Course: CS 1050C - Test 1 (FALL '03)

Instructor : Prasad Tetali, office: Skiles 126, email: tetali@math.gatech.edu
Total Points : $10+10+10=30$ plus extra credit problem $=5$ pts. Please explain all your answers.

Time: 50 minutes

Problem 1. (10pts) (a) Compute the gcd $(2628,738)$ using Euclid's gcd algorithm.
(b) Show that if $a^{3} \mid b^{2}$ then $a \mid b$, where a and b are positive integers.

Problem 2. (10 pts) Let $d=\operatorname{gcd}(m, n)$, where m and n are positive integers.
(a) Prove or disprove: Suppose c is a common divisor of m and n. Then c divides d.
(b) We saw in class that d can be written as $m x+n y$ where x and y are integers. Can a positive integer smaller than d be written as $m x_{1}+n y_{1}$ for some integers x_{1} and y_{1} ? (Recall that d divides both m and n). Explain your answer.

Problem 3. (10 pts) Let $\left\{a_{n}\right\}$, for $n=0,1,2, \ldots$ be a sequence satisfying $a_{n}=2 a_{n-1}+3 a_{n-2}$, for $n \geq 3$. Given that $a_{1}=a_{2}=1$, prove that $a_{n}=\frac{1}{2}\left(3^{n-1}-(-1)^{n}\right)$ for $n \geq 1$.

Extra Credit. (5 pts) The Fibonacci sequence $\left\{F_{n}\right\}$ is defined as follows. $F_{0}=F_{1}=1$. For $n \geq 2, F_{n}$, the nth Fibonacci number satisfies the recurrence:

$$
F_{n}=F_{n-1}+F_{n-2} .
$$

Show that every pair of consecutive Fibonacci numbers is relatively prime. (Namely, show that $\operatorname{gcd}\left(F_{n}, F_{n-1}\right)=1$ for $n \geq 1$.)

