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Abstract. Genus 2 mutation is the process of cutting a 3-manifold along an embedded closed genus 2
surface, twisting by the hyper-elliptic involution, and gluing back. This paper compares genus 2 mutation
with the better-known Conway mutation in the context of knots in the 3-sphere. Despite the fact that
any Conway mutation can be achieved by a sequence of at most two genus 2 mutations, the invariants
that are preserved by genus 2 mutation are a proper subset of those preserved by Conway mutation. In
particular, while the Alexander and Jones polynomials are preserved by genus 2 mutation, the HOMFLY-PT
polynomial is not. In the case of the sl2-Khovanov homology, which may or may not be invariant under
Conway mutation, we give an example where genus 2 mutation changes this homology. Finally, using these
techniques, we exhibit examples of knots with the same same colored Jones polynomials, HOMFLY-PT
polynomial, Kauffman polynomial, signature and volume, but different Khovanov homology.
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1. Introduction

In the 1980s, a plethora of new knot invariants were discovered, following the discovery of the Jones
polynomial [J]. These powerful invariants were by construction chiral, i.e. they were often able to distinguish
knots from their mirrors, as opposed to many of their classical counterparts. Soon after the appearance of
these new quantum invariants of knots, many people studied their behavior under other kinds of involutions,
and in particular under mutation. Chmutov, Duzhin, Lando, Lickorish, Lipson, Morton, Traczyk and others
pioneered the behavior of the quantum knot invariants under mutation; see [CDL, LL, MC, MR1] and
references therein. The quantum invariants come in two flavors: rationally valued Vassiliev invariants, and

Date: April 9, 2009.
N.D. was partially supported by the supported by the Sloan Foundation and by N.S.F. S.G. was partially supported by N.S.F.

1991 Mathematics Classification. Primary 57N10. Secondary 57M25.
Key words and phrases: mutation, symmetric surfaces, Khovanov Homology, volume, colored Jones polynomial, HOMFLY-PT

polynomial, Kauffman polynomial, signature.

1



2 N. M. DUNFIELD, S. GAROUFALIDIS, A. SHUMAKOVITCH, AND M. THISTLETHWAITE

polynomially valued exact invariants (such as the Jones, HOMFLY, Kauffman, Alexander polynomials), see
[Tu2]. Later on, abelian group valued invariants were constructed by Khovanov [Kh].

Here, we study the behavior of classical and quantum invariants of knots in S3 under mutation, building
on the above mentioned work. The notion of mutation was introduced by Conway in [Co], and has been used
extensively in various generalized forms. Let us start by explaining what we mean by mutation. Roughly,
mutation is modifying a 3-manifold by cutting it open along a certain kind of embedded surface, and then
regluing in a different way. More precisely, consider one of the surfaces F from Figure 1.1, together with the
specified involution τ ; we will call the pair (F, τ) a symmetric surface. Suppose F is a symmetric surface

τ2

τ1

τ3

τ τ τ

Type (1,2) Type (1,0) Type (2,0)Type (0,4)

Figure 1.1. Symmetric surfaces of types (0, 4), (1, 2), (1, 0), and (2, 0) and their involutions. There
are also symmetric surfaces of type (1, 1) and (0, 3) that are not pictured, since we will not need them
here.

properly embedded in a compact orientable 3-manifold. The mutant of M along F is the result of cutting M

open along F , and then regluing the two copies of F by the involution τ . The mutant manifold is denoted
M τ , and the operation is called mutation. When we want to distinguish the topological type of F , we refer
to (g, s)-mutation where g is the genus and s is the number of boundary components.

The involutions used in mutation have very special properties, e.g. if γ is a non–boundary-parallel simple
closed curve, then τ(γ) is isotopic to γ (neglecting orientations). As a result, while mutation is typically
violent enough to change the global topology of M , it is simultaneously subtle enough that many invariants
do not change. Studying this phenomenon has enriched our understanding of a number of invariants, be
they classical, quantum, or geometric.

When studying knots in S3, the most natural type of mutation is (0, 4)-mutation, which has a simple
interpretation in terms of a knot diagram, and is known to preserve a wide range of invariants. Here, we
study the effects of (2, 0)-mutation on knots in S3. By this, we mean the following. If F is a closed 2-surface
in S3, then the mutant (S3)τ is always homeomorphic to S3 (see Section 2.6). Thus if K is a knot in S3

which is disjoint from F , it makes sense to talk about its mutant Kτ .
In this context, (2, 0)-mutation is the most general type: any of the above mutations can be achieved

by a sequence of at most two (2, 0)-mutations (see Lemma 2.5 below). Given that any (0, 4)-mutation can
be implemented in this way, you might expect that an invariant unchanged by (0, 4)-mutation would also
be preserved by (2, 0)-mutations. It turns out that this is not the case, as you can see from the following
table; with the possible exception of Khovanov homology, all of the invariants listed there are preserved by
(0, 4)-mutation.

The results on the left-hand side are due either entirely or in large part to Ruberman [Ru], Cooper-
Lickorish [CL] and Morton-Traczyk [MT], see below for details; the results on the right are new. One
way of interpreting these results might be that the invariants on the left are more tied to the topology of
S3 \ K, whereas those on the right are more “diagrammatic” and tied to combinatorics of knot projections.
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Preserved by (2, 0)-mutation Changed by (2, 0)-mutation

Hyperbolic volume/Gromov norm of the knot exterior HOMFLY-PT polynomial
Alexander polynomial and generalized signature sl2-Khovanov Homology

Colored Jones polynomial (for all colors)

Table 1.2. Summary of known results on genus 2 mutation.

(Of course, this must be taken with more than a grain of salt, since knots are determined by their comple-
ments [GL1].) One of our original motivations for this work was to better understand the Volume Conjecture,
which proposes a relationship between the colored Jones polynomials and the hyperbolic volume. The fact
that both the colored Jones polynomials and hyperbolic volume are preserved by (2, 0)-mutation is positive
evidence for this conjecture.

One interesting open problem about (0, 4)-mutation is whether this operation can change the sl2-Khovanov
homology introduced in [Kh]. For (2, 0)-mutation, we settle the analogous question:

Theorem 1.3. The sl2-Khovanov Homology is not invariant under (2, 0)-mutation of knots. In particular,
the pair of (2, 0)-mutant knots in Figure 1.5 have differing Khovanov homologies.

