M whose holonomy representation is a (G,H)-representation ρ. There is a 1-1 orrespondene between deorations of ρ up to equivalene, andredutions of E∂M to an H-bundle over ∂M .Proof. For eah boundary omponent Si of M , hoose a base point in Si and a path to the base pointof M . This determines a lift ei in L of the vertex of K orresponding to Si, and an identi�ationof π1(Si) with Stab(ei) ⊂ π1(M). If F is a redution of E∂M , the holonomy representations
ρi : π1(Si) → H of FSi

are onjugate to ρ, so there exist gi ∈ G suh that g−1
i ρgi = ρi. Assigningthe oset giH to ei yields a deoration, whih up to equivalene is independent of the hoie of gi's.



THE COMPLEX VOLUME OF SL(n, C)-REPRESENTATIONS OF 3-MANIFOLDS 15On the other hand, a deoration assigns osets giH to ei suh that g−1
i ρ(Stab(ei))gi ⊂ H. Hene,

gi de�nes an isomorphism of ESi
with an H-bundle, whih up to isomorphism only depends on theequivalene lass of the deoration. �4.1. The diagonal ation. Let NG(H) denote the normalizer of H in G, and h the number ofboundary omponents of M . There is an ation of (NG(H)/H)h on the set of equivalene lasses ofdeorations given by right multipliation. More preisely, (x1, . . . , xh) ats by taking a deoration

D to the deoration D′ de�ned as follows: If D takes a lift v of the ith boundary omponent to
gH, then D′ takes v to gxiH. If H = N and G = SL(n, C), NG(H)/H is the group of diagonalmatries. We thus refer to the ation as the diagonal ation.Proposition 4.7. If a boundary-unipotent representation ρ is peripherally well behaved, the diag-onal ation on the set of equivalene lasses of deorations of ρ is transitive.Proof. It is enough to prove this in the ase where there is only one boundary omponent. In thisase, the image of the peripheral subgroup is either trivial or ontains an element with a maximalJordan blok. In the �rst ase, all deorations are equivalent, and in the seond ase, the resultfollows from the fat that if a subgroup A of N ontains an element with a maximal Jordan form,the normalizer of A in SL(n, C) equals the normalizer of N . �4.2. The fundamental lass of a deorated representation. A �at G-bundle over M deter-mines a lassifying map M → BGδ, where the δ indiates that G is regarded as a disrete group. Itthus follows from Proposition 4.6 that a deorated representation ρ : π1(M) → G determines a map(4.2) Bρ : (M,∂M) → (BGδ, BHδ).In partiular, ρ gives rise to a fundamental lass(4.3) [ρ] = Bρ∗([M,∂M ]) ∈ H3(G,H),where, by de�nition, H∗(G,H) = H∗(BGδ , BHδ). Note that the fundamental lass is independentof the partiular 3-yle struture on K.Reall that M is triangulated by trunated simplies. By restrition, a (G,H) oyle on Mdetermines a (G,H)-oyle on eah trunated simplex ∆i. Let B∗(G,H) denote the hain omplexgenerated in degree n by (G,H)-oyles on a trunated n-simplex. As proved in Zikert [31,Setion 3℄, B∗(G,H) omputes the homology groups H3(G,H). Note that a (G,H)-oyle on Mdetermines (up to onjugation) a deorated (G,H)-representation.Proposition 4.8 (Zikert [31, Proposition 5.10℄). Let τ be a (G,H)-oyle on M representing adeorated (G,H)-representation ρ. The yle(4.4) ∑

ǫiτ∆i
∈ B3(G,H),represents the fundamental lass of ρ. �5. Generi deorations and Ptolemy oordinatesIn all of the following, G = SL(n, C), and N is the subgroup of upper triangular matries with

1's on the diagonal. A (G,N)-representation ρ : π1(M) → G is alled boundary-unipotent. For amatrix g ∈ G and a positive integer i ≤ n ∈ N, let {g}i be the ordered set onsisting of the �rst iolumn vetors of g.



16 STAVROS GAROUFALIDIS, DYLAN P. THURSTON, AND CHRISTIAN K. ZICKERTDe�nition 5.1. A tuple (g0N, . . . , gkN) of N -osets is generi if for eah tuple t = (t0, . . . , tk) ofnon-negative integers with sum n, we have(5.1) ct := det

(
k⋃

i=0

{gi}ti

)
6= 0,where the determinant is viewed as a funtion on ordered sets of n vetors in Cn. The numbers ctare alled Ptolemy oordinates.De�nition 5.2. A deoration of a boundary-unipotent representation is generi if for eah simplex

∆ of L, the tuple of osets assigned to the verties of ∆ is generi.For a set X, let C∗(X) be the ayli hain omplex generated in degree k by tuples (x0, . . . , xk).If X is a G-set, the diagonal G-ation makes C∗(X) into a omplex of Z[G]-modules. Let Cgen
∗ (G/N)be the subomplex of C∗(G/N) generated by generi tuples.Proposition 5.3. The omplex Cgen

∗ (G/N)⊗Z[G]Z omputes the relative homology. If ρ : π1(M) →
G is a generially deorated representation, the fundamental lass of ρ is represented by(5.2) ∑

ǫi(g
i
0N, gi

1N, gi
2N, gi

3N) ∈ Cgen
3 (G/N),where (gi

0N, . . . , gi
3N) are the osets assigned to lifts ∆̃i of the ∆i's. �Proposition 5.3 is proved in Setion 9. The idea is that a generi tuple anonially determines a

(G,N)-oyle on a trunated simplex. Hene, Cgen
∗ (G/N)⊗Z[G] Z is isomorphi to a subomplex of

B3(G,N), and the representation (5.2) of the fundamental lass is then an immediate onsequeneof (4.4).Proposition 5.4. After a single baryentri subdivision of K, every deoration of a boundary-unipotent representation ρ : π1(M) → G is equivalent to a generi one.Proof. After a baryentri subdivision of K, every simplex ∆ of K has distint verties and at leastthree verties of ∆ are interior (link is a sphere). Fix lifts ei ∈ L of eah interior vertex of K.Sine the stabilizer of a lift of an interior vertex is trivial, assigning any oset giH to ei yields anequivalent deoration. Sine the gi's an be hosen arbitrarily, the result follows. �5.1. The geometry of the Ptolemy oordinates. We anonially identify eah ordered k-simplex with a standard simplex(5.3) ∆k
n =

{
(x0, . . . , xk) ∈ Rk+1

∣∣ 0 ≤ xi ≤ n,
k∑

i=0

xi = n
}
.Reall that a tuple (g0N, . . . , gkN) has a Ptolemy oordinate for eah tuple of k +1 non-negativeintegers summing to n. In other words, there is a Ptolemy oordinate for eah integral point of ∆k

n.We denote the set of integral points in ∆k
n by ∆k

n(Z).De�nition 5.5. A Ptolemy assignment on ∆k
n is an assignment of a non-zero omplex number

ct to eah integral point t of ∆k
n suh that the ct's are the Ptolemy oordinates of some tuple

(g0N, . . . , gkN) ∈ Cgen
k (G/N). A Ptolemy assignment on K is a Ptolemy assignment on eahsimplex ∆i of K suh that the Ptolemy oordinates agree on identi�ed faes.Note that a generially deorated boundary-unipotent representation determines a Ptolemy as-signment on K. In Setion 9, we show that every Ptolemy assignment is indued by a uniquedeorated representation.



THE COMPLEX VOLUME OF SL(n, C)-REPRESENTATIONS OF 3-MANIFOLDS 17Lemma 5.6. The number of elements in ∆k
l (Z) is (l+k

k

).Proof. The map (a0, . . . , ak) 7→ {a0 +1, a0 +a1 +2, . . . , a0 + · · ·+ak−1 +k} gives a bijetion between
T k(l) and subsets of {1, . . . , l + k} with k elements. �Let ei, 0 ≤ i ≤ k, be the ith standard basis vetor of Zk+1. For eah α ∈ ∆k

n−2(Z), the points
α + 2ei in ∆k

n span a simplex ∆k(α), whose integral points are the points αij := α + ei + ej , seeFigure 3. We refer to ∆k(α) as a subsimplex of ∆k
n. By Lemma 5.6, ∆3

n has (n+3
3

) integral pointsand (n+1
3

) subsimplies.
0

1

2

3

0

1

2

3

0

1

2

3

Figure 3. The integral points on ∆3

n for n = 2, 3 and 4. The indiated subsimpliesorrespond to α = (0, 1, 0, 0) and α = (0, 1, 1, 0).Proposition 5.7 (Fok-Gonharov [14, Lemma 10.3℄). The Ptolemy oordinates of a generi tuple
(g0N, g1N, g2N, g3N) satisfy the Ptolemy relations(5.4) cα03

cα12
+ cα01

cα23
= cα02

cα13
, α ∈ ∆3

n−2(Z).Proof. Let α = (a0, a1, a2, a3) ∈ ∆3
n−2(Z). By performing row operations, we may assume that the�rst n − 2 rows of the n × (n − 2) matrix(5.5) (
{g0}a0

, {g1}a1
, {g2}a2

, {g3}a3

)are the standard basis vetors. Letting xi and yi denote the last two entries of (gi)ai+1, the Ptolemyrelation for α is then equivalent to the (Plüker) relation(5.6) det

(
x0 x3

y0 y3

)
det

(
x1 x2

y1 y2

)
+ det

(
x0 x1

y0 y1

)
det

(
x2 x3

y2 y3

)
= det

(
x0 x2

y0 y2

)
det

(
x1 x3

y1 y3

)
,whih is easily veri�ed. �Note that the Ptolemy oordinate assigned to the ith vertex of ∆k

n is det({gi}n) = det(gi) = 1.We shall thus often ignore the vertex points. Let ∆̇k
n(Z) denote the non-vertex integral points of

∆k
n. The following is proved in Setion 9.Proposition 5.8. For every assignment c : ∆̇3

n(Z) → C∗, t 7→ ct satisfying the Ptolemy rela-tions (5.4), there is a unique Ptolemy assignment on ∆3
n whose Ptolemy oordinates are ct. �Corollary 5.9. The set of Ptolemy assignments on K is an algebrai set Pn(K) alled the Ptolemyvariety. Its ideal is generated by the Ptolemy relations (5.4) (together with an extra equationmaking sure that all Ptolemy oordinates are non-zero). �Remark 5.10. It thus follows that De�nition 5.5 agrees with De�nition 1.1 when k = 3. When

k > 3 and n > 2 there are further relations among the Ptolemy oordinates. We shall not needthese here.



