Course: CS1050c (Fall '03) Homework2 Solutions Instructor: Prasad Tetali

TAs: Kim, Woo Young: wooyoung@cc.gatech.edu, Deeparnab
Chakrabarty: deepc@cc.gatech.edu

Section 3.7

Problem 10: Prove that $\sqrt[3]{2}$ is irrational Solution:
Note that if n^{3} is even, then n is even, for otherwise, n would be odd, making n^{3}, the product of odd integers, odd.

Suppose $\sqrt[3]{2}$ is rational. Thus $\sqrt[3]{2}=a / b$, where a and b are integers and $b \neq 0$. Also assume that they don't have any common factors.Cubing both sides we get,
$2=a^{3} / b^{3}$ or $a^{3}=2 b^{3}$. Which implies a^{3} is even. Thus a is even, and so a^{3} is divisible by 8 . Thus, b^{3} is divisible by 4 , making b^{3}, and thus b even. Which implies a and b do have a common factor leading to a contradiction. Hence, $\sqrt[3]{2}$ is irrational.

Problem 13: Prove that $\sqrt{2}$ is irrational, using the unique prime factorization theorem

Solution:

Suppose $\sqrt{2}$ is rational.Thus $\sqrt{2}=a / b$, where a and b are integers and $b \neq 0$. Also $a^{2}=2 b^{2}$. Now consider the unique prime factorization of a^{2}. Since every prime factor of a occurs twice in the upf (unique prime factorization) of a^{2}, the upf of a^{2} must contain an even number of 2 's. If $2-\mathrm{a}$, then this even number is positive, else zero. Similarly, upf of b^{2} also has an even number of 2 's thus upf of $2 b^{2}$ has an odd number of $2^{\prime} s$, leading to a contradiction. Hence, $\sqrt{2}$ is irrational.

Problem 22: Prove that there is a unique prime number of the form $n^{2}+$ $2 n-3$, where n is a positive integer.

Solution:

Its not difficult to see that $n^{2}+2 n-3=(n+3)(n-1)$. Now if this were to be a prime, then one of the two of $(n+3)$ or $(n-1)$ must be 1 and the other must be prime, else they will be the two factors. Since $n>0, n+3>1$. Thus only $n-1=1$ is possible, which means $n=2$ is the only case when
$n^{2}+2 n-3$ will be a prime. Indeed, $n=2$ gives us $n^{2}+2 n-3=5$ which is a prime. For other values of $n, n^{2}+2 n-3$ is composite. Hence there is a unique prime of the form $n^{2}+2 n-3$.

Section 3.8

Problem 14: Using Euclidean method, find the GCD of 3,510 and 672

 Solution:$3510=672 \cdot 5+150$
$672=150 \cdot 4+72$
$150=72 \cdot 2+6$
$72=6 \cdot 12$

Thus $\operatorname{gcd}(3510,672)=6$.

Problem 24a: Find lcm $(12,18)$

Solution:

$\operatorname{lcm}(12,18)=\operatorname{lcm}\left(2^{2} \cdot 3^{1}, 2^{1} \cdot 3^{2}\right)$
Thus $\operatorname{lcm}(12,18)=2^{2} \cdot 3^{2}=36$.

Problem 24b: Find lcm $(12,18)$

Solution:

$\operatorname{lcm}\left(2^{1} \cdot 3^{2} \cdot 5,2^{3} \cdot 3^{1}\right)$
Thus $\operatorname{lcm}(12,18)=2^{3} \cdot 3^{2} \cdot 5=360$.

Problem 24c: Find lcm $(3500,1960)$
Solution:
$\operatorname{lcm}(3500,1960)=\operatorname{lcm}\left(2^{2} \cdot 5^{3} \cdot 7,2^{3} \cdot 5 \cdot 7^{2}\right)$
Thus $\operatorname{lcm}(12,18)=2^{3} \cdot 5^{3} \cdot 7^{2}=49,000$.