For the odd variant of sl2-Khovanov homology, Bloom recently showed that it is invariant under (0, 4)-
mutation [B]; as a consequence, the normal sl2-Khovanov homology with mod 2 coefficients is also invariant.
We do not whether either of these invariants is preserved by (2, 0)-mutation.

Question 1.4. Is the odd sl2-Khovanov homology preserved by genus 2 mutation?

The sln-homology introduced by Khovanov and Rozansky [KR] cannot be invariant under (2, 0)-mutation,
simply because the Euler characteristic need not be, since the HOMFLY-PT polynomial can change under
(2, 0)-mutation.

Figure 1.5. The pair of knots 14n
22185 (left) and 14n

22589 (right), in Knotscape notation.

One final result of this paper is

Proposition 1.6. There exist knots with same colored Jones polynomials (for all colors), HOMFLY-PT and
Kauffman polynomials, volume and signature, but different Khovanov (and reduced Khovanov) homology.

The knots from Figure 1.5 are again examples here, and all the above claimed properties except for
the Khovanov homology are consequences of the fact that they are (2, 0)-mutant (see Figure 3.9.a). These
same knots were studied by Stoimenow and Tanaka [ST1, ST2], who showed that these knots are not (0, 4)-
mutants, yet have the same colored Jones polynomials. (Stoimenow and Tanaka use notation 1441721 and
1442125 for what we denote 14n

22185 and 14n
22589, respectively.)
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There are other invariants whose behavior under genus 2 mutation it would be interesting to understand.
In particular:

Question 1.7. Is the Kauffman polynomial invariant under genus 2 mutation? What about the property
of having unknotting number one?

Classical Conway (0, 4)-mutation preserves both these properties [L2, GL2]. As we discuss in Section 3.6
below, we expect that, in analogy with what happens with the HOMFLY-PT polynomial, genus 2 mutation
should be able to change the Kauffman polynomial. Addendum: Morton and Ryder have confirmed this,
showing that the Kauffman polynomial is not invariant under genus 2 mutation [MR2].

We now detail where the results in Table 1.2 come from. The invariance of the hyperbolic volume, or more
generally the Gromov norm, was proven by Ruberman for all types of mutation [Ru]. The statement [Ru,
Thm. 1.5] requires an additional hypothesis on F , but arguments elsewhere in [Ru] negate the need for this;
see our discussion of Theorem 2.4 below. Cooper and Lickorish proved the invariance of the Alexander poly-
nomial and generalized signature under a more limited class of (2, 0)-mutations than we consider here [CL].
This class, which we call handlebody mutations, turns out to be the main case anyway, and thus it is not
hard to conclude the more general result; see Theorem 2.9 below. In the case of the colored Jones polyno-
mials (for a definition see e.g. [J, Tu1]), the result essentially follows from Morton-Traczyk [MT], which we
modify as Theorem 3.2. In the case of the non-invariance of the HOMFLY-PT polynomials, we give explicit
examples based on the ideas of Section 3.4.

As usual, the presentation of our results does not follow the historical order by which they were discovered.
The project started by running a computer program of A.Sh. (see [Sh]) to all knots with less than or equal
to 16 crossings, taken from Knotscape [HTh]. The computer found a single pair of 14 crossing knots with the
same HOMFLY-PT polynomial, Kauffman polynomial, signature, volume and different Khovanov Homology,
and four pairs of 15 crossing knots with same behavior. The knots were isolated, redrawn, and a pattern was
found. Namely, the knots in the above pairs have diagrams that differ by a so-called cabled mutation (see
Section 2.10 for a definition). Cabled mutation can always be achieved by (2, 0)-mutation. This, together
with a Kauffman bracket skein theory argument (which we later found in Morton-Traczyk’s work [MT])
implies that these pairs have identical colored Jones polynomials, for all colors. At that time, the numerical
equality of the volumes of these pairs was rather mysterious. Later on, we found that cabled mutation is a
special case of (2, 0)-mutation. Ruberman’s theorem explained why these pairs have equal volume. Once it
was observed that Khovanov homology was not invariant under (2, 0)-mutation, we asked whether this was
true for other well-known knot invariants, such as the colored Jones polynomials, the HOMFLY-PT and the
Kauffman polynomials. Once we realized that the HOMFLY-PT and Kauffman polynomials ought to detect
(2, 0)-mutation (and even cabled mutation), we tried to find examples of such knots.

1.8. Acknowledgment. The authors wish to thank I. Agol, D. Bar-Natan and G. Masbaum for useful
conversations; L. Kauffman, J. Przytycki and F. Souza for organizing an AMS meeting in Snowbird, Utah,
and G. Masbaum and P. Vogel for their hospitality in Paris VII, where the work was initiated. Finally, we
wish to thank the computer team at Georgia Tech and in particular Lew Lefton and Justin Filoseta for their
support in large scale computations.

2. The topology of knot mutation

This section gives the basic topological lemmas about mutation that we will need. In addition to checking
that (2, 0)-mutation of a knot in S3 makes sense (i.e. mutating S3 along such a surface always gives back
S3), we will show that one can usually reduce to the case where the mutation surface has a number of special
properties. Finally, we introduce the notion of cabled mutation for knots in S3, which is a special type of
genus 2 mutation which is easy to realize diagrammatically.

We begin in the context of general 3-manifolds before specializing to the case of knots in S3. From a
topological point of view, it is often best to work with mutation surfaces that are incompressible. The
following proposition is implicit in [Ru, Sec. 5], and explicit in a slightly weaker form in [Ka2, Lem. 2.2]; one
application below will be to show that mutation makes sense for knots in S3.



BEHAVIOR OF KNOT INVARIANTS UNDER GENUS 2 MUTATION 5

Proposition 2.1. Let F be a closed genus 2 surface in a compact orientable 3-manifold M . Then either:

(1) F is incompressible, or
(2) M τ can be obtained by mutating along one or two incompressible, non-boundary parallel tori, or
(3) M τ ∼= M .