18 STAVROS GAROUFALIDIS, DYLAN P. THURSTON, AND CHRISTIAN K. ZICKERT5.2. The diagonal ation and the redued Ptolemy variety. If d0,. . . ,d3 are diagonal matrieswith di = diag(di0, . . . di,n−1), it follows from (5.1) that if the Ptolemy oordinates of a tuple
(g0N, . . . , g3N) are ct, the Ptolemy oordinates c′t of the tuple (g0d0N, . . . , g3d3N) are given by(5.7) c′t = ct

t0∏

k=0

d0k

t1∏

k=0

d1k

t2∏

k=0

d2k

t3∏

k=0

d3k.We therefore have an ation of Hh on Pn(K), whih agrees with the ation in Setion 4.1. Thequotient Pn(K)red is alled the redued Ptolemy variety.5.3. p SL(n, C)-Ptolemy oordinates. When n is even, a p SL(n, C)-Ptolemy assignment on ∆k
nmay be de�ned as in De�nition 5.5. Note, however, that the Ptolemy oordinates are now onlyde�ned up to a sign. Sine we are mostly interested in 3-yles, the following de�nition is moreuseful.De�nition 5.11. Let ∆ = ∆3

n, and let σ ∈ Z2(∆; Z/2Z) be a ellular 2-oyle. A p SL(n, C)-Ptolemy assignment on ∆ with obstrution oyle σ is an assignment c : ∆̇3
n(Z) → C∗ satisfyingthe p SL(n, C)-Ptolemy relations(5.8) σ2σ3cα03

cα12
+ σ0σ3cα01

cα23
= cα02

cα13
.Here σi ∈ Z/2Z = 〈±1〉 is the value of σ on the fae opposite the ith vertex of ∆. A p SL(n, C)-Ptolemy assignment on K with obstrution oyle σ ∈ Z2(K; Z/2Z) is a p SL(n, C)-Ptolemy-assignment ci on eah simplex ∆i of K suh that the Ptolemy oordinates agree on identi�ed faes,and suh that the obstrution oyle of ci is σ∆i

.Note that for eah σ ∈ Z2(K; Z/2Z), the set of p SL(n, C)-Ptolemy-assignments on K form avariety P σ
n (K). We show in Setion 9 that this variety only depends on the ohomology lassof σ in H2(K; Z/2Z) = H2(M,∂M ; Z/2Z) and that the Ptolemy variety parametrizes generiallydeorated boundary-unipotent p SL(n, C)-representations whose obstrution lass to lifting to aboundary-unipotent SL(n, C)-representation is σ. The diagonal ation (5.7) is de�ned on P σ

n (K) aswell, and the quotient is denoted by P σ
n (K)red. Note that when σ is the trivial oyle taking all

2-ells to 1, P σ(K) = P (K).5.4. Cross-ratios and �attenings. For x ∈ C\{0}, let x̃ = log(x), where log is some �xed (settheoreti) setion of the exponential map.Given a Ptolemy assignment c on ∆3
n=2, we endow ∆3

n=2 with the shape of an ideal simplex withross-ratio z = c03c12
c02c13

and a �attening(5.9) λ(c) = (c̃03 + c̃12 − c̃02 − c̃13, c̃01 + c̃23 − c̃02 − c̃13) ∈ P̂(C).By Propositions 5.7 and 5.8, a Ptolemy assignment on ∆3
n indues a Ptolemy assignment cα oneah subsimplex ∆3(α). We thus have a map(5.10) λ : Pn(K) → P̂(C), c 7→

∑

i

ǫi

∑

α∈∆3
n−2

(Z)

λ(ci
α).Similarly, we have a map P σ

n (K) → P̂(C)PSL de�ned by the same formula. We next prove thatthese maps have image in the respetive extended Bloh groups.Remark 5.12. The shapes assoiated to a Ptolemy assignment satisfy equations resembling Thurs-ton's gluing equations. This is studied in Garoufalidis-Goerner-Zikert [15℄.



THE COMPLEX VOLUME OF SL(n, C)-REPRESENTATIONS OF 3-MANIFOLDS 196. A hain omplex of Ptolemy assignmentsLet Ptnk be the free abelian group on Ptolemy assignments on ∆k
n. The usual boundary mapindues a boundary map Ptnk → Ptnk−1 and the natural map Cgen

∗ (G/N) → Ptn∗ taking a tuple
(g0N, . . . , gkN) to its Ptolemy assignment is a hain map. The result below is proved in Setion 9.Proposition 6.1. A generi tuple is determined up to the diagonal G-ation by its Ptolemy oor-dinates. �Corollary 6.2. The natural map indues an isomorphism(6.1) Cgen

∗ (G/N) ⊗Z[G] Z ∼= Ptn∗ .In partiular, H∗(G,N) = H∗(Ptn∗ ). �Lemma 6.3. Let c ∈ Ptnk be a Ptolemy assignment, and let α ∈ ∆k
n−2(Z). The Ptolemy oordinates

cαij
, i 6= j are the Ptolemy oordinates of a unique Ptolemy assignment cα on the subsimplex ∆k(α).Proof. For 1 ≤ k ≤ 3, this follows from Proposition 5.8. For k > 3, the result follows by indution,using the fat that 5 Ptolemy oordinates on ∆3

2 determines the last. �A Ptolemy assignment c on ∆k
n thus indues a Ptolemy assignment cα on eah subsimplex. Wethus have maps(6.2) Jn
k : Ptnk → Pt2k, c 7→

∑

α∈∆k
n−2(Z)

cα.For a Ptolemy assignment c ∈ Ptnk let ci ∈ Ptnk−1 be the indued Ptolemy assignment on the ithfae of ∆k
n, i.e. we have ∂(c) =

∑k
i=0(−1)ici. Note that(6.3) (ci)(a0,...,ak−1) = c(a0,...,ai−1,0,ai,...ak−1)i

∈ Pt2k−1.For β ∈ ∆k
n−3(Z), let cβi = c(β+ei)i

∈ Pt2k−1, and de�ne ∂β(c) ∈ Pt2k−1 by(6.4) ∂β(c) =
k∑

i=0

(−1)icβi ∈ Pt2k−1.The geometry is explained in Figure 4.
0

1

2 0

1

2

3

Figure 4. The dotted lines in the left �gure indiate cβ0 , cβ1 and cβ2 for k = 2. Thetriangle in the right �gure indiates cβ0 for k = 3. Here, n = 3 and β = 0.



20 STAVROS GAROUFALIDIS, DYLAN P. THURSTON, AND CHRISTIAN K. ZICKERTProposition 6.4. Let c ∈ Ptnk . We have(6.5) ∂(Jn
k (c)) − Jn

k−1(∂(c)) =
∑

β∈∆k
n−3(Z)

∂β(c) ∈ Pt2k−1.Proof. By (6.3), we have
(6.6)

∂(Jn
k (c)) − Jn

k−1(∂(c)) =

k∑

i=0

(−1)i
∑

α∈∆k
n−2(Z)

cαi
−

k∑

i=0

(−1)i
∑

α∈∆k
n−2(Z)

ai=0

cαi

=
k∑

i=0

(−1)i
∑

α∈∆k
n−2(Z)

ai>0

cαi

=
∑

β∈∆k
n−3(Z)

k∑

i=0

(−1)ic(β+ei)i

=
∑

β∈∆k
n−3

(Z)

∂β(c)as desired. �6.1. The map to the extended Bloh group. We wish to de�ne a map(6.7) λ : H3(SL(n, C), N) → B̂(C).Letting x̃ denote a logarithm of x, we onsider the maps
λ : Pt23 → Z[Ĉ], c 7→ (c̃03 + c̃12 − c̃02 − c̃13, c̃01 + c̃23 − c̃02 − c̃13)(6.8)

µ : Pt22 → ∧2(C), c 7→ −c̃01 ∧ c̃02 + c̃01 ∧ c̃12 − c̃02 ∧ c̃12 + c̃02 ∧ c̃02.(6.9)Remark 6.5. The term c̃02 ∧ c̃02 vanishes in ∧2(C), but over general �elds this term is needed.General �elds are disussed in Setion 13.Lemma 6.6 (Zikert [30, Lemma 6.9℄). Let Z[F̂T] be the subgroup of Z[Ĉ] generated by the lifted�ve term relations. There is a ommutative diagram(6.10) Pt24
∂

//

λ◦∂
��

Pt23
∂

//

λ
��

Pt22

µ

��

Z[F̂T]
�

�

// Z[Ĉ]
bν

// ∧2(C).

�It follows that λ indues a map λ : H3(SL(2, C), N) → B̂(C). This map equals the map de�nedin Zikert [31, Setion 7℄. The fat that λ is independent of the hoie of logarithm is proved inZikert [31, Remark 6.11℄, and also follows from Proposition 7.7 below.Lemma 6.7. For eah c ∈ Ptn4 and eah β ∈ ∆4
n−3(Z), we have(6.11) λ(∂β(c)) = 0 ∈ P̂(C).



THE COMPLEX VOLUME OF SL(n, C)-REPRESENTATIONS OF 3-MANIFOLDS 21Proof. Let (ei, fi) = λ(cβi) be the �attening assoiated to cβi . We prove that the �attenings satisfythe �ve term relation by proving that the equations (3.4) are satis�ed. We have(6.12) e0 = c̃β+(1,1,0,0,1) + c̃β+(1,0,1,1,0) − c̃β+(1,1,0,1,0) − c̃β+(1,0,1,0,1)

e1 = c̃β+(1,1,0,0,1) + c̃β+(0,1,1,1,0) − c̃β+(1,1,0,1,0) − c̃β+(0,1,1,0,1)

e2 = c̃β+(1,0,1,0,1) + c̃β+(0,1,1,1,0) − c̃β+(1,0,1,1,0) − c̃β+(0,1,1,0,1)and it follows that e2 = e1 − e0 as desired. The other 4 equations are proved similarly. �Lemma 6.8. For eah c ∈ Ptn3 and eah β ∈ ∆3
n−3(Z), µ(∂β(c)) = 0 ∈ ∧2(C).Proof. We have(6.13) µ(cβ0) = −c̃β+(1,1,1,0) ∧ c̃β+(1,1,0,1) + c̃β+(1,1,1,0) ∧ c̃β+(1,0,1,1)

− c̃β+(1,1,0,1) ∧ c̃β+(1,0,1,1) + c̃β+(1,1,0,1) ∧ c̃β+(1,1,0,1).Using this together with the similar formulas for µ(cβi), we obtain that
∑

(−1)iµ(cβi) = 0 ∈ ∧2(C),proving the result. �Corollary 6.9. The map λ ◦ Jn
3 indues a map(6.14) λ : H3(SL(n, C), N) → B̂(C).Proof. Using Proposition 6.4, this follows from Lemma 6.7 and Lemma 6.8. �Remark 6.10. For n = 3, this map agrees with the map onsidered in Zikert [30℄.De�nition 6.11. The extended Bloh group element of a deorated (G,N)-representation ρ isde�ned by λ([ρ]), where [ρ] ∈ H3(SL(n, C), N) is the fundamental lass of ρ.Note that if the deoration of ρ is generi, and c is the orresponding Ptolemy assignment, theextended Bloh group element is given by λ(c), where λ : Pn(K) → P̂(C) is given by (5.10).Proposition 6.12. The map λ : Pn(K) → P̂(C) has image in B̂(C).Proof. If c ∈ Pn(K) is a Ptolemy assignment on K, we have a yle α =

∑
i ǫic

i ∈ Ptn3 , and oneeasily heks that λ(c) as de�ned in (5.10) equals λ([α]). This proves the result. �6.2. Stabilization. We now prove that the map λ : H3(SL(n, C), N) → B̂(C) respets stabilization.We regard SL(n−1, C) as a subgroup of SL(n, C) via the standard inlusion adding a 1 as the upperleft entry.Let π : M(n, C) → M(n−1, C) be the map sending a matrix to the submatrix obtained by remov-ing the �rst row and last olumn. The subgroup Dk(SL(n, C)/N) of Cgen
k (SL(n, C)/N) generatedby tuples (g0N, . . . , gkN) suh that the upper left entry of eah gi is 1 and suh that(6.15) (π(g0)N, . . . , π(gk)N) ∈ Cgen

k (SL(n − 1, C)/N)form an SL(n − 1, C)-omplex. Consider the SL(n − 1, C)-invariant hain maps
π : D∗(SL(n, C)/N) → Ptn−1

∗(6.16)
i : D∗(SL(n, C)/N) → Ptn∗ ,(6.17)where the �rst map is indued by π and the seond is indued by the inlusion D∗(SL(n, C)/N) →

Cgen
∗ (SL(n, C)/N . Let Dk = Dk(SL(n, C)/N) ⊗Z[SL(n−1,C)] Z.