Problem 28: Prove that for any two numbers a and $b, \operatorname{gcd}(a, b) \cdot l c m(a, b)=$ $a \cdot b$
Solution:
Claim: $\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b) \leq a \cdot b$

Proof: Since $\operatorname{gcd}(a, b) \mid a, \frac{a}{g c d(a, b)}$ is an integer. Thus b divides $\frac{a b}{g c d(a, b)}$. Similarly, a divides $\frac{b a}{g c d(a, b)}$. Thus $\frac{a}{g c d(a, b)}$ is a common multiple of a and b, implying $\operatorname{lcm}(a, b) \leq \frac{a}{g c d(a, b)}$, or, $g c d(a, b) \cdot \operatorname{lcm}(a, b) \leq a \cdot b$

Claim: $\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b) \geq a \cdot b$
Proof: By definition, $a \mid \operatorname{lcm}(a, b)$. Thus $\operatorname{lcm}(a, b)=a k$, for some integer k. Thus $b \cdot \operatorname{lcm}(a, b)=a b k$ which implies $b=\frac{a b}{l c m(a, b)} \cdot k$, which implies $\left.b\right|_{\frac{a b}{l c m(a, b)}}$. Similarly $\left.a\right|_{\frac{a b}{l c m(a, b)}}$. Thus $\frac{a b}{l c m(a, b)}$ is a common divisor. Hence, $\frac{a b}{\operatorname{lcm}(a, b)} \leq g c d(a, b)$ implying $g c d(a, b) \cdot \operatorname{lcm}(a, b) \geq a \cdot b$

By the two claims, $\operatorname{gcd}(a, b) \cdot l c m(a, b)=a \cdot b$

Section 4.2

Problem 2: Using mathematical Induction, show that any postage of denomination greater that 8c can got from stamps of 3c and 5c

Solution:

Base Case: $8 \mathrm{c}=1$ 3c stamp +15 c stamp
Induction Hypothesis: Any postage of denomination k can be got from stamps of 3 c and 5 c , when $k \geq 8$.
Claim: A stamp of denomination $k+1$ can be got from 3c and 5c stamps. Proof:
Suppose there is a 5 c stamp used to make the k cents postage. Remove it and put 23 c stamps, we get a postage of $k+1$ stamps.

If no 5 c stamps were used, then atleast 3 3c stamps must have been used to make the k cent amount as $k \geq 8$. Thus remove 33 c stamps and put in 2 5 c stamps to get $k+1 \mathrm{c}$ worth of postage. hence proved

Problem 7: Use Mathematical Induction to show that $1+5+9+\cdots+4 n-3$ $=n(2 n-1)$
Solution:
Base Case: $\mathrm{n}=1$.

$$
L H S=1
$$

$$
\begin{aligned}
R H S & =1(2-1) \\
& =1
\end{aligned}
$$

Induction Hypothesis: Let $1+5+9+\cdots+4 n-3=n(2 n-1)$ for all $n \leq k$.
Claim: $1+5+9+\cdots+4(k+1)-3=(k+1)(2(k+1)-1)$
Proof:

$$
\begin{array}{rlr}
\text { LHS } & =1+5+9+\cdots+4(k+1)-3 & \\
& =1+5+9+\cdots+4 k-3+4(k+1)-3 \\
& =k(2 k-1)+(4 k+1) \quad \text { By } \\
& =2 k^{2}+3 k+1 \\
R H S & =(k+1)(2(k+1)-1) \\
& =(k+1)(2 k+1) \\
& =2 k^{2}+3 k+1
\end{array}
$$

Hence Proved

Problem 13: Using Mathematical Induction, prove $\sum_{i=1}^{n+1} i 2^{i}=n 2^{n+2}+2$ for all $n \geq 0$

Solution:

Base Case: $\mathrm{n}=0$.

$$
\begin{aligned}
\text { LHS } & =1.2^{1} \\
& =2 \\
\text { RHS } & =0+2 \\
& =2
\end{aligned}
$$