Proof. The basic idea here is that if F is compressible, then M τ is homeomorphic to the result of mutating
M along any surface obtained by compressing F . So suppose D is an embedded compressing disc for F .
Initially, let us suppose that ∂D is a non-separating curve in F . The key property of the hyper-elliptic
involution τ is that if γ is any non-separating simple closed curve in F , then τ(γ) is isotopic to γ with the
orientation reversed. Thus, we can isotope D so that τ(∂D) = ∂D, and the restriction of τ to ∂D is a
reflection (that is, conjugate to reflecting a circle centered at the origin of R

2 about the x-axis).
Now perform a surgery of F along D to obtain a surface T , which consists of the union of F \ N(∂D)

with two parallel copies of D. Since ∂D is non-separating, T is a torus. There is a natural homomorphism
σ of T which agrees with τ on F \ N(∂D) and permutes the two copies of D. We claim that

(1) The involution σ is just the elliptic involution of the torus shown in Figure 1.1.
(2) M τ ∼= Mσ.

The first point is clear, and so turning to the second let us assume (for notational simplicity only) that F

separates M . Denote by M1 and M2 the two pieces of M cut along F . Let X be the complement in M2

of a product regular neighborhood N of D; we can then view our surface T as ∂X . Both M τ and Mσ can
be thought of as obtained by gluing together the pieces M1, X , and N . Moreover, the way that M1 and
X are glued is exactly the same in both cases, since τ and σ agree on F \ N ; hence M τ and Mσ differ
only in how the ball N is attached. Since there is a unique way of attaching a 3-ball to a 2-sphere up to
homeomorphism, we have M τ ∼= Mσ as claimed. (You can also see the homeomorphism of N needed to
build the map M τ → Mσ directly — thinking of N as a pancake, just flip it over.)

Thus in the case that ∂D is non-separating, we have shown that M τ is homeomorphic to a mutant of M

along a torus T . If ∂D is separating, then the picture is essentially the same. In this case, we can isotope
∂D so that τ fixes it pointwise. Proceed as above, the only difference being that now surgering F along D

results in a disconnected surface consisting of two tori. Thus in either case, M τ is homeomorphic to the
result of mutating M along either one or two tori.

So to complete the proof of the proposition, we just need to show that if T is a torus in M with elliptic
involution σ, then either

(1) T is incompressible and not boundary parallel.
(2) Mσ ∼= M .

If T were boundary parallel, then mutating along it doesn’t change the topology since the gluing map σ

extends over the product region bounded by T and a component of ∂M . If T is compressible, then arguing
as above we see that Mσ is homeomorphic to the result of mutating along a 2-sphere S in M , where the
gluing map φ is just rotation of S about some axis through angle π; since φ is isotopic to the identity, we
have that M ∼= Mφ ∼= Mσ, as desired. �

Remark 2.2. Later, we will apply this proposition to a manifold M where ∂M is a torus, and need the
following fact. As setup, note that since F is closed, there is a canonical identification of ∂M with ∂M τ .
The observation is that if we end up in case (3) where M τ ∼= M , then the proof shows that there is
a homeomorphism f : M → M τ where the restriction of f to ∂M is either the identity or the elliptic
involution. (The later happens when part of F compresses to something parallel to the boundary torus.)

Remark 2.3. While Proposition 2.1 nominally concerns only genus 2 mutation, there are analogous statements
for any of the symmetric surfaces, which follow from the same proof.

Ruberman proved that if M is hyperbolic, and F any symmetric surface in M , then M τ is also hyperbolic
and, moreover, M and M τ have the same volume. This is stated in [Ru, Thm. 1.3] with the additional
hypothesis that F is incompressible. However, as he observed in Section 5 of that same paper, this hypothesis
can be dropped by appealing to Proposition 2.1 and Remark 2.3. Similarly, one has:
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Theorem 2.4 ([Ru]). Let M be a orientable 3-manifold, whose boundary, if any, consists of tori. Then the
result of mutating M along any symmetric surface has the same Gromov norm as M itself.

In the context of knots in S3 that we consider below, we will be dealing with manifolds where ∂M is
a single torus. In this case, Ruberman [Ru, Sec. 5] and Tillmann [Ti1, Rem. 1.3] observed that all of the
types of mutations pictured in Figure 1.1 can be reduced to a sequence of genus 2 mutations, provided the
mutation surface is separating.

Lemma 2.5 ([Ru, Ti1]). Suppose M is a compact orientable 3-manifold whose boundary is a single torus.
Let F be one of the symmetric surfaces depicted in Figure 1.1. Provided F is separating, mutation along F

can always be accomplished by a composition of at most two (2, 0)-mutations.

The idea they used to prove this lemma is to tube copies of F along ∂F to build a closed genus 2 surface
S. Mutating along S is the same as doing a certain mutation along the original surface F , for reasons similar
to the proof of Proposition 2.1. In the case where F is a 4-punctured sphere, it may not be possible that
the desired involution τi can be directly induced by mutation along a tubed surface S; however, in this case
the needed mutation can be realized by mutating along the possible choices for S in succession.

2.6. Genus 2 mutation of knots in S3. Suppose that F is a closed genus 2 surface in S3. As S3 is simply
connected, the Loop Theorem implies that F , as well as any torus in S3, is compressible. Therefore, the
trichotomy of Proposition 2.1 forces (S3)τ , the result of mutation along F , to again be homeomorphic to S3.
Thus if K is a knot in S3 disjoint from F , then we can consider the resulting knot Kτ in (S3)τ ∼= S3, which
we call the mutant of K along F .

When the surface F bounds a genus 2 handlebody H in S3, then the mutation operation is particularly
simple to describe, since the hyper-elliptic involution τ extends to give a self-homeomorphism of H . When
the knot K is contained in H , we say that Kτ is obtained from K by (2, 0)-handlebody mutation. (If
instead K is in the complement of H , then Kτ ∼= K.) Such (2, 0)-handlebody mutation was studied by
Cooper-Lickorish [CL], who were interested in how it affected the Alexander polynomial.

As the next proposition shows, (2, 0)-handlebody mutation is actually the main interesting case of genus
2 mutation, the only other case being (1, 0)-handlebody mutation, which is defined analogously.