22 STAVROS GAROUFALIDIS, DYLAN P. THURSTON, AND CHRISTIAN K. ZICKERTLemma 6.13. The maps λ ◦ π and λ ◦ i from D3 to P̂(C) agree on yles.Proof. Let c ∈ Dk be indued by a tuple (g0N, . . . , gkN) ∈ Dk(SL(n, C)/N), and let cI be theolletion of Ptolemy oordinates assoiated to (N, g0N, . . . , gkN). Sine some Ptolemy oordinatesmay be zero, cI is not neessarily a Ptolemy assignment. Note, however, that cI
α is a Ptolemyassignment for eah (a0, . . . , ak+1) ∈ ∆k+1

n−2(Z) with a0 = 0. Note also that cI
α ∈ Pt2k+1 only dependson c. Hene, there is a map(6.18) P : Dk → Pt2k+1, c 7→

∑

α∈∆k+1
n−2(Z)

a0=0

cI
α.We wish to prove the following:(6.19) ∂P (c) + P∂(c) = Jn

k (i(c)) − Jn−1
k (π(c)) +

∑

β∈∆k+1
n−3(Z)

b0=0

∂β(cI) ∈ Pt2k+1.Given this, the result follows immediately from Lemma 6.7.One easily veri�es that
cI
(1,b0,...,bk) = π(c)(b0,...,bk) ∈ Ptn−1

k , (b0, . . . , bk) ∈ ∆k
n−3(Z).(6.20)

cI
(0,a0,...,ak) = i(c)(a0 ,...,ak), (a0, . . . , ak) ∈ ∆k

n−2(Z).(6.21)Using this, one has
(6.22)

∂P (c) + P∂(c) =
∑

α∈∆k
n−2(Z)

i(c)α +
k+1∑

i=1

(−1)i
∑

α∈∆k+1
n−2(Z)

a0=0

cI
αi

+
k∑

i=0

(−1)i
∑

α∈∆k+1
n−2(Z)

a0=0,ai+1=0

cI
αi+1

=
∑

α∈∆k
n−2(Z)

i(c)α +
k+1∑

i=1

(−1)i
∑

α∈∆k+1
n−2(Z)

a0=0,ai>0

cI
αi

=
∑

α∈∆k
n−2

(Z)

i(c)α +
∑

β∈∆k+1
n−3(Z)

b0=0

k+1∑

i=1

(−1)icI
βi

=
∑

α∈∆k
n−2(Z)

i(c)α −
∑

β∈∆k+1
n−3(Z)

b0=0

cI
β0 +

∑

β∈∆k+1
n−3(Z)

b0=0

∂β(cI)

= Jn
k (i(c)) − Jn−1

k (π(c)) +
∑

β∈∆k+1
n−3(Z)

b0=0

∂β(cI).This proves (6.19), hene the result. �Proposition 6.14. The map λ : H3(SL(n, C), N) → B̂(C) respets stabilization.Proof. First note that π indues an isomorphism D0(SL(n, C)/N) ∼= C0(SL(n − 1)/N). Using astandard one argument, one easily heks that D∗(SL(n, C)/N) is a free SL(n− 1, C)-resolution of
Ker(D0(SL(n, C)/N) → Z). Hene, D∗ omputes H∗(SL(n − 1, C), N), and the result follows fromLemma 6.13. �



THE COMPLEX VOLUME OF SL(n, C)-REPRESENTATIONS OF 3-MANIFOLDS 236.3. p SL(n, C)-Ptolemy assignments. When n is even, de�ne pPtn∗ to be the omplex of Ptolemyoordinates of generi tuples in p SL(n, C)/N . The Ptolemy oordinates are de�ned as in (5.1), andtake values in C∗
/
〈±1〉. As in (6.1), we have an isomorphism Cgen

∗ (p SL(n, C)/N)p SL(n,C)
∼= pPtn∗ .For c ∈ C∗/〈±1〉 let c̃ ∈ C be the image of some �xed set theoreti setion of C

exp−−→ C∗ → C∗/〈±1〉,e.g. 1
2 log(x2) (the partiular hoie is inessential). The map(6.23) λ : pPt23 → Z[Ĉodd], c 7→ (c̃03 + c̃12 − c̃02 − c̃13, c̃01 + c̃23 − c̃02 − c̃13)indues a map H3(PSL(2, C), N) → B̂(C)PSL, whih agrees with the map onstruted in Zikert [31,Setion 3℄. By preomposing λ with the map pJn

3 : pPtn3 → pPt23 de�ned as in (6.2) we obtain amap(6.24) λ : H3(p SL(n, C), N) → B̂(C)PSL,whih ommutes with stabilization. This proves that a deorated boundary-unipotent representationin p SL(n, C) determines an element in B̂(C)PSL. The proofs of the above assertions are word byword idential to their SL(n, C)-analogs.7. Invariane under the diagonal ationWe now show that the extended Bloh group element of a deorated representation is invariantunder the diagonal ation. We �rst prove that we an hoose logarithms of the Ptolemy oordinatesindependently, without a�eting the extended Bloh group element.De�nition 7.1. Let c : ∆̇k
n(Z) → C∗ be a Ptolemy assignment. A lift of c is an assignment

c̃ : ∆̇k
n(Z) → C suh that exp(c̃) = c.For any lift c̃ of a Ptolemy assignment c on ∆3

2, we have a �attening(7.1) λ(c̃) = (c̃03 + c̃12 − c̃02 − c̃13, c̃01 + c̃23 − c̃02 − c̃13) ∈ Ĉ.De�nition 7.2. The log-parameters of a �attening (e, f) ∈ Ĉ are de�ned by(7.2) wij =





e if ij = 01 or ij = 23

−f if ij = 12 or ij = 03

−e + f if ij = 02 or ij = 13.Lemma 7.3. Let c̃ : ∆̇3
2(Z) → C be a lifted Ptolemy assignment, and let wij be the log-parametersof λ(c̃). Fix i < j ∈ {0, . . . , 3} and let c̃′ be the lifted Ptolemy assignment obtained from c̃ byadding 2π

√
−1 to c̃ij . Then(7.3) λ(c̃′) − λ(c̃) = χ(wij + 2π

√
−1δij),where δij is 1 if ij = 02 or 13 and 0 otherwise.Proof. Denote the �attening λ(c̃) by (e, f). If ij = 03 or 12, it follows from (7.1) that λ(c̃′) = (e +

2π
√
−1, f). Similarly, λ(c̃′) = (e, f +2π

√
−1) if ij = 01 or 23, and λ(c̃′) = (e−2π

√
−1, f −2π

√
−1)if ij = 02 or 13. By Lemma 3.4,(7.4) (e + 2π

√
−1, f) − (e, f) =χ(−f)

(e, f + 2π
√
−1) − (e, f) =χ(e)

(e − 2π
√
−1, f − 2π

√
−1) =χ(−e + f + 2π

√
−1).This proves the result. �



24 STAVROS GAROUFALIDIS, DYLAN P. THURSTON, AND CHRISTIAN K. ZICKERTLet c̃ be a lift of a Ptolemy assignment c. For eah α ∈ ∆3
n−2(Z), c̃ indues a lift c̃α of cα.Consider the element(7.5) τ =

∑

α∈∆k
n−2(Z)

λ(c̃α) ∈ P̂(C).Fix a point t0 ∈ ∆̇k
n(Z). We wish to understand the e�et on τ of adding 2π

√
−1 to c̃t0 . Thishanges τ into an element τ ′ ∈ P̂(C). Let wij(α) denote the log-parameters of λ(c̃α). Note that t0either lies on an edge, on a fae, or in the interior of ∆3

n.Lemma 7.4. Suppose t0 is on the edge ij of ∆3
n. Then(7.6) τ ′ − τ = χ(wij(α) + 2π

√
−1δij),where α = t − ei − ej , (i.e. α is suh that t0 is an edge point of ∆3(α)).Proof. This follows immediately from Lemma 7.3. �Lemma 7.5. Suppose t0 is on a fae opposite vertex i. Then τ ′ − τ = (−1)iχ(κ + 2π

√
−1), where

κ is given by(7.7) κ = c̃ηi(0,−1,1) − c̃ηi(0,1,−1) −
(
c̃ηi(−1,0,1) − c̃ηi(1,0,−1)

)
+ c̃ηi(−1,1,0) − c̃ηi(1,−1,0),where ηi inserts a zero as the ith vertex.Proof. For simpliity assume i = 0. The other ases are proved similarly. There are exatly three

α's for whih t0 is an edge point of ∆3(α). These are(7.8) α0 = t0 − (0, 0, 1, 1), α1 = t0 − (0, 1, 0, 1), α2 = t0 − (0, 1, 1, 0).Note that c̃t = (c̃α0
)23 = (c̃α1

)13 = (c̃α2
)12. Sine adding 2π

√
−1 to c̃t0 leaves c̃α unhanged unless

α ∈ {α0, α1, α2}, Lemma 7.3 implies that(7.9) τ ′ − τ = χ(w23(α0)) + χ(w13(α1) + 2π
√
−1) + χ(w12(α2)).One easily heks that(7.10) w23(α0) = c̃(1,0,−1,0) + c̃(0,1,0,−1) − c̃(1,0,0,−1) − c̃(0,1,−1,0)

w13(α1) = c̃(1,0,0,−1) + c̃(0,−1,1,0) − c̃(1,−1,0,0) − c̃(0,0,1,−1)

w12(α2) = c̃(1,−1,0,0) + c̃(0,0,−1,1) − c̃(1,0,−1,0) − c̃(0,−1,0,1),from whih the result follows. �Lemma 7.6. If t0 is an interior point, τ ′ = τ .Proof. If t0 is an interior point, there are six α's for whih t0 is an edge point of ∆3(α). These are
α0, α1 and α2 as de�ned in (7.8) as well as(7.11) α3 = t0 − (1, 1, 0, 0), α4 = t0 − (1, 0, 1, 0), α5 = t0 − (1, 0, 0, 1).Again, by Lemma 7.3(7.12) τ ′ − τ = χ(w23(α0)) + χ(w13(α1) + 2π

√
−1) + χ(w12(α2))+

χ(w01(α3)) + χ(w02(α4) + 2π
√
−1) + χ(w03(α5)).Using (7.10) as well as(7.13) w01(α3) = c̃(0,−1,0,1) + c̃(−1,0,1,0) − c̃(0,−1,1,0) − c̃(−1,0,0,1)

w02(α4) = c̃(0,1,−1,0) + c̃(−1,0,0,1) − c̃(0,0,−1,1) − c̃(−1,1,0,0)

w03(α5) = c̃(0,0,1,−1) + c̃(−1,1,0,0) − c̃(0,1,0,−1) − c̃(−1,0,1,0)



THE COMPLEX VOLUME OF SL(n, C)-REPRESENTATIONS OF 3-MANIFOLDS 25we see that all terms in (7.12) anel out. Hene, τ ′ = τ . �Proposition 7.7. Let c be a Ptolemy assignment on K. For any lift c̃ of c, the element(7.14) λ(c̃) =
∑

i

∑

α∈∆k
n−2(Z)

ǫiλ(c̃i
α) ∈ P̂(C)is independent of the hoie of lift. In partiular, if c is the Ptolemy assignment of a deoratedrepresentation ρ, λ(c̃) is the extended Bloh group element of ρ.Proof. Let c̃ and c̃′ be lifts of c. Let t0 ∈ ∆̇3

n(Z). We wish to prove that λ(c̃) = λ(c̃′). It is enoughto prove this when c̃′ is obtained from c̃ by adding 2π
√
−1 to c̃t. If t0 is an interior point, the resultfollows immediately from Lemma 7.6. If t0 is a fae point, t0 lies in exatly two simplies of K, andit follows from Lemma 7.5 that the two ontributions to the hange in λ(c̃) appear with oppositesigns (by (3.5), 2χ(2π

√
−1) = 0). Suppose t0 is an edge point. Let C be the 3-yle obtained bygluing together all the ∆3(α)'s having t0 as an edge point, using the fae pairings indued from K.Let e be the (interior) 1-ell of C ontaining t0. The argument in Zikert [31, Theorem 6.5℄ showsthat the total log-parameter around e is zero. It thus follows from Lemma 7.4 that adding 2π