Induction Hypothesis: $\sum_{i=1}^{n+1} i 2^{i}=n 2^{n+2}+2$ for all $n \leq k$
Claim: $\sum_{i=1}^{k+2} i 2^{i}=(k+1) 2^{k+3}+2$
Proof:

$$
\begin{aligned}
L H S & =\sum_{i=1}^{k+2} i 2^{i} \\
& =\sum_{i=1}^{k+1} i 2^{i}+(k+2) 2^{k+2}
\end{aligned}
$$

$$
\begin{array}{ll}
=k .2^{k+2}+2+(k+2) 2^{k+2} & \text { By Induction Hypothesis } \\
=2^{k+2}(2 k+2)+2 & \\
=(k+1) 2^{k+3}+2 & \\
=\text { RHS } &
\end{array}
$$

Hence Proved

Additional problem

Problem : Find the GCD of 34709 and 100313; also express the $G C D$ as an integer combination of the two numbers

Solution:

Using Euclid's algorithm,
$100313=34709.2+30895$
$34709=30895 \cdot 1+3814$
$30895=3814.8+383$
$3814=383.9+367$
$383=367.1+16$
$367=16.22+15$
$16=15 \cdot 1+1$
Thus $\operatorname{gcd}(100313,34709)=1$
Backtracking we get the following.

$$
16-15.1=1
$$

16-(367-16.22). $1=1$
$16.23-367.1=1$
$(383-367) .23-367.1=1$
383. 23-367. $24=1$
383. 23-(3814-383.9). $24=1$
383. 239-3814. $24=1$

Continuing thus we shall finally get, $100313 \cdot 2175+34709 \cdot(-6286)=1$.

A few Optional Problems

Problem 3.7.15: Prove that $\log _{2} 3$ is irrational
Solution:
Suppose not. Then $\log _{2} 3=a / b$ for some integers a and b. Thus $2^{a}=3^{b}$.

Now the LHS has the prime factors 2 while the RHS has prime factors 3 . Since $b \neq 0$, there is atleast one 3 in the RHS, but none in the LHS. Thus there is a contradiction.

Problem 3.7.18: Suppose for any odd prime p, there exists no solutions to the equation $x^{p}+y^{p}=z^{p}$. Then show that for every integer which is not a power of 2, $x^{n}+y^{n}=z^{n}$ has no solutions

Solution:

Since n is not a power of two, there exists an odd prime factor p of n. Suppose $n=p k$. Then $x^{n}=\left(X^{k}\right)^{p}$. Thus if the equation $x^{n}+y^{n}=z^{n}$ had solutions x_{0}, y_{0}, z_{0} then $x_{0}^{k}, y_{0}^{k}, z_{0}^{k}$ form the solutions to the equation $x^{p}+y^{p}=z^{p}$, contadicting the premise of the problem. Hence proved

Problem 3.8.23.a: Prove: $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a-b)$ for any two integers $a \geq b>0$.

Solution:

Suppose $d \mid a$ and $d \mid b$. Then $d \mid(a-b)$ Thus every common divisor of a and b is a common divisor of $b, a-b$. Suppose $d \mid b$ and $d \mid a-b$, then $d \mid b+(a-b)$ that is $d \mid a$. Thus every common divisor of b and $b-a$ is a common divisor of a and b. In other words all common divisors are same, or more specifically the Greatest common divisors are same.

Problem 4.2.8: Using Mathematical Induction, prove: $1+2+2^{2}+\cdots+2^{n}=$ $2^{n+1}-1$ for all $n \geq 0$

Solution:

Base Case: $\mathrm{n}=0$.

$$
\begin{aligned}
L H S & =1 \\
R H S & =2^{1}-1 \\
& =1
\end{aligned}
$$

Induction Hypothesis: $1+2+2^{2}+\cdots+2^{n}=2^{n+1}-1$ for all $n \leq k$
Claim: $1+2+2^{2}+\cdots+2^{k+1}=2^{k+2}-1$
Proof

$$
L H S=1+2+2^{2}+\cdots+2^{k+1}
$$

$$
\begin{aligned}
& =1+2+2^{2}+\cdots+2^{k}+2^{k+1} \\
& =2^{k+1}-1+2^{k+1} \\
& =2.2^{k+1}-1 \\
& =2^{k+2}-1 \\
& =\text { RHS }
\end{aligned}
$$

Problems 3.7.10, 3.8.14, 4.2.7 and the Additional problem were graded. These solutions were prepared by Deeparnab Chakrabarty(deepc@cc) Please report bugs to the same