Proposition 2.7. Let K be a knot in S3 which is disjoint from a genus 2 surface F . Then either:

• Kτ is obtained from K by (2, 0)-handlebody mutation, or
• Kτ is obtained from K by one or two (1, 0)-handlebody mutations, or
• Kτ ∼= K.

Proof. Let M = S3 \ N(K) be the exterior of K. Applying Proposition 2.1 to F thought of as a surface in
M , we have three cases.

First, F may be incompressible in M ; in this case, we claim this is actually a (2, 0)-handlebody mutation.
Let X and Y be the two pieces of S3 cut along F , and suppose that K lies in X . Since F is incompressible
in M , it is also incompressible as the boundary of Y . Thus any compressing disc for F in S3 lies in X .
Pick two such compressing discs, whose boundaries are disjoint non-parallel non-separating curves in F (by
Dehn’s Lemma, every embedded curve in F bounds a compressing disc as π1(S

3) = 1). If we compress F

along both these discs, we get a sphere which bounds a ball on both sides. This shows X is handlebody.
Second, suppose mutation along F in M can be achieved by one or two mutations along incompressible

tori. The argument just given shows that those are (1, 0)-handlebody mutations.
Finally, suppose that we are in the final case where M τ ∼= M . This shows that the complements of Kτ

and K are the same, but we need to show that the knots themselves are the same. Of course, knots are
determined by their complements [GL1], but we now give an elementary argument. We can reconstruct K

from M if we just mark the loop on ∂M which is the meridian for K, and the same for Kτ and M τ . By
Remark 2.2, the homeomorphism of M τ → M takes the meridian to the meridian, establishing Kτ ∼= K as
desired. �

A (1, 0)-handlebody mutation may be realized by a (2, 0)-handlebody mutation simply by adding a nuga-
tory handle. Thus,



BEHAVIOR OF KNOT INVARIANTS UNDER GENUS 2 MUTATION 7

Corollary 2.8. Any knot invariant which does not change under (2, 0)-handlebody mutation, does not change
under (2, 0)-mutation.

Using this, we can generalize [CL] to:

Theorem 2.9. The Alexander polynomial and the generalized signatures of a knot in S3 do not change
under (2, 0)-mutation.

Proof. In [CL, Cor.8] Cooper-Lickorish prove that these invariants do not change under (2, 0)-handlebody
mutation. The result thus follows from Corollary 2.8. �

2.10. Cabled mutation. In this short section, we introduce the notion of cabled mutation, which is a
special form of genus 2 mutation which we will use to construct examples where the HOMFLY-PT polynomial
changes under mutation.

Consider a framed 2-2 tangle T in a ball, that is, a ball containing two disjoint properly embedded arcs
(the strings), where each arc has a preferred framing. If T were part of a knot, then we could do (0, 4)-
mutation on it using one of the three involutions pictured in Figure 1.1. Let τ be one of these involutions
which is string-preserving, that is, exchanges one of the endpoints of a fixed arc with the other. Let T τ

denote the image of T under the involution. Given natural numbers n, m ≥ 1, let T (n, m) (resp. T τ (n, m))
denote the tangle obtained by taking a n and m parallel of the strings of T (resp. T τ ).

Definition 2.11. Connected cabled mutation (or simply, cabled mutation) is the result of replacing T (n, m)
by T τ (n, m) in some planar diagram of a knot of a knots in S3.

When n = m = 1, cabled mutation is just usual (0, 4)-mutation. One motivation for studying this notion is
that (0, 4)-mutation followed by connected cabling can be often be achieved by a connected cabled mutation.

Our next lemma discusses the relation between cabled mutation and genus 2 mutation.

Lemma 2.12. Cabled mutation is a special form of genus 2 mutation.

Proof. Starting with the boundary of the tangle T we can attach two tubes inside it, containing the strands
of T (n, m), to produce a closed genus 2 surface F . The cabled mutation on T (n, m) can then be achieved by
cutting along F and regluing; because the original involution on T is string preserving, the map we reglue F

by is the hyper-elliptic involution τ pictured in Figure 1.1. (If τ was not strand preserving, then the regluing
map for F is some other involution and this is not a mutation.) �

3. Behavior of quantum invariants under mutation

As mentioned in the introduction, many knot invariants are preserved under Conway (0, 4)-mutation.
Such invariants include the HOMFLY-PT (and, hence, Jones and Alexander) and Kauffman polynomials,
see for example [L2, LL, MC, MT, CL]. In this section we analyze the behavior of several quantum invariants
under (2, 0)-mutation.

3.1. Invariance of the colored Jones polynomials under (2, 0)-mutation. Morton and Traczyk showed
that the colored Jones polynomials are invariant under Conway mutation [MT]. As we now describe, their
approach easily generalizes:

Theorem 3.2. The colored Jones polynomials of a knot are invariant under (2, 0)-mutation for all colors.

Proof. The theorem follows from the fact that the colored Jones polynomial can be defined via the Kauffman
bracket skein theory, in the style of topological quantum field theory, see [Kf]. By Corollary 2.8 it suffices to
consider genus 2 handlebody mutation.

The Kauffman bracket skein module of a genus 2 handlebody has a basis that consists of all the colored
trivalent graphs G(a, b, c), where a, b, and c are nonnegative integers with c ≤ 2 min{a, b} (see Figure 3.3).
Indeed, a genus 2 handlebody is diffeomorphic to a (twice punctured disk)× I, and a basis for the Kauffman
bracket of the latter is given in [PS, Cor. 4.4]. Since this basis is clearly invariant under τ , it implies that
the colored Jones polynomials are invariant under (2, 0)-handlebody mutation, proving the theorem. �

Combining Theorem 3.2 with the Melvin-Morton-Rozansky Conjecture (settled in [B-NG]) gives an alter-
nate proof of Theorem 2.9, namely that the Alexander polynomial of a knot is invariant under (2, 0)-mutation.
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b

ca

Figure 3.3. Basis of the Kauffman skein module of a closed genus 2 surface.