√
−1to c̃t0 hanges λ(c̃) by 2-torsion whih is trivial if and only if the number n of simplies in C forwhih t is a 02 edge or a 13 edge is even. Consider a urve λ in C enirling e. The vertex orderingindues an orientation on eah fae of eah simplex of C, suh that when λ passes through twofaes of a simplex in C, the two orientations agree unless e is a 02 edge or a 13 edge. Sine M isorientable, it follows that n is even. The seond statement follows by letting c̃ = log c. �Proposition 7.8. The extended Bloh group element of a deorated boundary-unipotent represen-tation is invariant under the diagonal ation.Proof. The argument is loal. Let c be a Ptolemy assignment on ∆3

n, and let c′ be obtained from cby the diagonal ation. By (5.7) c′ is given by di
j = diag(di

j0, . . . , d
i
j,n−1). By (5.7) we have(7.15) c′t = ct

t0∏

k=0

d0k

t1∏

k=0

d1k

t2∏

k=0

d2k

t3∏

k=0

d3kfor diagonal matries di = diag(di0, . . . , di,n−1). Letting log denote a logarithm, and c̃ a lift of c,de�ne a lift c̃′ of c′ by(7.16) c̃′t = c̃t +

t0∑

k=0

log(d0k) +

t1∑

k=0

log(d1k) +

t2∑

k=0

log(d2k) +

t3∑

k=0

log(d3k).Using this, one easily heks that λ(cα) = λ(c′α) for eah i and eah α ∈ ∆3
n−2(Z). Applying thisloal argument to eah simplex, the result follows from Proposition 7.7. �Corollary 7.9. The extended Bloh group element of a peripherally well behaved boundary-unipotent representation ρ is independent of the deoration.Proof. By performing a baryentri subdivision if neessary, we may assume that any deoration isgeneri. Sine ρ is peripherally well behaved, the diagonal ation is transitive on equivalene lassesof deorations. Sine equivalent deorations have the same fundamental lass, the result follows. �7.1. p SL(n, C)-deorations. Let n be even. All results in this setion have natural analogs for

p SL(n, C). The proofs of these are obtained by replaing 2π
√
−1 by π

√
−1, and logarithms by liftsof C

exp−−→ C∗
/
〈±1〉.



26 STAVROS GAROUFALIDIS, DYLAN P. THURSTON, AND CHRISTIAN K. ZICKERT8. A oyle formula for ĉLet i∗ : H3(SL(n, C)) → H3(SL(n, C), N) denote the natural map. We wish to prove that theomposition(8.1) H3(SL(n, C))
i∗

// H3(SL(n, C), N)
λ

// B̂(C)
R

// C/4π2Zequals the Cheeger-Chern-Simons lass ĉ. Note that i∗ is indued by the map (g0, . . . , g3) 7→
(g0N, . . . , g3N).We shall make use of the anonial isomorphisms(8.2) H3(SL(n, C)) ∼= H3(SL(3, C)) ∼= H3(SL(2, C)) ⊕ KM

3 (C).The �rst isomorphism is indued by stabilization (see Suslin [26℄) and the seond isomorphism isthe ±-eigenspae deomposition with respet to the transpose-inverse involution on SL(3, C) (seeSah [24℄).Lemma 8.1 (Suslin [26℄). Let H ⊂ SL(3, C) be the subgroup of diagonal matries. The KM
3 (C)summand of H3(SL(3, C)) is generated by the elements Bρ∗([T ]), where T = S1 × S1 × S1 is the

3-torus, and ρ : π1(T ) → H is a representation. �Lemma 8.2. Let T = S1×S1×S1 and let ρ : π1(T ) → H be a representation. The extended Blohgroup element [ρ] ∈ B̂(C) of ρ is trivial.Proof. We regard T as a ube C with opposite faes identi�ed, and triangulate C as the oneon the triangulation on ∂C indiated in Figure 5 with one point in the enter. We order theverties of eah simplex by odimension, i.e. the 0-vertex is the one point, the 1-vertex is a faepoint et. Let ρ : π1(T ) → H be a representation, and pik a deoration of ρ by osets in generalposition (the triangulation is suh that this is always possible). Note that for every 3-simplex ∆of T , there is a unique opposite 3-simplex ∆opp, suh that the faes opposite the one point areidenti�ed. We may assume that the one point is deorated by the oset N . If a simplex ∆ isdeorated by the osets (N, g0N, g1N, g2N), the simplex ∆opp must be deorated by the osets
(N, dg0N, dg1N, dg2N), where d is the image of the generator of π1(T ) pairing the faes of ∆ and
∆opp. It thus follows from (5.2) that the fundamental lass is represented by a sum of terms of theform(8.3) (N, dg0N, dg1N, dg2N) − (N, g0N, g1N, g2N) ∈ Cgen

3 (SL(n, C)/N).Let c and c′ be the Ptolemy assignments assoiated to the tuples (N, g0N, g1N, g2N) and (N, dg0N,
dg1N, dg2N). Letting d = diag(d1, . . . , dn), we have c′t = ct

∏n
i=t0

di. Fix a lift c̃ of c, and onsiderthe lift(8.4) c̃′t = c̃t +

n∑

i=t0

log(di)of c′. One now heks that λ(c̃′α) = λ(c̃α) for all α ∈ ∆̇k
n(Z), so λ(c̃) − λ(c̃′) = 0. This proves theresult. �Theorem 8.3. The omposition R ◦ λ ◦ i∗ equals ĉ.Proof. Sine λ ommutes with stabilization, it follows from Goette-Zikert [17℄ that R ◦ λ ◦ i∗ = ĉon H3(SL(2, C)). Sine ĉ is zero on KM

3 (C) (this follows from Lemma 8.1 and [6, Theorem 8.22℄),the result follows from (8.2) and Lemma 8.2. �
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Figure 5. Triangulation of ∂C.Remark 8.4. By de�ning ĉ = R ◦ λ : H3(SL(n, C), N) → C/4π2Z, we have a natural extension ofthe Cheeger-Chern-Simons lass to bundles with boundary-unipotent holonomy, and we an de�nethe omplex volume as in De�nition 2.11.Remark 8.5. The fat that the omplex volume is independent of the hoie of deoration an beseen as follows: We an regard ĉ as a map Pn(∆3) → C/4π2Z, and a simple omputation shows thatthe holomorphi 1-form dĉ only involves oordinates on the boundary of ∆3. Hene, for a losed

3-yle K, ĉ : Pn(K) → C/4π2Z is loally onstant. The result now follows from the fat that thespae of deorations of a representation is path onneted.9. Reovering a representation from its Ptolemy oordinatesWe now show that a Ptolemy assignment on K determines a generially deorated boundary-unipotent representation, whih is given expliitly in terms of the Ptolemy oordinates. The idea isthat a Ptolemy assignment anonially determines a (G,N)-oyle on M .9.1. The generi (G,N)-oyle of a tuple.De�nition 9.1. An n×n matrix A is ounter diagonal if the only non-zero entries of A are on thelower left to upper right diagonal, i.e. Aij = 0 unless j = n − i + 1. If Aij = 0 for j > n − i + 1(resp. j < n − i + 1), A is upper (resp. lower) ounter triangular.Given subsets I, J of {1, . . . , n}, let AI,J denote the submatrix of A whose rows and olumns areindexed by I and J , respetively. If |I| = |J |, let |A|I,J denote the minor det(AI,J). Let Ic denote
{1, . . . , n} \ I.Reall that the adjugate Adj(A) of a matrix A is the matrix whose ijth entry is (−1)i+j |A|{j}c,{i}c .It is well known that Adj(A) = det(A)A−1. The following result by Jaobi (see e.g. [1, Setion 42℄)expresses the minors of Adj(A) in terms of the minors of A.Lemma 9.2. Let I, J be subsets of {1, . . . , n} with |I| = |J | = r. We have(9.1) |Adj(A)|I,J = (−1)

P

(I,J) det(A)r−1|A|Jc,Ic,where ∑(I, J) is the sum of the indies ourring in I and J . �De�nition 9.3. A matrix A ∈ GLn(C) is generi if |A|{k,...,n},{1,...,n−k+1} 6= 0 for all k ∈ {1, . . . , n}.Note that A is generi if and only if the Ptolemy oordinates of (N,AN) are non-zero. Thefollowing is a generalization of Zikert [31, Lemma 3.5℄.



28 STAVROS GAROUFALIDIS, DYLAN P. THURSTON, AND CHRISTIAN K. ZICKERTProposition 9.4. Let A ∈ GLn(C) be generi. There exist unique x ∈ N and y ∈ N suh that
q = x−1Ay is ounter diagonal. The entries of x, y and q are given by

qn,1 = An,1, qn−j+1,j = (−1)j−1 |A|{n−j+1,...,n},{1,...,j}

|A|{n−j+2,...,n},{1,...,j−1}
for 1 < j ≤ n(9.2)

xij =
|A|{i,j+1,...,n},{1,...,n−j+1}

|A|{j,...,n},{1,...,n−j+1}
for j > i(9.3)

yij = (−1)i+j
|A|{n−j+2,...,n},{1,...,bi,...,j}

|A|{n−j+2,...,n},{1,...,j−1}
for j > i.(9.4)Proof. It is enough to prove existene and uniqueness of x and y in N suh that Ay and x−1A areupper and lower ounter triangular, respetively. Suppose Ay is upper ounter triangular. Thenthe vetor y{1,...,j−1},{j} onsisting of the part above the ounter diagonal of the jth olumn vetorof y must satisfy(9.5) A{n−j+2,...,n},{1,...,j−1}y{1,...,j−1},{j} + A{n−j+2,...,n},{j} = 0.The existene and uniqueness of y, as well as the given formula for the entries, now follow fromCramer's rule. Sine x−1A is lower ounter-triangular if and only if A−1x is upper ounter-triangular,existene and uniqueness of x follows. The expliit formula for the entries follows from Jaobi'sidentity (9.1) and the formula for the entries of y. To obtain the formula for the entries of q, notethat qn−j+1,j = (Ay)n−j+1,j. Hene, qn,1 = An,1, and for 1 < j ≤ n,

qn−j+1,j =

j−1∑

i=1

An−j+1,iyi,j + An−j+1,j

=

∑j
i=1(−1)i+jAn−j+1,i|A|{n−j+2,...,n},{1,...bi,...,j}

|A|{n−j+2,...,n},{1,...,j−1}

= (−1)j−1 |A|{n−j+1,...,n},{1,...,j}

|A|{n−j+2,...,n},{1,...,j−1}
,where the seond equality follows from (9.4). �For a generi matrix A, let xA, yA and qA be the unique matries provided by Proposition 9.4.Given osets giN , gjN , gkN , de�ne(9.6) qij = qg−1

i gj
, αi

jk = (xg−1
i gj

)−1xg−1
i gk

.De�nition 9.5. The generi oyle of a generi tuple (g0N, . . . , gkN) is the (G,N)-oyle ona trunated simplex ∆ de�ned by labeling the long edges by qij and the short edges by αi
jk (seeFigure 6).Proposition 9.6. The diagonal left G-ation on Cgen

k (G/N) is free when k ≥ 1, and the hainomplex Cgen
∗≥1(G/N) ⊗Z[G] Z omputes relative homology.Proof. By Proposition 9.4, every generi tuple (g0N, . . . , gkN) may be uniquely written as(9.7) g0xg−1

0 g1
(N, q01N,α0

12q02N, . . . , α0
1kq0kN).This proves that the G-ation is free. Also note that for eah generi tuple (g0N, . . . , gkN), thereexists a oset gN suh that (gN, g0N, . . . , gkN) is generi. Hene, Cgen

∗≥1(G/N) is ayli, and is thus afree resolution of Ker(C0(G/N) → Z). This proves the result (see e.g. Zikert [31, Theorem 2.1℄). �



THE COMPLEX VOLUME OF SL(n, C)-REPRESENTATIONS OF 3-MANIFOLDS 29A generially deorated representation ρ thus determines a (G,N)-oyle representing ρ. Let
B

gen
∗ (G,N) be the subomplex of B∗(G,N) generated by generi oyles on a standard simplex.Corollary 9.7. We have a anonial isomorphism(9.8) B

gen
∗ (G,N) = Cgen

∗ (G/N) ⊗Z[G] Z,end the fundamental lass of a deorated representation is represented as in (4.4).Proof. The �rst statement follows from Proposition 9.6 and the seond from Theorem 4.8. �
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Figure 6. A (G, N)-oyle on a trunated 3-simplex.9.2. Formulas for the long and short edges. We wish to prove that a generi (G,N)-oyleis uniquely determined by the Ptolemy oordinates.Notation 9.8. Let k ∈ {1, . . . , n − 1}.(i) For a1, . . . , an ∈ C∗, let q(a1, . . . , an) be the ounter-diagonal matrix whose entries on theounter-diagonal (from lower left to upper right) are a1, . . . , an.(ii) For x ∈ C, let xk(x) be the elementary matrix whose (k, k + 1) entry is x.(iii) For b1, . . . , bk ∈ C, let πk(b1, . . . , bk) = x1(b1)x2(b2) · · · xk(bk).Proposition 9.9. The long edges of a generi (G,N)-oyle are determined by the Ptolemyoordinates as follows:(9.9) qij = q(a1, . . . , an), ak = (−1)k−1
c(n−k)ei+kej

c(n−k+1)ei+(k−1)ej

.Proof. Let (g0N, . . . , gkN) be a generi tuple, and let A = g−1
i gj . Then qij = qA. Sine(9.10) |A|{n−j+1,...,n},{1,j} = det({gi}n−k, {gj}k) = c(n−k)ei+kej

,the result follows from (9.2). �The orresponding formula for the short edges requires onsiderable more work, and is given inProposition 9.14 below.Lemma 9.10. Let A be generi, and let L = x−1
A A. The entries Li,n−i+2 right below the ounterdiagonal are given by(9.11) Li,n−i+2 = (−1)n−i

|A|
{i,...,n},{1,...,n̂−i+1,n−i+2}

|A|{i+1,...,n},{1,...,n−i}
.



30 STAVROS GAROUFALIDIS, DYLAN P. THURSTON, AND CHRISTIAN K. ZICKERTProof. We proeed as in the proof of Proposition 9.4. Let x = x−1
A . Sine L is lower ounter-triangular, we must have(9.12) x{i},{i+1,...,n}A{i+1,...,n},{1,...,n−i} + A{i},{1,...,n−i} = 0,so by Cramer's rule,(9.13) xij = (−1)i+j

|A|{i,...,bj,...,n},{1,...,n−i}

|A|{i+1,...,n},{1,...,n−i}
for j > i.We thus have

|A|{i+1,...,n},{1,...,n−i}Li,n−i+2 = Ai,n−i+2|A|{i+1,...,n},{1,...,n−i}

+
n∑

k=i+i

(−1)i+k|A|
{j,...,bk,...,n},{1,...,n−j}

Ak,n−i+2

=
n∑

k=j

(−1)i+k|A|
{j,...,bk,...,n},{1,...,n−i}

Ak,n−i+2

= (−1)n−i|A|
{i,...,n},{1,...,n̂−i+1,...,n−i+2}

,whih proves the result. �De�nition 9.11. Let A,B ∈ GL(n, C).(i) A and B are related by a type 0 move if all but the last olumn of A and B are equal.(ii) A and B are related by a type 1 move if all but the seond last olumn of A and B are equal.(iii) A and B are related by a type 2 move if for some j < n−1, B is obtained from A by swithingolumns j and j + 1.Proposition 9.12. Let A and B be generi, and let Ai and Bi denote the ith olumn of A, resp. B.(i) If A and B are related by a type 0 move, xB = xA.(ii) If A and B are related by a type 1 move, xB = xAx1(x), where(9.14) x = −det(A1, . . . , An−1, Bn−1) det(e1, e2, A1, . . . , An−2)

det(e1, A1, . . . , An−1) det(e1, A1, . . . , An−2, Bn−1)
.(iii) If A and B are related by a type 2 move swithing olumns j and j + 1, xB = xAxn−j(x),where(9.15) x = −det(e1, . . . , en−j−1, A1, . . . , Aj+1) det(e1, . . . , en−j+1, A1, . . . , Aj−1)

det(e1, . . . , en−j , A1, . . . , Aj) det(e1, . . . , en−j , A1, . . . , Aj−1, Bj)
.Proof. The �rst statement follows from the fat that xA is independent of the last olumn of A.Suppose A and B are related by a type 1 move. Using (9.3), one sees that (xA)ij = (xB)ij exeptwhen i = 1 and j = 2. It thus follows that xB = xAx1(x), where x = (xB)12 − (xA)12. Letting Cbe the matrix obtained from A by replaing the nth olumn by the (n− 1)th olumn of B, one has

|A|{1,3,...,n},{1,...,n−1} = Adj(C)n,2, |B|{1,3,...,n},{1,...,n−1} = Adj(C)n−1,2,

|A|{2,...,n},{1,...,n−1} = Adj(C)n,1, |B|{2,...,n},{1,...,n−1} = Adj(C)n−1,1,and it follows from (9.3) that(9.16) x = (xB)12 − (xA)12 =
Adj(C)n−1,2

Adj(C)n−1,1
− Adj(C)n,2

Adj(C)n,1
.



THE COMPLEX VOLUME OF SL(n, C)-REPRESENTATIONS OF 3-MANIFOLDS 31We then have
xAdj(C)n,1 Adj(C)n−1,1 = Adj(C)n−1,2 Adj(C)n,1 − Adj(C)n−1,1 Adj(C)n,2

= −|Adj(C)|{n−1,n},{1,2}

= − det(C)|C|{3,...,n},{1,...,n−2}

= − det(A1, . . . , An−1, Bn−1) det(e1, e2, A1, . . . , An−2),where the third equality follows from Jaobi's identity (9.1). Sine
Adj(C)n,1 Adj(C)n−1,1 = det(e1, A1, . . . , An−1) det(e1, A1, . . . , An−2, Bn−1),this proves the seond statement.Now suppose A and B are related by a type 2 move. Let Ej,j+1 be the elementary matrixobtained from the identity matrix by swithing the jth and (j + 1)th olumns. Then B = AEj,j+1.Sine L = x−1
A A is lower ounter triangular, xn−j(− Ln−j,j+1

Ln−j+1,j+1
)LEj,j+1 must also be lower ountertriangular. We thus have(9.17) xB = xAxn−j(−

Ln−j,j+1

Ln−j+1,j+1
)−1 = xAxn−j(

Ln−j,j+1

Ln−j+1,j+1
).By (9.11) and (9.2), we have(9.18) Ln−j+1,j+1 = (−1)j−1

|A|{n−j+1,...,n},{1,...,bj,j+1}

|A|{n−j+2,...,n},{1,...,j−1}

Ln−j,j+1 = (−1)j
|A|{n−j,...,n},{1,...,j+1}

|A|{n−j+1,...,n},{1,...,j}
.Hene,

Ln−j,j+1

Ln−j+1,j+1
= −

|A|{n−j,...,n},{1,...,j+1}|A|{n−j+2,...,n},{1,...,j−1}

|A|{n−j+1,...,n},{1,...,j}|A|{n−j+1,...,n},{1,...,bj,j+1}

= −det(e1, . . . , en−j−1, A1, . . . , Aj+1) det(e1, . . . , en−j+1, A1, . . . , Aj−1)

det(e1, . . . , en−j , A1, . . . , Aj) det(e1, . . . , en−j , A1, . . . , Aj−1, Bj)
,proving the third statement. �Note that any two matries A,B ∈ GL(n, C) are related by a sequene of moves of type 1, 2 and

0 as follows:(9.19) A
1−→[A1, . . . , An−2, B1, An]

2−→ [A1, . . . , An−3, B1, An−2, An]
2−→ . . .

2−→

[B1, A1, . . . , An−2, An]
1−→ [B1, A1, . . . , An−3, B2, An]

2−→ . . .
2−→

[B1, B2, A1, . . . , An−3, An]
1,2−−→ . . .

1,2−−→ [B1, . . . , Bn−1, An]
0−→ B.Consider the tilings of a fae ijk, i < j < k, of ∆2

n by diamonds shown in Figure 7. We refer tothe diamonds as being of type i, j and k, respetively.De�nition 9.13. The diamond oordinate dk
r,s of a diamond (r, s) of type k is the alternatingprodut of the Ptolemy oordinates assigned to its verties, see Figure 7.



32 STAVROS GAROUFALIDIS, DYLAN P. THURSTON, AND CHRISTIAN K. ZICKERT

i

j

k

(1, 1)

(1, n − 1)

(1, 2) (2, 1)

(r, s)

(n − 1, 1)

b

c

d

a

i

j

k
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(1, n − 1)
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(2, 1)

(r, s)

(n − 1, 1)
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c d
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i
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k

(1, 1) (1, n − 1)(1, 2)

(2, 1)

(r, s)

(n − 1, 1)

bc

da

Figure 7. Diamonds of type i, j and k. The diamond oordinates are di
r,s = dk

r,s = −ab
cd

,and dj
r,s = ab

cd
, where a, b, c, and d are Ptolemy oordinates.Proposition 9.14. The short edges αi

jk, j < k, of a generi (G,N)-oyle are determined by thePtolemy oordinates as follows (π∗ is de�ned in 9.8 (iii)):(9.20) αi
jk = πn−1(d

i
1,1, . . . , d

i
1,n−1)πn−2(d

i
2,1, . . . , d

i
2,n−2) · · · π1(d

i
n−1,1),where the di

j,k's are the type i diamond oordinates on the fae ijk.Proof. Let (g0N, . . . , glN) be a generi tuple, and let A = g−1
i gj and B = g−1

i gk. We assume that
i < j < k, the other ases being similar. Note that the Ptolemy oordinates on the ijk fae aregiven by(9.21) ctiei+tjek+tkek

= det(e1, . . . , eti , A1, . . . , Atj , B1, . . . , Btk).Performing the sequene of moves in (9.19), the result follows from Proposition 9.12. �Corollary 9.15. A generi tuple is determined up to the diagonal G-ation by its Ptolemy oordi-nates. �Example 9.16. Suppose Ptolemy assignments on ∆2
n, n ∈ {2, 3}, are given as in Figure 8. Us-ing (9.9) and (9.20), we obtain that the orresponding (G,N)-oyle is given by(9.22) q01 = q(a,−1/a), q12 = q(b,−1/b), q02 = q(c,−1/c),

α0
12 = x1

(−b

ac

)
, α1

02 = x1

( c

ab

)
, α2

01 = x1

(−a

cb

)when n = 2, and(9.23) q01 = q(c,−a/c, 1/a), q12 − q(b,−e/b, 1/e), q02 = q(f,−g/f, 1/g),

α1
02 = x1

(fa

cd

)
x2

( d

ab

)
x1

(gb

de

)
,

α0
12 = x1

(−bc

ad

)
x2

(−d

cf

)
x1

(−ef

dg

)
, α2

01 = x1

(−cg

fd

)
x2

(−d

ge

)
x1

(−ae

db

)when n = 3.
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Figure 8. Ptolemy assignments and the orresponding oyle for n = 2 and n = 3.9.3. From Ptolemy assignments to deorations. Corollary 9.15 shows that here is at most onegeneri (G,N)-oyle with a given olletion of Ptolemy oordinates. We now prove that when
k ≤ 3 there is exatly one.Lemma 9.17. Let ai,j and bi,j be non-zero omplex numbers. The equality(9.24) πn−1(a1,1, . . . , a1,n−1) · · · π1(an−1,1) = πn−1(b1,1, . . . , b1,n−1) · · · π1(bn−1,1)holds if and only if ai,j = bi,j for all i, j.Proof. For any ci,j, the nth olumn of πn−1(c1,1, . . . , c1,n−1) · · · π1(cn−1,1) is equal to the nth olumnof πn−1(c1,1, . . . , c1,n−1), whih equals

(

n−1∏

i=1

c1,i,

n−1∏

i=2

c1,i, . . . , c1,n−1).This proves that a1,j = b1,j for all j. The result now follows by indution. �Proposition 9.18. For any assignment c : ∆̇2
n(Z) → C∗, there is a unique Ptolemy assignment

c ∈ Ptn2 whose Ptolemy oordinates are ct.Proof. We prove that the Ptolemy oordinates c′t of (N, q01N,α0
12q02N) equal ct, where q01, q02 and

α0
12 are given in terms of the ct's by (9.9) and (9.20). First note that ct = c′t if either t1 or t2 is 0,i.e. if t is on one of the edges of ∆2

n ontaining the 0th vertex. Eah of the other integral points tis the upper right vertex of a unique diamond (r, s) of type 0. Let τk be the upper right vertex ofthe kth diamond Dk in the sequene(9.25) (1, n − 1), (1, n − 2), . . . (1, 1), (2, n − 2), . . . , (2, 1), . . . , (n − 1, 1).By Lemma 9.17, d0′
r,s = d0

r,s for all diamonds (r, s) of type 0. It thus follows that if ct = c′t for allbut one of the verties of a diamond D, then ct = c′t for all verties of D. In partiular c′τ1 = cτ1 .Suppose by indution that c′τi
= cτi

for all i < k. Then c′t = ct, for all verties of Dk exept τk.Hene, we also have c′τk
= cτk

, ompleting the indution. �Proposition 9.19. For any assignment c : ∆̇3
n(Z) → C∗ satisfying the Ptolemy relations, there is aunique Ptolemy assignment c ∈ Ptn3 whose Ptolemy oordinates are ct.Proof. Let c′t be the Ptolemy oordinates of the tuple (N, q01N,α0

12q02N,α0
13q03N) de�ned from the

ct's by (9.9) and (9.20). We wish to prove that c′t = ct for all t. Note that if, for some subsimplex
∆3(α), c′αij

= cαij
for all but one of the 6 αij 's, then c′αij

= cαij
holds for all αij . This is a diretonsequene of the Ptolemy relations. By Proposition 9.18, c′t = ct, when either t2 or t3 is zero.Hene, for eah α = (a0, a1, a2, a3) with a2 = a3 = 0, c′αij

= cαij
exept possibly when (i, j) = (2, 3).
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= cα23

as well. Now suppose by indution that c′αij
= cαij

for all α with
a2 + a3 < k. Then c′αij

= cαij
holds exept possibly when (i, j) = (2, 3). Again, c′α23

= cα23
mustalso hold, ompleting the indution. �A (G,N)-oyle on M obviously determines a deorated representation (up to onjugation).The main results of this setion an thus be summarized by the diagram below.(9.26) {Points in Pn(K)

}
oo //

{Generi (G,N)-oyleson M

}
oo //

{Generially deorated
(G,N)-representations}Remark 9.20. We stress that the Ptolemy variety parametrizes deorated representations and notdeorated representations up to equivalene. In partiular, the dimension of Pn(K) depends on thetriangulation, and may be very large if K has many interior verties.9.4. Obstrution oyles and the p SL(n, C)-Ptolemy varieties. Suppose n is even. Theprojetion G → pG maps N isomorphially onto its image (also denoted by N), and by elementaryobstrution theory (see e.g. Steenrod [25℄), the obstrution to lifting a (pG,N)-representation ρ toa (G,N)-representation is a lass in(9.27) H2(M,∂M ; Z/2Z) = H2(K; Z/2Z).We an represent it by an expliit oyle in Z2(K; Z/2Z) as follows: Pik any (p SL(n, C), N)-oyle τ̄ on M representing ρ and a lift τ of τ̄ to a (G,N)-ohain. Eah 2-ell of K orrespondsto a hexagonal 2-ell of M , and the 2-oyle σ ∈ Z2(K; Z/2Z) taking a 2-ell to the produt of the

τ -labelings along the orresponding hexagonal 2-ell of M represents the obstrution lass.Proposition 9.21. Suppose the interior of M is a 1-usped hyperboli 3-manifold with �nitevolume. The obstrution lass in H2(K; Z/2Z) to lifting the geometri representation is non-trivial.Proof. By a result of Calegari [5, Corollary 2.4℄, any lift of the geometri representation takes alongitude to an element in SL(2, C) with trae −2. This shows that no lift is boundary-unipotent,so the obstrution lass must be non-trivial. �Proposition 9.4 also holds in p SL(n, C), and we thus have a 1-1 orrespondene between generi-ally deorated representations and (pG,N)-oyles on M .De�nition 9.22. Let σ ∈ Z2(K; Z/2Z). A lifted (pG,N) oyle on M with obstrution oyle
σ is a generi (G,N)-assignment on M lifting a (pG,N)-oyle on M suh that the 2-oyle on
K obtained by taking produts along hexagonal faes of M equals σ.A 1-ohain η ∈ C1(K; Z/2Z) ats on a lifted (pG,N)-oyle τ by multiplying a long edge
e by η(e). Note that if τ has obstrution oyle σ, ητ has obstrution oyle δ(η)σ, where δis the standard oboundary operator. Reall that there is a 1-1 orrespondene between generi
(G,N)-oyles on M and points in the Ptolemy-variety. We shall prove a similar result for pG.We wish to de�ne a oboundary ation on pG-Ptolemy assignments (see De�nition 5.11). Let cbe a pG-Ptolemy assignment on ∆, and let ηij ∈ C1(∆; Z/2Z) be the ohain taking the edge ij to
−1 and all other edges to 1. De�ne(9.28) ηijc : ∆̇3

n(Z) → C∗, (ηijc)t = (−1)titjctand extend in the natural way to de�ne ηc for a pG-Ptolemy assignment c on K and η ∈ C1(K; Z/2Z).A priori ηc is only an assignment of omplex numbers to the integral points of the simplies of K.However, we have:



THE COMPLEX VOLUME OF SL(n, C)-REPRESENTATIONS OF 3-MANIFOLDS 35Lemma 9.23. If c is a pG-Ptolemy assignment on K with obstrution oyle σ, ηc is a pG-Ptolemyassignment on K with obstrution oyle δ(η)σ.Proof. It is enough to prove this for a simplex ∆ and for η = ηij. Let c′ = ηijc. We assume forsimpliity that ij = 01; the other ases are proved similarly. For any α = (a0, a1, a2, a3) ∈ ∆k
n−2(Z),we then have(9.29) c′α03

c′α12
+ c′α01

c′α23
− c′α02

c′α13
= (−1)a0+a1(cα03

cα12
− cα01

cα23
− cα02

cα13
)Let τ = δ(η01). Sine δ(η01)2 = δ(η01)3 = −1 and δ(η01)0 = 1, (9.29) implies that(9.30) τ2τ3c

′
α03

c′α12
+ τ0τ3c

′
α03

c′α01
c′α23

= c′α02
c′α13

,as desired. �De�nition 9.24. The diamond oordinates of a p SL(n, C)-Ptolemy assignment with obstrutionoyle σ are de�ned as in De�nition 9.13, but multiplied by the sign (provided by σ) of the fae.Note that for η ∈ C1(K; Z/2/Z), the diamond oordinates of c and ηc are idential.Proposition 9.25. For any σ ∈ Z2(K; Z/2Z), there is a 1-1 orrespondene between p SL(n, C)-Ptolemy assignments on K with obstrution oyle σ, and lifted (p SL(n, C), N)-oyles on Mwith obstrution oyle σ. The orrespondene preserves the oboundary ations.Proof. It is enough to prove this for a simplex ∆. For a pG-Ptolemy assignment c on ∆ withobstrution oyle σ ∈ Z2(∆; Z/2Z), de�ne a ohain τ on ∆ by the formulas (9.9) and (9.20)using the σ-modi�ed diamond oordinates (De�nition 9.24). Let η ∈ C1(∆; Z/2Z) be suh that
δη = σ, where δ is the standard oboundary map. By Lemma 9.23 ηc satis�es the SL(n, C) Ptolemyrelations (5.4), and hene orresponds to an (SL(n, C), N)-oyle τ ′. Sine the diamond oordinatesof c and ηc are the same, the short edges of τ ′ agree with those of τ and the long edges di�er fromthose of τ by η. This proves that τ is a lifted (pG,N)-oyle with obstrution oyle σ. Theindutive arguments of Propositions 9.18 and 9.19 show that this is a 1-1 orrespondene. The fatthat the ations by oboundaries orrespond is immediate from the onstrution. �Corollary 9.26. Let σ ∈ Z2(K; Z/2Z). There is an algebrai variety P σ

n (K) of generially deo-rated boundary-unipotent representations ρ : π1(M) → p SL(n, C) whose obstrution lass to liftingto SL(n, C) is represented by σ. Up to anonial isomorphism, the variety P σ
n (K) only depends onthe ohomology lass of σ.Proof. This follows immediately from Proposition 9.25. �Note that the anonial isomorphisms in Corollary 9.26 respet the extended Bloh group element.This follows from the pG variant of Proposition 7.7. The analogue of (9.26) is(9.31)

{Points in P σ
n (K)

}
oo //

{Lifted (pG,N)-oyles on Mwith obstrution oyle σ

}
k:1

// //





Generially deorated
(pG,N)-representationswith obstrution oyle σ



 ,where k is the number of lifts, i.e. k = |Z1(K; Z/2Z)|.9.5. Proof of Theorems 1.3, 1.12, and 1.7. Let R : Pn(K) → RG,N (M) be the omposition ofthe map in (9.26) with the forgetful map ignoring the deoration. The fat that λ has image in

B̂(C) follows from Proposition 6.12, and ommutativity of (1.11) follows from Remark 8.4. The fatthat R is surjetive if K is su�iently �ne follows from Proposition 5.4. This onludes the proof



36 STAVROS GAROUFALIDIS, DYLAN P. THURSTON, AND CHRISTIAN K. ZICKERTof Theorem 1.3. The �rst part of Theorem 1.12 is proved similarly, and the last part follows fromTheorem 11.7 below. The �rst statement of Theorem 1.7 follows from the de�nition of R. Theseond statement follows from the fat that if ρ is boundary non-degenerate the only freedom inhoosing a deoration is the diagonal ation. Finally, the third statement is proved in Corollary 7.9.10. ExamplesIn the examples below, all omputations of Ptolemy varieties are exat, whereas the omputationsof omplex volume are numerial with at least 50 digits preision.Example 10.1 (The 52 knot omplement). Consider the 3-yle K obtained from the simplies inFigure 9 by identifying the faes via the unique simpliial attahing maps preserving the arrows.The spae obtained from K by removing the 0-ell is homeomorphi to the omplement of the 52knot, as an be veri�ed by SnapPy [9℄.
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Figure 9. A 3-yle struture on the 52 knot omplement, and Ptolemy oordinates for n = 3.Labeling the Ptolemy oordinates as in Figure 9, the Ptolemy variety for n = 3 is given by theequations(10.1) a0x3 + b0x1 = b0x2, a0y3 + a0x0 = c0y2, a0x2 + b0y2 = a0x1

x2c0 + b1x0 = x3a0, y2b0 + a1x3 = y3b0, x1a0 + b1y3 = x2c0

x1c1 + x3c0 = b1x0, x0b1 + y3c0 = c1x3, y2a1 + x2b0 = a1y3

a1x0 + x2c1 = x1a1, a1x3 + y2c1 = x0b1, a1y3 + x1b1 = y2c1together with an extra equation (involving an additional variable t)(10.2) a0a1b0b1c0c1x0x1x2x3y2y3t = 1,making sure that all Ptolemy oordinates are non-zero. By (5.7) a diagonal matrix diag(x, y, z)ats by multiplying a Ptolemy oordinate on an edge by x2y and a Ptolemy oordinate on a faeby x3. Sine we are not interested in the partiular deoration, we may thus assume e.g. that
a0 = y3 = 1. Using Magma [3℄, one �nds that the Ptolemy variety, after setting a0 = y3 = 1, hasthree zero-dimensional omponents with 3, 4 and 6 points respetively. One of these is given by(10.3) a0 = a1 = y3 = 1, x1 = −1, c0 = c1 = x2