3.4. Non-invariance of the HOMFLY-PT polynomial under (2, 0)-mutation. It is not hard to see
that the HOMFLY-PT and Kauffman polynomials are invariant under (0, 4)-mutation [L2]. This follows
from the fact that the corresponding skein modules of a 3-ball with 4 marked points on the boundary have
a basis consisting of the following three diagrams that are invariant under the involution in question:

In contrast, genus 2 mutation can change the HOMFLY-PT polynomial. In particular, we found a 75
crossing knot K75 which has a cabled mutant with differing HOMFLY-PT polynomials. This knot is depicted
in Figure 3.5. As you can see, K75 contains a (3, 3)-cabled tangle which is the region below the horizontal
line; let Kτ

75 be the cabled mutant of K75 with respect to a string-preserving involution τ of this tangle.

Figure 3.5. The knot K75. It and its cabled mutant Kτ
75 have different HOMFLY-PT polynomials

Direct computation with the Ewing-Millett computer program implemented in Knotscape shows that K75

and Kτ
75 have different HOMFLY-PT polynomials. Coefficients of these polynomials are given in Table 3.15

on page 14 (with zero entries omitted). For example, the coefficient of the monomial m2l−2 is 56 in both
polynomials. On the other hand, the coefficients of m4l−2 are −953 for K75 and −964 for Kτ

75.
Here is a heuristic reason why the HOMFLY-PT polynomial is not invariant under (2, 0)-mutation, which

explains how we came across our pair of 75 crossing knots. First, it was already known that there are
(2, 0)-mutant links with different HOMFLY-PT polynomials [CL]. In particular, start with the Kinoshita-
Terasaka and Conway knots which are a famous pair of 11 crossing knots which differ by (0, 4)-mutation.
Morton and Traczyk showed (see [MC]) that a certain disconnected 3-cable on these knots have differing
HOMFLY-PT polynomials; this gives a pair of cabled-mutant links with distinct HOMFLY-PT polynomials.
(In contrast, Lickorish-Lipson showed [LL] that the HOMFLY-PT polynomial of 2-cables of mutant knots
are always equal.) This suggests that we should have a good chance of getting a pair of connected cabled
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mutant knots with distinct HOMFLY-PT polynomials by the following procedure: take as a pattern tangle
the one that appears in the Kinoshita-Terasaka and Conway pair, cable each of its components 3 times, and
close it up to a knot in some fairly arbitrary way. This is exactly how we found the pair of knots with 75
crossings.

3.6. Expected non-invariance of the Kauffman polynomial under (2, 0)-mutation. The heuristic
reasons for the non-invariance of the HOMFLY-PT polynomial under (2, 0)-mutation applies equally well
in the case of the Kauffman polynomial. For this reason, we expect that the Kauffman polynomial is not
invariant under (2, 0)-mutation. To show this, it suffices to present a pair of cabled mutant knots with
different Kauffman polynomials. However, the available computer programs for computing the Kauffman
polynomial do not work well with knots with more than 50 crossings, and this has prevented us from
examining any interesting examples.

3.7. Proof of Proposition 1.6. Now we show there exist knots with the same colored Jones, HOMFLY-
PT, and Kauffman polynomials, the same volume and signature, but different Khovanov homology. Consider
the tangles T and T τ from Figure 3.8. Denote by T (1, n) and T τ(1, n) their (1, n)-cables, respectively (for
some fixed n). Let K and Kτ be two knots that differ by replacement of T (1, n) with T τ (1, n). In particular,
K and Kτ are connected cabled mutants and, thus, (2, 0)-mutant. Theorems 2.4 and 3.2 thus imply that
K and Kτ have equal colored Jones polynomials and volume. A priori, K and Kτ could have different
HOMFLY-PT and Kauffman polynomials. However, an elementary computation in the respective skein
theories imply that K and Kτ also have equal HOMFLY-PT and Kauffman polynomials.

T : T τ :

n strands
︷ ︸︸ ︷

T τ(1, n):T (1, n):

n strands
︷ ︸︸ ︷

Figure 3.8. Cabling of a tangle and its mutant.

When n = 2, let us choose the closure of T (1, 2) in one of the ways from Figure 3.9 to obtain five pairs of
knots. In Knotscape notation [HTh], these pairs are (14n

22185, 14n
22589), (15n

57606, 15n
57436), (15n

115375, 15n
51748),

(15n
133697, 15n

135711), and (15n
148673, 15

n

151500), where the bar above the number of crossings means the mirror
image of the corresponding knot. Computer calculations with KhoHo [Sh] show that knots from these pairs
have different Khovanov Homology (see Section 3.10).

3.10. Knots with few crossings. We say that two knots are almost mutant if they have the same
HOMFLY-PT and Kauffman polynomials, signature, and hyperbolic volume. This is an equivalence re-
lation. Note that mutant knots are almost mutant.

We can partition the set of knots with a bounded number of crossings according to the equivalence
relation of being almost mutant. We worked out these equivalence classes for all knots with at most 16
crossings. As it turns out, almost mutant knots with at most 16 crossings always have the same number
or crossings. As a consequence, two such knots are either both alternating or both non-alternating. This
follows from the fact that the span of the Jones polynomial of a knot equals the number of crossings for
this knot if and only if the knot is alternating. For non-alternating knots, Table 3.11 lists the number of
such equivalence classes of a given size. We restrict the table to non-alternating knots only because we are
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a. Knots 14n
22185 and 14n

22589.

Common closure: tangle T (1, 2)

c. Knots 15n
115375 and 15n

51748.b. Knots 15n
57606 and 15n

57436.

e. Knots 15n
148673 and 15

n

151500.d. Knots 15n
133697 and 15n

135711.

Figure 3.9. Five pairs of cabled mutant knots with at most 15 crossings that have different Khovanov
homology. They are closures of the T (1, 2) tangle.

interested primarily in the possibilities for the Khovanov homology of almost mutant pairs; for alternating
knots, the Khovanov homology (at least the free part thereof) is completely determined by their Jones
polynomials and signature [L1].