0 + 2x0 + 1

y2 = x2
0 + 2 = −x2, x3 = −x2

0 − x0 − 1

x3
0 + x2

0 + 2x0 + 1 = 0Thus, this omponent gives rise to 3 representations, one for eah solution to x3
0 + x2

0 + 2x0 + 1 = 0.Using the fat that R(λ(c)) = iVolC(ρ), the omplex volumes of these an be omputed to be(10.4) 0.0 − 4.453818209 . . . i ∈ C/4π2iZ, ±11.31248835 . . . + 12.09651350 . . . i ∈ C/4π2iZ



THE COMPLEX VOLUME OF SL(n, C)-REPRESENTATIONS OF 3-MANIFOLDS 37orresponding to the values x0 = −0.5698 . . . and x0 = −0.2150 ∓ 1.3071 . . . i, respetively.In Zikert [31, Setion 6℄, the omplex volumes of the Galois onjugates of the geometri repre-sentation are omputed to be(10.5) 0.0 − 1.113454552 . . . i ∈ C/π2iZ, ±2.828122088 . . . + 3.024128376 . . . i ∈ C/π2iZ.Notie that (10.4) is (approximately) 4 times (10.5). It thus follows from Theorem 1.10 thatthe representations given by (10.3) are φ3 omposed with the geometri omponent of PSL(2, C)-representations and that the fator of 4 is exat.Another omponent is given by
(10.6) a0 = a1 = y3 = 1, x1 = −1, b1 = −x0

b0 = 1/4x3
0 − 1/4x2

0 + 3/4x0 − 1/2

c0 = c1 = 1/4x3
0 − 1/4x2

0 − 1/4x0 + 1/2

y2 = −x2 = 1/4x3
0 + 3/4x2

0 + 7/4x0 + 3/2

x3 = −x2
0 − x0 − 1

x4
0 + x3

0 + x2
0 − 4x0 − 4 = 0.In this ase there are two distint omplex volumes given by:(10.7) 0.0 + 2.631894506 . . . i =

4

15
π2i ∈ C/4π2iZ, 0.0 + 10.527578027 . . . i =

16

15
π2i ∈ C/4π2iZ.The third omponent has somewhat larger oe�ients, but after introduing a variable u with

u6 + 5u4 + 8u2 − 2u + 1 = 0, the de�ning equations simplify to
(10.8)

a0 = y3 = 1, a1 = 1/4u5 + 1/4u4 + 5/4u3 + 1/2u2 + 2u − 3/4

b0 = b1 = −1/4u4 − 3/4u2 − 1/4u − 3/4,

c1 = −1/4u5 − 3/4u3 − 1/4u2 − 3/4u,

c0 = 1/2u5 + 9/4u3 + 1/4u2 + 7/2u − 1/4,

y2 = −8/17u5 − 1/34u4 − 79/34u3 − 3/17u2 − 105/34u + 26/17,

x3 = 1/17u5 − 1/17u4 + 6/17u3 − 6/17u2 + 14/17u − 16/17,

x2 = 9/34u5 + 4/17u4 + 37/34u3 + 31/34u2 + 75/34u + 13/17,

x1 = 8/17u5 + 1/34u4 + 79/34u3 + 3/17u2 + 139/34u − 9/17,

x0 = 15/34u5 + 1/17u4 + 73/34u3 + 29/34u2 + 125/34u − 1/17,

u6 + 5u4 + 8u2 − 2u + 1 = 0.In this ase, there are 3 distint omplex volumes:(10.9) 0.0 + 1.241598704 . . . i, ±6.332666642 . . . + 1.024134714 . . . iAording to Conjeture 1.21, 6.33 · · · + 1.02 . . . i should (up to rational multiples of π2i) be anintegral linear ombination of omplex volumes of hyperboli manifolds. Using e.g. Snap [18℄, oneheks that the omplex volume of the manifold m034 is given by(10.10) 3.166333321 . . . + 2.157001424 . . . i,and we have(10.11) 6.332666642 . . . + 1.024134714 . . . i = 2VolC(m034) − 1

3
π2i ∈ C/4π2iZ.



38 STAVROS GAROUFALIDIS, DYLAN P. THURSTON, AND CHRISTIAN K. ZICKERTExample 10.2 (The �gure 8 knot omplement). Let K be the 3-yle in Figure 10. Then M =
M(K) is the �gure 8 knot omplement, and H2(K; Z/2Z) = H2(M,∂M ; Z/2Z) = Z/2Z.
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Figure 10. A 3-yle struture on the �gure 8 knot omplement and Ptolemy oordinatesfor n = 2. The signs indiate the non-trivial seond Z/2Z ohomology lass.For the trivial obstrution lass, the Ptolemy variety for n = 2 is given by(10.12) yx + y2 = x2, xy + x2 = y2,and is thus empty sine x and y are non-zero. In fat, the only boundary-unipotent representations in
SL(2, C) are reduible, so this is not surprising. The non-trivial obstrution lass an be representedby the oyle indiated in Figure 10, and the Ptolemy variety is given by(10.13) yx − y2 = x2, xy − x2 = y2.As in Example 10.1, we may assume y = 1. Hene, the Ptolemy variety detets two (omplexonjugate) representations orresponding to the solutions to x2 − x + 1 = 0. The extended Blohgroup elements are(10.14) − (−x̃,−2x̃) + (x̃, 2x̃) ∈ B̂(C)PSL,with omplex volume(10.15) ± 2.029883212 . . . + 0.0i.We thus reover the well known omplex volume of the �gure 8 knot omplement.For n = 3, similar alulations as those in Example 10.1 show that the Ptolemy variety detets
3 zero-dimensional omponents, but the only one with non-zero volume is the one indued bythe geometri representation. For n = 4, lots of new omplex volumes emerge. For the trivialobstrution lass, the non-zero omplex volumes are(10.16) ± 7.327724753 . . . + 0.0i = 2VolC(52

1) + π2i/4,where the manifold 52
1 is the whitehead link omplement. For the non-trivial obstrution lass, theomplex volumes are(10.17) ±20.29883212 . . . + 0.0i = 10VolC(41) ∈ C/π2iZ

±4.260549384 . . . ± 0.136128165 . . . i

±3.230859569 . . . + 0.0i

±8.355502146 . . . + 2.428571615 . . . i = VolC(−93
15) + 2π2i/3

±3.276320849 . . . + 9.908433886 . . . i.



THE COMPLEX VOLUME OF SL(n, C)-REPRESENTATIONS OF 3-MANIFOLDS 39Example 10.3 (S1 × S2). Figure 11 shows a triangulation of M = S1 × S2 taken from the Reginaensus [4℄. Sine π1(S
1 × S2) = Z, all representations in PSL(2, C) lift to SL(2, C), so we expetthe Ptolemy variety for the non-trivial lass in H2(M ; Z/2Z) to be zero. This lass is representedby the oyle shown in Figure 11, and the Ptolemy variety is given by(10.18) − zx + x2 = y2, x2 + zx = y2,whih indeed has no solutions in C∗. For the trivial ohomology lass, all signs are positive, andthe two equations are equivalent. The extended Bloh group element is(10.19) (z̃ + x̃ − 2ỹ, 2x̃ − 2ỹ) − (z̃ + x̃ − 2ỹ, 2x̃ − 2ỹ) = 0 ∈ B̂(C).In fat, the extended Bloh group element of a Ptolemy assignment is trivial for all n, as one easilyveri�es (the subsimplies anel out in pairs).We wish to �nd out whih representations are deteted by P2(K). A hoie of fundamentaldomain F for K in L determines a presentation of π1(M) with a generator for eah fae pairing of

F and a relation for eah 1-ell of K (to see this onsider the standard presentation for the dualtriangulation of K). Letting F be the fundamental domain of S1 × S2 given by gluing the bottomfaes of the two simplies together, one easily heks that the generator of π1(M) = Z is given bythe self gluing of the �rst simplex taking the fae opposite the third vertex to the fae opposite thezeroth. For α ∈ SL(2, C), the representation given by taking the generator to α has a deoration asin Figure 11. For A =
(

a b
c d

), let c(A) = c, and note that det(e1, Ae1) = c(A). Letting x, y and zdenote the Ptolemy oordinates, we have(10.20) x = c(α), y = c(α2) = xTr(α), z = c(α3) = x(Tr(α)2 − 1),and it follows that the Ptolemy variety detets all representations exept those where Tr(α) = ±1.
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Figure 11. A triangulation of S1 × S2. Both simplies have self gluings.Remark 10.4. When n = 2, examples of Conjeture 1.21 are abundant. E.g. for the 10155 knotomplement (10 simplies), the volumes of the representations deteted by the Ptolemy variety are(numerially)(10.21) Vol(m032(6, 1)), 2Vol(41), 3Vol(10155) − 4Vol(v3461), Vol(10155).Remark 10.5. For the hyperboli ensus manifolds, most of the omponents of the redued Ptolemyvarieties tend to be zero-dimensional. By a result of Menal-Ferrer and Porti [20℄, the ompo-sition of the geometri representation with φn is isolated among boundary-unipotent p SL(n, C)-representations. Higher dimensional omponents also our (rarely for n = 2, quite often for n > 2),but as mentioned earlier, the omplex volume is onstant on omponents.Remark 10.6. If the fae pairings do not respet the vertex orderings, one an still de�ne a Ptolemyvariety by introduing more signs. See Garoufalidis�Goerner�Zikert [15℄ for details.



40 STAVROS GAROUFALIDIS, DYLAN P. THURSTON, AND CHRISTIAN K. ZICKERTRemark 10.7. The fat that the redued Ptolemy varieties Pn(K)red are given by setting some ofthe variables (hosen appropriately) equal to 1 is proved in [16℄.11. The irreduible representations of SL(2, C)Let φn : SL(2, C) → SL(n, C) denote the anonial irreduible representation. It is indued bythe Lie algebra homomorphism sl(2, C) → sl(n, C) given by(11.1)
[ 0 1
0 0 ] 7→ diag+(n−1, . . . , 1), [ 0 0

1 0 ] 7→ diag−(1, . . . , n−1),
[

1 0
0 −1

]
7→ diag(n−1, n−3, . . . ,−n+1),where diag+(v) and diag−(v) denote matries whose �rst upper (resp. lower) diagonal is v and allother entries are zero. One has

φn

([
0 −a−1

a 0

])
= q(an−1,−an−3, . . . , (−1)n−1a−(n−1))(11.2)

φn ([ 1 x
0 1 ]) = πn−1(x, . . . , x)πn−2(x, . . . , x) · · · π1(x).(11.3)Proposition 11.1. Let c be a Ptolemy assignment on ∆3

2, and let τ denote the orrespondingoyle. The Ptolemy assignment orresponding to φn(τ) is given by(11.4) φn(c) : ∆̇3
n(Z) → C∗, t 7→ φn(c)t =

∏

i<j

c
titj
ij .

y
x3y3z

x4y4z2 x2y4z2

x3yz3

x2y2z4

xy3z3

z4 z6 z6 z4z

x

x4

x6

x6

x4 y4

y6

y6

y4

φn

0

1

2 0

1

2Figure 12. φn ating on Ptolemy assignments.Proof. Let α = (a0, . . . , a3) ∈ ∆3
n−2(Z). Letting kα =

∏
i<j c

aiaj

ij , and lα =
∏

i<j c
ai+aj

ij , we have(11.5)
φn(c)α03

φn(c)α12
= k2

αlαc03c12, φn(c)α01
φn(c)α23

= k2
αlαc01c23, φn(c)α02

φn(c)α13
= k2

αlαc02c13.Hene, the appropriate Ptolemy relations are satis�ed. The long and short edges of the oyleorresponding to φn(c) are given by (9.9) and (9.20), and we must prove that these agree withthose of φn(τ). For the long edges, this follows immediately from (11.2). For the short edges, aneasy omputation shows that all the diamond oordinates of a fae are equal, and equal to theorresponding diamond oordinate of c. For example, the type 1 diamond oordinate on fae 3whose left vertex is t = (t0, t1, t2, 0) is given by(11.6) φn(c)t+(0,−1,1,0)φn(c)t+(−1,1,0,0)

φn(c)tφn(c)t+(−1,0,1,0)
=

c
t0(t1−1)
01 c

t0(t2+1)
02 c

(t1−1)(t2+1)
12 c

(t0−1)(t1+1)
01 c

(t0−1)t2
02 c

(t1+1)t2
12

ct0t1
01 ct0t2

02 ct1t2
12 c

(t0−1)t1
01 c

(t0−1)(t2+1)
02 c

t1(t2+1)
12

=
c02

c01c12
,whih is a diamond oordinate for c. By (11.3) the short edges thus agree with those of φn(τ),proving the result. �



THE COMPLEX VOLUME OF SL(n, C)-REPRESENTATIONS OF 3-MANIFOLDS 41Corollary 11.2. If a representation ρ : π1(M) → PSL(2, C) is deteted by P σ
2 (K) then φ2k+1 ◦ ρis deteted by P2k+1(K) and φ2k ◦ ρ is deteted by P σ

2k(K). �Theorem 11.3. Let ρ be a boundary-unipotent representation in SL(2, C) or PSL(2, C). The ex-tended Bloh group element of φn ◦ ρ is (n+1
3

) times that of ρ. In fat, the shapes of all subsimpliesare equal.Proof. By re�ning the triangulation if neessary, we may represent ρ by a Ptolemy assignment c on
K. Then φ = φn(c) is a Ptolemy assignment representing φn ◦ ρ, and the extended Bloh groupelement of φn ◦ ρ is given by(11.7) [φn(ρ)] =

∑

i

ǫi

∑

α∈∆3
n−2(Z)

(φ̃i
α03

+ φ̃i
α12

− φ̃i
α02

− φ̃i
α13

, φ̃i
α01

+ φ̃i
α23

− φ̃i
α02

− φ̃i
α13

).By Proposition 7.7, we may hoose the logarithms independently as long as we use the same loga-rithm for identi�ed points. De�ning φ̃i
t =

∑
j<k tjtk c̃

i
jk, we see that(11.8) (φ̃i

α03
+φ̃i

α12
−φ̃i

α02
−φ̃i

α13
, φ̃i

α01
+φ̃i

α23
−φ̃i

α02
−φ̃i

α13
) = (c̃03+c̃12−c̃02−c̃13, c̃01+c̃23−c̃02−c̃13),whih means that the �attenings assigned to eah subsimplex of ∆i

n are equal. By Lemma 5.6,
|∆3

n−2(Z)| =
(n+1

3

), and the result follows. �11.1. Essential edges.De�nition 11.4. An edge of K is essential if the lifts to L have distint end points.Note that an edge may be essential even though it is homotopially trivial in K. Let L(0) denotethe zero skeleton of L.Lemma 11.5. Let ρ be a representation in SL(2, C) or PSL(2, C). A deoration of ρ determines a
ρ-equivariant map(11.9) D : L(0) → ∂H

3
= C ∪ {∞}, ei 7→ gi∞.Every suh map omes from a deoration, and the deoration is generi if and only if the vertiesof eah simplex of L map to distint points in C ∪ {∞}.Proof. Equivariane of (11.9) follows from the de�nition of a deoration. A ρ-equivariant map

D : L(0) → C ∪ {∞} is uniquely determined by its image of lifts ẽi ∈ L of the zero ells ei of K.Piking gi suh that gi∞ = D(ẽi), we de�ne a deoration by assigning the oset giN to ẽi. The laststatement follows from the fat that det(g1e1, g2e1) = 0 if and only if g1∞ = g2∞. �In the following we assume that the interior of M is a usped hyperboli 3-manifold H3/Γ with�nite volume.Proposition 11.6. If all edges of K are essential, the geometri representation has a generideoration.Proof. We identify π1(M) with Γ ⊂ PSL(2, C). Eah usp of M determines a Γ-orbit of points in
∂H3, and these orbits are distint (if two orbits interseted, they would be idential, thus orre-sponding to the same usp). Eah vertex of L orresponds to either a usp of M or an interior pointof M . Aordingly, we have L(0) = L

(0)
cusp ∪ L

(0)int . The stabilizer of a point in L
(0)
cusp is a parabolisubgroup of PSL(2, C), and thus �xes a unique point in C∪{∞}. We thus have an equivariant map

D : L
(0)
cusp → C ∪ {∞} taking a vertex v to the �xed point in ∂H3 of Stab(v) ⊂ PSL(2, C). Let e1and e2 be points in L

(0)
cusp onneted by an edge. Sine all edges of K are essential, e1 6= e2. Sine



42 STAVROS GAROUFALIDIS, DYLAN P. THURSTON, AND CHRISTIAN K. ZICKERTthe Γ-orbits of di�erent usps are distint, it follows that D(e1) 6= D(e2) if e1 and e2 orrespond todi�erent usps. If e1 and e2 orrespond to the same usp, there exists an element in Γ taking e1 to
e2. Sine only peripheral elements (i.e. usp stabilizers) have �xed points in C∪{∞}, it follows that
D(e1) 6= D(e2). We extend D to L(0) by hoosing any equivariant map L

(0)int → C∪{∞}. Sine suhmap is uniquely determined by �nitely many values (whih may be hosen freely), we an pik theextension so that the verties of eah simplex map to distint points. This proves the result. �Theorem 11.7. Suppose all edges of K are essential. The representation φn ◦ ρgeo is deteted by
Pn(K) if n is odd, and by P

σgeo
n (K) if n is even.Proof. By Proposition 11.6, P

σgeo

2 (K) detets ρgeo. The result now follows from Corollary 11.2. �Remark 11.8. The ensus triangulations all have essential edges.12. Gluing equations and Ptolemy assignmentsIn this setion we disuss the relation between Ptolemy assignments and solutions to the gluingequations. The latter were invented by Thurston [28℄ to expliitly ompute the hyperboli struture(and its deformations) of a triangulated hyperboli manifold, and used e�etively in [23, 18, 9℄.The gluing equations make sense for any 3-yle. They are de�ned by assigning a ross-ratio
zi ∈ C\{0, 1} to eah simplex ∆i of K. Given these, we assign ross-ratio parameters to the edgesof ∆i as in Figure 13.

0

1

2

3

z zz′

z′

z′′

z′′Figure 13. Assigning ross-ratio parameters to the edges of ∆i. By de�nition, z′ = 1

1−zand z′′ = 1 − 1

z
.There is a gluing equation for eah edge E in K and eah generator γ of the fundamental groupof eah boundary omponent of M . These are given by(12.1) ∏

e 7→E

z(e)ǫi(e) = 1,
∏

γ passes e

z(e)ǫi(e) = 1.Here z(e) denotes the ross-ratio parameter assigned to e, and ǫi(e) = ǫi if e is an edge of ∆i. Itfollows that the set of assignments ∆i 7→ zi ∈ C\{0, 1} satisfying the gluing equations (12.1) is analgebrai set V (K).Lemma 12.1. For every point {zi} ∈ V (K) there is a map D : L(0) → C ∪ {∞} suh that if
∆̃i is a lift of ∆i with verties e1, . . . , e3 in L, the ross-ratio of the ideal simplex with verties
D(e1), . . . ,D(e3) is zi. It is unique up to multipliation by an element in PSL(2, C). Moreover,there is a unique (up to onjugation) boundary-unipotent representation π1(M) → PSL(2, C) suhthat D is ρ-equivariant.



THE COMPLEX VOLUME OF SL(n, C)-REPRESENTATIONS OF 3-MANIFOLDS 43Proof. Pik a fundamental domain F for K in L. Pik a simplex ∆ in F and de�ne D by mappingthe �rst 3 verties of ∆ to 0, ∞ and 1. The map D is now uniquely determined by the ross-ratios.The fundamental group of M has a presentation with a generator for eah fae pairing of F . Theseond statement thus follows from the fat that PSL(2, C) is 3-transitive. We leave the details tothe reader. �Given a Ptolemy assignment on K, we assign the ross-ratio zi =
ci
03ci

12

ci
02ci

13

to ∆i. Note that thePtolemy relations imply that the ross-ratio parameters are given by(12.2) zi =
ci
03c

i
12

ci
02c

i
13

, z′i =
ci
02c

i
13

ci
01c

i
23

, z′′i = −ci
01c

i
23

ci
03c

i
12

.Theorem 12.2. There is a surjetive regular map(12.3) ∐

σ∈H2(K;Z/2Z)

P σ
2 (K) → V (K), c 7→ {zi =

ci
03c

i
12

ci
02c

i
13

}.The �bers are disjoint opies of (C∗)h, where h is the number of zero-ells of K.Proof. By a simple anellation argument (as in the proof of Zikert [31, Theorem 6.5℄), the gluingequations would be satis�ed if the formula (12.2) for z′′i did not have the minus sign. The minussign appears whenever the edge is 02 or 13. As explained in the proof of Proposition 7.7, anyurve passes these an even number of times. It thus follows that the ross-ratios satisfy the gluingequations. Surjetivity follows from Lemma 11.5, and the fat that �bers are (C∗)h follows fromthe fat that g1∞ = g2∞ if and only if g1N = g2dN for a unique diagonal matrix d. �Remark 12.3. Gluing equation varieties for n > 2 are studied in Garoufalidis-Goerner-Zikert [15℄.13. Other fieldsThe Ptolemy varieties Pn(K) and P σ
n (K) may be de�ned over an arbitrary �eld F , and asin Setion 9, a Ptolemy assignment determines a boundary-unipotent representation in SL(n,F ),respetively, p SL(n,F ). If E is a primitive extension of F ∗ by Z, there are maps(13.1) Pn(K)F → B̂E(F ), P σ

n (K)F → B̂E(F )PSLde�ned as in (5.10) using a set theoreti setion of E → F ∗ instead of a logarithm. If F is in�nite,the hain omplex of Ptolemy assignments omputes relative homology (see Proposition 9.6) andwe have maps(13.2) H3(SL(n,F )) → B̂E(F ), H3(p SL(n,F )) → B̂E(F )PSL.It thus follows that every boundary-unipotent representation has an extended Bloh group element
[ρ]. If F is a number �eld, the extended Bloh groups are independent of the extension E.Theorem 13.1. Let F be a number �eld, and let ρ : π1(M) → SL(n,F ) be a boundary-unipotentrepresentation. If ρ is irreduible, [ρ] lies in B̂(Tr(ρ)).Proof. Let σ be an automorphism of F over Tr(ρ) and let τ : F → C be an embedding. Then ρ and
σ ◦ ρ have the same traes, so τ ◦ρ and τ ◦σ◦ρ are onjugate in SL(n, C), and thus have the sameextended Bloh group element in B̂(C). By Corollary 3.6, it follows that [ρ] = [σ◦ρ] ∈ B̂(F ). Hene,
[ρ] is invariant under all automorphisms of F over Tr(ρ), so [ρ] ∈ B̂(Tr(ρ)) by Galois desent. �
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