The number of knots in Table 3.11 is taken from Knotscape, which does not distinguish between mirror
images. Therefore, we considered each knot twice: the knot itself and its mirror image. The number of
amphicheiral knots can be found in [HThW]. The notation a1 : n1, a2 : n2, . . . , ak : nk means that there are
nj equivalence classes of size aj for j = 1, 2, . . . , k.

number number counting amphicheiral
of crossings of knots mirror images knots size and number of almost mutant classes

≤ 13 6236 12468 4 2: 1028, 3: 54, 4: 42, 6: 2

14 27436 54821 51 2: 5349, 3: 298, 4: 359, 6: 30, 8: 10

15 168030 336059 1 2: 35423, 3: 1368, 4: 4088, 6: 290, 8: 136

16 1008906 2017322 490 2: 212351, 3: 6612, 4: 33156, 6: 2159, 7: 20,
8: 2229, 9: 4, 10: 8, 12: 201, 16: 22, 20: 2

Table 3.11. Sizes and numbers of almost mutant classes of non-alternating knots

It is remarkable that very few almost mutant knots have different Khovanov homology. There are only
5 pairs (10 if counted with mirror images) of such knots with at most 15 crossings. They are exactly the 5
cabled mutant pairs from Section 3.7 (see Figure 3.9)! We list values of various knots invariants for these
knots below.

There are 27 pairs (54 with mirrors) of almost mutant knots with 16 crossings that have different Khovanov
homology. Many of these pairs consist of cabled mutant knots, but we could not verify them all. The pairs
are: (16n

257474, 16n
293658), (16n

258027, 16n
380926), (16n

258035, 16n
359938), (16n

261803, 16n
300395), (16n

262535, 16n
300387),

(16n
306846, 16n

307597), (16n
332130, 16n

707045), (16n
337388, 16n

697474), (16n
472161, 16n

635329), (16n
564024, 16n

564036),

(16n
564059, 16n

564068), (16n
789164, 16n

797712), (16n
789206, 16n

797688), (16n
809314, 16

n

850490), (16n
809334, 16

n

850512),
(16n

812818, 16n
850972), (16n

820956, 16n
820968), (16n

822219, 16
n

822229), (16n
878609, 16

n

944604), (16n
884231, 16n

884268),
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(16n
885298, 16n

885312), (16n
885305, 16n

885319), (16n
885467, 16n

885968), (16n
890470, 16

n

944600), (16n
937845, 16

n

947575),
(16n

939163, 16n
945493), (16n

943082, 16n
943119).

We used Knotscape [HTh] to list all almost mutant knots with at most 16 crossings. Khovanov homology
was computed using KhoHo [Sh] for all knots with at most 15 crossings and JavaKh [B-NGr] for non-alternating
knots with 16 crossings. It is worth noticing that Knotscape only computes hyperbolic volume with the
precision of 12 significant digits. We used program Snap [G] to compute the volume with the precision
of 180 significant digits to verify our data. As it turns out, there are no knots with at most 16 crossings
that have non-zero difference in hyperbolic volumes that is less than 10−13. Only 132 pairs of knots have
difference in volumes less than 10−9 and, hence, are considered as having the same volume by Knotscape.
None of these pairs are almost mutants.

To end this section we list values of some quantum and hyperbolic invariants for the almost mutant knots
with at most 15 crossings that have different Khovanov homology. The data are presented in Tables 3.12–
3.14. They were computed using Knotscape [HTh] and KhoHo [Sh]. HOMFLY-PT and Kauffman polynomials
are given by the tables of their coefficients. Our notation for Khovanov homology is borrowed from [B-N2].
An expression ai

j in the “ranks” string means that the multiplicity of Z in the Khovanov homology group
with homological grading i and q-grading j is a. Negative grading is shown with underlined numbers. A
similar convention is used for 2-torsion as well (this is the only torsion that appears for these knots). In this
case, a is the multiplicity of Z2. For example, the homology group of 14n

22185 with homological grading 0
and q-grading (−1) is Z

2 ⊕ Z
2
2 (see Table 3.12).

14n

22185
and 14n

22589

Alexander: 1

Jones: − t−6 + t−5 + t−2 − t−1 + 2− t

− t4 + t5

HOMFLY-PT:

l−4 l−2 1 l2 l4

1 −3 8 −5 1
m2 −4 14 −11 1
m4 −1 7 −6
m6 1 −1

Signature: 0 Volume: 8.878159662

Kauffman:

a−4 a−3 a−2 a−1 1 a a2 a3 a4 a5

1 1 −5 −8 −3
z2 5 11 11 9 4
z4 −8 −10 15 32 15
z6 −18 −30 −22 −27 −17
z8 14 18 −15 −51 −32

z10 20 27 13 26 20
z12 −7 −8 7 35 27
z14 −8 −9 −2 −9 −8
z16 1 1 −1 −10 −9
z18 1 1 1 1
z20 1 1

Khovanov Homology for 14n

22185
:

ranks: 1
7
13 1

6
9 1

4
7 1

3
7 1

3
3 1

2
5 1

2
3 1

1
3 1

1
1 10

3 20
1 20

1 21
1 11

3 12
1 12

3 12
5 13

3 13
5 13

7 14
7 15

7 16
11

2-torsion: 1
6
11 1

4
9 1

4
7 1

3
7 2

3
5 1

2
5 2

1
3 1

1
1 20

1 10
1 11

1 11
1 12

3 13
3 13

5 14
5 16

9

Khovanov Homology for 14n

22589
:

ranks: 1
7
13 1

6
9 1

5
9 1

4
9 1

4
7 1

4
5 1

3
7 1

3
5 1

3
3 1

2
5 2

2
3 1

1
3 1

1
1 1

1
1 20

1 20
1 11

1 11
3 12

1 12
5 13

5 15
7 16

11

2-torsion: 1
6
11 1

4
7 1

3
7 1

3
5 1

2
5 1

1
3 1

1
1 10

3 20
1 11

1 21
1 12

3 23
3 13

5 14
5 14

7 16
9

Table 3.12. Various invariants of almost mutant knots with different Khovanov Homology (part 1)



12 N. M. DUNFIELD, S. GAROUFALIDIS, A. SHUMAKOVITCH, AND M. THISTLETHWAITE

15n

57436
and 15n

57606

Alexander: − t−2 + 3− t2

Jones: t−7 − t−6 + t−4 − 2t−3 + 2t−2

− 2t−1 + 2− t2 + 2t3 − 2t4 + t5

HOMFLY-PT:

l−6 l−4 l−2 1 l2 l4

1 2 −4 3 −1 1
m2 1 −5 3 −1 −3 1
m4 −1 1 −1

Signature: 0 Volume: 12.529792456

Kauffman:

a−4 a−3 a−2 a−1 1 a a2 a3 a4 a5 a6

1 1 1 −3 −4 −2
z2 2 2 −4 −10 −6
z4 −5 −5 8 23 30 15
z6 −14 −18 13 44 27
z8 10 4 −19 −40 −59 −32

z10 24 31 −15 −69 −47
z12 −6 7 20 21 41 27
z14 −13 −15 7 43 34
z16 1 −6 −8 −3 −11 −9
z18 2 2 −1 −11 −10
z20 1 1 1 1
z22 1 1

Khovanov Homology for 15n

57436
:

ranks: 1
8
15 1

7
11 1

5
9 2

4
9 1

4
5 1

3
7 2

3
5 2

2
5 1

2
3 1

1
5 2

1
3 2

1
1 10

3 30
1 30

1 11
1 31

1 11
3 22

1 12
3 22

5 13
3 23

5 14
5 14

7 15
7 15

9 16
11

2-torsion: 1
7
13 1

5
11 1

5
9 1

4
9 2

4
7 2

3
7 2

2
5 1

2
3 3

1
3 1

1
1 10

3 20
1 11

1 11
1 12

1 22
3 23

3 14
5 15

7 16
9

Khovanov Homology for 15n

57606
:

ranks: 1
8
15 1

7
11 1

6
11 1

5
11 1

5
9 1

5
7 2

4
9 1

4
7 1

4
5 1

3
7 3

3
5 2

2
5 1

2
3 1

2
1 2

1
3 2

1
1 10

3 20
1 30

1 11
1 21

1 11
3 12

1 12
3 12

5 13
3 13

5 14
5 14

7 15
7 15

9 16
11

2-torsion: 1
7
13 1

5
9 1

4
9 1

4
7 2

3
7 1

2
5 1

2
3 1

1
5 3

1
3 10

3 30
1 11

1 11
1 22

1 22
3 23

3 13
5 14

5 15
7 16

9

15n

133697
and 15n

135711

Alexander: t−3 − t−2 − t−1 + 3− t− t2

+ t3

Jones: − t−6 + 2t−5 − 2t−4 + t−3 − t−1

+ 3− 2t+ 2t2 − t3 + t5 − t6

HOMFLY-PT:

l−4 l−2 1 l2 l4

1 −2 5 −6 7 −3
m2 −3 10 −12 13 −4
m4 −1 6 −6 7 −1
m6 1 −1 1

Signature: 0 Volume: 12.569864535

Kauffman:

a−5 a−4 a−3 a−2 a−1 1 a a2 a3 a4 a5

1 −3 −7 −6 −5 −2
z2 6 11 6 2 4 3
z4 12 28 30 23 9
z6 −18 −35 −10 6 −12 −11
z8 −28 −48 −39 −48 −29

z10 20 32 −1 −26 2 15
z12 26 35 20 46 35
z14 −8 −10 5 26 12 −7
z16 −9 −10 −3 −17 −15
z18 1 1 −1 −9 −7 1
z20 1 1 2 2
z22 1 1

Khovanov Homology for 15n

133697
:

ranks: 1
7
13 1

6
11 1

6
9 1

5
9 1

5
7 1

4
7 1

4
5 1

3
7 1

3
5 1

3
3 1

2
5 2

2
3 1

2
1 2

1
3 1

1
1 1

1
1 30

1 30
1 11

1 11
1 21

3 32
3 12

5 13
3 13

5 23
7 14

5 14
7 14

9 15
9 16

9 17
13

2-torsion: 1
6
11 1

5
9 1

4
7 1

3
7 2

3
5 2

2
5 2

2
3 1

1
3 1

1
1 30

1 10
1 31

1 11
3 12

1 12
3 23

5 14
5 14

7 15
7 17

11

Khovanov Homology for 15n

135711
:

ranks: 1
7
13 1

6
11 1

6
9 1

5
9 1

5
7 2

4
7 1

4
5 2

3
7 1

3
5 2

3
3 1

2
5 3

2
3 1

2
1 2

1
3 2

1
1 1

1
1 30

1 30
1 10

3 11
1 21

3 22
3 12

5 13
3 23

7 14
7 16

9 17
13

2-torsion: 1
6
11 1

5
9 1

4
7 2

3
5 2

2
5 1

2
3 1

1
3 1

1
1 20

1 10
1 11

1 31
1 12

1 22
3 23

5 24
5 14

7 15
7 15

9 17
11

Table 3.13. Various invariants of almost mutant knots with different Khovanov Homology (part 2)
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15n

115375
and 15n

51748

Alexander: 1

Jones: t−7 − t−6 − t−3 + t−2 − t−1 + 2
+ t3 − t4

HOMFLY-PT:

l−6 l−4 l−2 1 l2

1 1 −6 9 −3
m2 1 −11 14 −4
m4 −6 7 −1
m6 −1 1

Signature: 0 Volume: 8.925447697

Kauffman:

a−3 a−2 a−1 1 a a2 a3 a4 a5 a6

1 3 9 6 −1
z2 −3 −9 −17 −19 −8
z4 −10 −21 −4 19 12
z6 9 17 37 62 33
z8 14 21 −7 −45 −31

z10 −6 −8 −28 −78 −52
z12 −7 −8 6 34 27
z14 1 1 9 44 35
z16 1 1 −1 −10 −9
z18 −1 −11 −10
z20 1 1
z22 1 1

Khovanov Homology for 15n

115375
:

ranks: 1
8
15 1

7
11 1

5
9 1

4
9 1

4
5 1

3
7 1

3
5 1

2
5 1

2
3 1

1
5 1

1
3 1

1
1 30

1 20
1 11

1 11
1 11

3 12
1 12

3 12
5 13

5 14
5 15

9

2-torsion: 1
7
13 1

5
11 1

5
9 1

4
9 2

4
7 1

3
7 2

2
5 1

2
3 2

1
3 1

1
1 10

3 10
1 11

1 12
1 12

3 13
3 15

7

Khovanov Homology for 15n

51748
:

ranks: 1
8
15 1

7
11 1

6
11 1

5
11 1

5
9 1

5
7 1

4
9 1

4
7 1

4
5 1

3
7 2

3
5 1

2
5 1

2
3 1

2
1 1

1
3 1

1
1 20

1 20
1 11

1 11
3 12

3 14
5 15

9

2-torsion: 1
7
13 1

5
9 1

4
9 1

4
7 1

3
7 1

2
5 1

2
3 1

1
5 2

1
3 10

3 20
1 11

1 22
1 12

3 13
3 13

5 15
7

15n

148673
and 15

n

151500

Alexander: t−4 − 2t−3 + t−2 + 3t−1 − 5
+ 3t+ t2 − 2t3 + t4

Jones: − t−3 + 2t−2 − 2t−1 + 1+ t− t2

+ 3t3 − 3t4 + 2t5 − t6 + t8 − t9

HOMFLY-PT:

1 l2 l4 l6 l8

1 −2 5 −2 1 −1
m2 −6 13 −2 1 −1
m4 −5 15 −1
m6 −1 7
m8 1

Signature: −2 Volume: 13.081220984

Kauffman:

a−9 a−8 a−7 a−6 a−5 a−4 a−3 a−2 a−1 1 a

1 −1 −1 −2 −5 −2
z2 5 5 −2 −2 2 2
z4 10 12 13 22 11
z6 −18 −22 10 16 −9 −11
z8 −28 −32 −22 −48 −30

z10 20 25 −13 −32 1 15
z12 26 28 13 46 35
z14 −8 −9 7 27 12 −7
z16 −9 −9 −2 −17 −15
z18 1 1 −1 −9 −7 1
z20 1 1 2 2
z22 1 1

Khovanov Homology for 15n

148673
:

ranks: 1
5
7 1

4
5 1

4
3 1

3
3 1

3
1 1

2
1 1

2
1 1

1
1 1

1
1 1

1
3 20

1 30
3 10

5 21
3 11

5 11
7 32

5 22
7 13

5 13
7 33

9 34
9 14

11 15
9 15

11 25
13 16

11 16
13 16

15 17
15 18

15 19
19

2-torsion: 1
4
5 1

3
3 1

2
1 1

1
1 2

1
1 20

1 20
3 11

3 11
5 32

5 12
7 43

7 13
9 14

7 14
9 25

11 16
11 16

13 17
13 19

17

Khovanov Homology for 15
n

151500
:

ranks: 1
5
7 1

4
5 1

4
3 1

3
3 1

3
1 2

2
1 1

2
1 2

1
1 1

1
1 2

1
3 20

1 40
3 10

5 21
3 21

5 11
7 32

5 22
7 12

9 13
7 33

9 24
9 14

11 15
9 25

13 16
13 18

15 19
19

2-torsion: 1
4
5 1

3
3 1

2
1 2

1
1 20

1 10
3 11

3 11
5 22

5 12
7 13

5 43
7 14

7 24
9 25

11 26
11 16

13 17
13 17

15 19
17

Table 3.14. Various invariants of almost mutant knots with different Khovanov Homology (part 3)
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K75 l−6 l−4 l−2 1 l2 l4 l6 l8 l10 l12 l14

1 −2 −1 3 3 −1 −1

m2 7 56 139 135 25 −23 −11 −22 −21 −5

m4 −211 −953 −1458 −523 454 −151 −622 −90 128 −14 −26

m6 1579 5441 4719 −3552 −4992 5025 8085 1863 −426 586 365

m8 −5299 −14273 77 30645 15926 −36529 −42026 −8337 844 −4408 −2181

m10 9130 16660 −36120 −94856 −14197 132597 123772 19005 −21 16978 7239

m12 −7427 −370 97671 154882 −38199 −291772 −234023 −25052 −4083 −39284 −14827

m14 −161 −22770 −125295 −136384 136281 425309 301818 17636 9947 59198 19943

m16 6309 29798 83571 43754 −205222 −430970 −273994 −1817 −12278 −60701 −18164

m18 −6442 −19849 −17860 35183 188278 311912 177631 −8519 9103 43287 11276

m20 3412 7996 −16095 −50831 −115309 −163389 −82376 8513 −4248 −21639 −4732

m22 −1083 −2018 16221 30148 48742 62044 27027 −4244 1254 7544 1313

m24 207 312 −7152 −10708 −14310 −16893 −6106 1265 −227 −1794 −230

m26 −22 −27 1859 2424 2871 3209 901 −228 23 277 23

m28 1 1 −293 −344 −376 −403 −78 23 −1 −25 −1

m30 26 28 29 30 3 −1 1

m32 −1 −1 −1 −1

Kτ
75

l−6 l−4 l−2 1 l2 l4 l6 l8 l10 l12 l14

1 −2 −1 3 3 −1 −1

m2 7 56 139 135 25 −23 −11 −22 −21 −5

m4 −211 −964 −1533 −740 111 −466 −783 −125 131 −12 −26

m6 1579 5507 5179 −2207 −2871 6936 9016 2038 −451 577 366

m8 −5299 −14405 −1058 27131 10403 −41352 −44238 −8694 894 −4402 −2181

m10 9130 16781 −34668 −89806 −6231 139236 126581 19388 −56 16977 7239

m12 −7427 −425 96604 150503 −45229 −297275 −236105 −25284 −4073 −39284 −14827

m14 −161 −22758 −124827 −134003 140223 428170 302742 17715 9946 59198 19943

m16 6309 29797 83450 42938 −206629 −431908 −274235 −1831 −12278 −60701 −18164

m18 −6442 −19849 −17843 35354 188587 312100 177665 −8518 9103 43287 11276

m20 3412 7996 −16096 −50851 −115347 −163410 −82378 8513 −4248 −21639 −4732

m22 −1083 −2018 16221 30149 48744 62045 27027 −4244 1254 7544 1313

m24 207 312 −7152 −10708 −14310 −16893 −6106 1265 −227 −1794 −230

m26 −22 −27 1859 2424 2871 3209 901 −228 23 277 23

m28 1 1 −293 −344 −376 −403 −78 23 −1 −25 −1

m30 26 28 29 30 3 −1 1

m32 −1 −1 −1 −1

Table 3.15. Coefficients of the HOMFLY-PT polynomials of the knot K75 and its cabled mutant
Kτ

75.
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